[DU: $1 \mid[0$

A JOURNAL OF HIGHWAY RESEARCH

UNITED STATES DEPARTMENT OF AGRICULTURE
BUREAU OF PUBLLC ROADS

VOL.16,NO.6
∇
AUGUST 1935

PUBLIC ROADS
 $\rightarrow A$ Journal of
 Highway Research

Issued by the
UNITED STATES DEPARTMENT OF AGRICULTURE
BUREAU OF PUBLIC ROADS
Volume 16, No. 6
August 1935
The reports of research published in this magazine are necessarily qualified by the conditions of the tests from which the data are obtained. Whenever it is deemed possible to do so, generalizations are drawn from the results of the tests; and, unless this is done, the conclusions formulated must be considered as specifically pertinent only to described conditions.

> In This Issue

Further Studies of Liquid Asphaltic Road Materials ${ }_{9} 97$
State Motor-Fuel Consumption and Tax Earnings, 1934 118

THE BUREAU OF PUBLIC ROADS Willard Building, Washington, D. C.
REGIONAL HEADQUARTERS Mark Sheldon Building, San Francisco, Calif.

DISTRICT OFFICES

DISTRICT No. 1. Oregon, Washington, and Montana. Post Office Building, Portland, Oreg

DISTRICT No. 2. California, Arizona, and Nevada.
Mark Sheldon Building, 461 Market St., San Francisco, Ca!if.
DISTRICT No. 3. Colorado, New Mexico, and Wyoming.
237 Custom House, Nineteenth and Stout Sts., Denver, Colo.
DISTRICT No. 4. Minnesota, North Dakota, South Dakota, and Wisconsin. 907 Post Office Building, St. Paul, Minn.

DISTRICT No. 5. Iowa, Kansas, Missouri, and Nebraska.
Saunders-Kennedy Building, Omaha, Nebr.
DISTRICT No. 6. Arkansas, Louisiana, Oklahoma, and Texas.
Room 502, United States Courthouse, Fort Worth. Tex.

DISTRICT No. 7. Illinois, Indiana, Kentucky, and Michigan.
South Chicago Post Office Building, Chicago, Ill.
DISTRICT No. 8. Alabama, Georgia, Florida, Mississippi, South Carolina, and Tennessee.

Post Office Building, Montgomery, Ala.
DISTRICT No. 9. Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, and Vermont.

505 Post Office Building, Albany, N. Y.
DISTRICT No. 10. Delaware, Maryland, North Carolina, Ohio, Pennsylvania, Virginia, and West Virginia.

Willard Building, Washington, D. C.
DISTRICT No. 11. Alaska.
Room 419, Federal and Territorial Building, Juneau, Alaska.
DISTRICT No. 12. Idaho and Utah.
Federal Building, Ogden, Utah.

Because of the necessarily limited edition of this publication it is impossible to distribute it free to any person or institutions other than State and county officials actually engaged in planning or constructing public highways, instructors in highway engineering, and periodicals upon an exchange basis. At the present time additions to the free mailing list can be made only as vacancies occur. Those desiring to obtain Public Roads can do so by sending $\$ 1$ per year (foreign subscription $\$ 1.50$), or 10 cents per single copy, to the Superintendent of Documents, United States Government Printing Office, Washington, D. C.

FURTHER STUDIES OF LIQUID ASPHALTIC ROAD MATERIALS

BY THE DIVISION OF TESTS, U. S. BUREAU OF PUBLIC ROADS

Reported by R. H. LEWIS Associate Chemist, and W. O'B. HILLMAN, Assistant Highway Engineer

I
IN A REPORT recently published by the Bureau of Public Roads on A Study of Some Liquid Asphaltic Materials of the Slow-Curing Type, ${ }^{1}$ it was shown that the action of sunlight, heat, and air on these materials when exposed in relatively thin films produced residues with physical and chemical characteristics differing greatly from those of the residues developed in the usual laboratory heat tests. It was also shown that when these materials were mixed with a standard sand, molded into cylinders by the Hubbard-Field method, and subjected to the same exposure conditions as the thin films, they developed stability, or bonding strength that could not be attributed entirely to the loss of volatile matter.
MATERIALS STUDIED TYPICAL OF ALL CLASSES OF LIQUID ASPHALTIC MATERIALS FROM PRINCIPAL PRODUCING AREAS
The materials used in the earlier investigation were slow-curing liquid asphalts. They were the products of 10 refineries located in the far and middle West. In further studies conducted in 1933, that are the subject of this report, 32 materials typical of the slow-, medium-, and rapid-curing types of liquid asphaltic materials were used. These samples are identified in table 1 and were the products of 25 refineries located in all sections of the country and probably were made from petroleums of widely different bases and by various refining processes.

Table 1.-Products tested

Sample identification	Laboratory number	$\begin{gathered} \text { Type } \\ \text { of } \\ \text { material } \end{gathered}$	$\begin{aligned} & \text { Pro- } \\ & \text { ducer } \end{aligned}$	Refinery	Location of refinery	Remarks
1.	36626	SC-2	1	1	Oklahoma	
2	34354	SC-2	2	2	Missouri.	
3	35130	SC-2	2	3	Illinois.-	
4.	35481	SC-3	3	4	W...do..	
5	36425	SC-3	3	5	W yoming	
	36045	SC-3	4	6	Arkansas....	
	36945	$1 \mathrm{SC}-2$	5	7	-----do.----.	
8.	36598	SC-2	6	8	Oklahoma	
9	35195	${ }_{1} \mathrm{SC}-2$	7	9	West Virginia.	
10.	35334	$1 \mathrm{SC}-2$	8	10	Rhode Island.	
11.	35200	${ }_{2} \mathrm{SC}-1$	9	11	Louisiana....	
12	35396	$1 \mathrm{SC}-2$	9	11	----do---....-	
13	36026	SC-3	9	11	--.-do.-	
14	35351	SC-2	2	12	Indiana	
15.	35180	SC-2	2	13	W yoming	
16.	35181	SC-2	2	14	- do...-	
17.	35103	SC-2	10	15	Indiana	Included in 1932 ex-
18.	35367	SC-2	10	16	Illinois	posure. do.
19.	34322	SC-2	11	17	----do.	do.
20.	36089	SC-2	12	18	California	do.
21	39161	SC-2	13	19	- do.	Steam-reduced Cali-
22	39162	${ }_{2}{ }^{\text {SC-3 }}$	13	19	do.	fornia residual oil.
23.	39068	${ }^{1} \mathrm{SC}-2$	7	20	South Carolina	
24.	34285	RC-2	14	21	New Jersey .-.	
	36762	${ }^{2} \mathrm{RC}-2$	3	22	-.-.do---	
26.	35345	$\mathrm{RC}-2$	2	12	Indiana.	
	35352	${ }^{2} \mathrm{MC}-1$	2	12	-...-do	
	35247	$\mathrm{RC-2}$	7	23	Maryland	
	36771	$\mathrm{RC-2}$	15	24do....	
	33607	${ }^{3} \mathrm{MC}-2$	16	25	W yoming	
	32916	MC-2	2	13	-..-do do.-.	
	32622	MC-2	13	19	California	

${ }_{2}^{1}$ Furol viscosity was below specification limit.
${ }_{3}^{2}$ Furol viscosity was above specification limit.
Penetration of distillation residue was below specification limit.
R. H. Lewis and W. O'B. Hillman, Public Roads, June 1934, vol. 15, no. 4.

As shown in table 1, 23 of the materials were of the slow-curing type, of which 4 samples were tested in 1932 and were included in this study for comparative purposes. Four were of the medium-curing type and five were rapid-curing products. They met the provisional specifications, as given in table 2, of the Bureau of Public Roads and the Asphalt Institute, except as noted in table 1. Samples 21 and 22 were the only slow-curing products for which there was any definite information as to origin or method of manufacture. Both of these materials were steam-reduced California residuals without subsequent blending. All of the rapid-curing products were prepared from 85-100 penetration asphalt and solvent naphtha. The composition of sample 27 was unknown but the other medium-curing products, samples 30,31 , and 32 , were, respectively, 110-120 penetration asphalt, $94+$ asphaltic road oil, and 100-120 penetration asphalt fluxed with a heavy grade of kerosene. These three medium-curing materials, although subjected to all of the laboratory tests, were exposed only under special conditions that are described later in this report.

TABLe 2.-Specification requirements for grades of liquid asphaltic road materials investigated

	SC-1	SC-2	SC-3	MC-1	MC-2	$\mathrm{RC}-2$
Flash point, ${ }^{\circ} \mathrm{F}$	$150+$	$200+$	$200+$		$150+$	$80+$
Furol viscosity at $77^{\circ} \mathrm{F}$. , seconds	20-150			40-150		
Furol viscosity at $122^{\circ} \mathrm{F}$., seconds .-		200-320				200-400
Furol viscosity at $140^{\circ} \mathrm{F}$., seconds			150-300		150-250	
Total distillate to 437° F., percent by volume		$2-$	$2-$	$10-$	$2-$	$10+$
Total distillate to $600^{\circ} \mathrm{F}$., percent by volume.		15-	10-	$25+$	10-20	$20+$
Total distillate to $680^{\circ} \mathrm{F}$., percent by volume	$50-$	$25-$	$20-$	$50-$	$27-$	35-
Tests on distillation residue: Float at 122° F., seconds	$50-$	$25+$	$25+$			
Penetration at $77^{\circ} \mathrm{F}$.				70-300	100-300	60-120
Ductility at $77^{\circ} \mathrm{F}$., centimeters	99.	$99.0+$	$99.0+$	$60+$ $99.5+$	$60+$ $99.5+$	${ }_{99.5+}^{60+}$

The test procedure followed that of the 1932 study except that the fixed-carbon test was omitted as the changes in inherent characteristics that occurred under laboratory and exposure conditions appeared to be more strikingly illustrated by the test for solubility in $86^{\circ} \mathrm{B}$. naphtha. Two new tests were added. The Oliensis test ${ }^{2}$ for heterogeneity was made on the original materials and on all of the residues, except those from the 50 -gram oven-loss test and the 10 -week exposure test, and the original materials were examined microscopically. The results of the tests on the original materials are given in table 3 and a detailed analysis of the residues obtained in the routine laboratory tests is given in table 4.

[^0]Table 3.-Results of tests on original materials

${ }^{1} \mathbf{H}=$ Heterogeneous; $\mathrm{O}=$ Homogeneous; $\mathrm{SH}=$ Slightly heterogeneous.
distillation curves clearly distinguish slow-, Medivm-, and rapid-CURING MATERIALS
The distillation curves for the various materials, plotted in figure 1, serve to distinguish the three classes of materials according to their curing properties. It will be noted that the initial boiling points of the slowcuring products, samples 1 to 23 , inclusive, were all above $450^{\circ} \mathrm{F}$. and in only two instances were they less than $500^{\circ} \mathrm{F}$. The medium-curing materials, samples $27,30,31$, and 32 , had initial boiling points as low as $360^{\circ} \mathrm{F}$. with none above $450^{\circ} \mathrm{F}$.; and the rapid-curing products, samples 24, 25, 26, 28, and 29, all had initial boiling points below $370^{\circ} \mathrm{F}$.
With all three classes of materials, the percentage of distillate increased as the temperature increased but not at the same rate. For the slow-curing materials, the rate continued fairly uniform up to $680^{\circ} \mathrm{F}$:, but' with the medium- and rapid-curing products it decreased as the temperature approached $680^{\circ} \mathrm{F}$. The decrease in rate was more pronounced for the rapidcuring products. The rate of distillation may be illustrated by expressing the amount of distillate off at any temperature in terms of the total distillate recovered at $680^{\circ} \mathrm{F}$. For the medium-curing materials the amount at $600^{\circ} \mathrm{F}$. was 65 to 85 percent of the total. For rapid-curing materials the amount was 0 to 50 percent at $374^{\circ} \mathrm{F}$., 41 to 85 percent at $437^{\circ} \mathrm{F}$., and 88 to 94 percent at $600^{\circ} \mathrm{F}$. The residues from the distillation of the slow-curing products were all fluid, while those of the medium- and rapid-curing materials were semisolid.

That portion of the total loss in the distillation test designated as loss on cooling depends upon the amount of material boiling off immediately above $680^{\circ} \mathrm{F}$. As would be expected from the slope of the distillation curves, this loss was greater for the slow-curing products than for the medium- and rapid-curing products. It ranged from 1.2 percent to 5.8 percent with an average of 4.5 percent for the slow-curing products, from 2.9 percent to 4.2 percent with an average of 3.4 percent for the medium-curing products, and from 1.5 percent to 3.1 percent with an average of 2.2 percent for the rapidcuring products.

The total volatile matter in the slow-curing materials as determined by the distillation test, including both the distillate recovered and the loss on cooling, ranged from 2.8 percent to 25 percent with an average of 13.8 percent for the group. The average loss on cooling of 4.5 percent actually represented 36 percent of the total volatile matter in the average slow-curing material used in this study. While this loss on cooling may be unimportant in estimating the relative volatility of various liquid asphalts, it must be considered if the results of the distillation test are to be compared directly with the results of other laboratory and exposure tests.

The different classes of materials are also readily identified by the results of the volatilization and asphaltic-residue tests. The slow-curing products lost in the 50 -gram volatilization test from 53 to 76 percent, the medium-curing products from 73 to 80 percent, and the rapid-curing products from 92 to 97

Table 4.-Results of tests on laboratory residues

percent as much as they lost in the 20 -gram volatilization test. The residues from both volatilization tests of the slow-curing products were fluid; those of the medium-curing products were fluid in the 50 -gram volatilization test and semisolid in the 20 -gram volatilization test; and those of the rapid-curing products were both semisolid. For the slow-curing products, the loss in neither volatilization test amounted to as much as that in the asphaltic residue test. For the medium-curing products, the loss in the 20 -gram volatilization test approximated the loss in the as-phaltic-residue test, while for the rapid-curing products the losses in all tests, including the distillation test, were approximately the same. The loss in the 20 -gram volatilization test, while always greater than that in the 50 -gram volatilization test, was always less than in the distillation test. The residue from the 20 -gram volatilization test may, however, be harder or softer than the residue from distillation.

The slow-curing products were reduced to a residue of 100 penetration in from 30 to 420 minutes, with an average of 126 minutes. In producing residues of the same consistency medium-curing products took from 16 to 30 minutes, with an average of 23 minutes and the rapid-curing products took from 11 to 15 minutes, with an average of 13 minutes. When making the as-phaltic-residue test on the rapid-curing products, difficulty was experienced in obtaining a residue that was
not too hard, since the high volatility of the solvent caused the cut-back materials to be reduced to 100 penetration before the temperature for making the test was reached.

MAJORITY OF MATERIALS SHOWED A CLEAR FIELD ON MICROSCOPIC EXAMINATION

The microscopic test, adopted by one State highway department for the detection of cracking-coil products, was made on all materials. The specification of the State did not set up an exact procedure. It merely stated that a freshly prepared smear of the asphaltic material diluted with carbon tetrachloride should show a clear field free from carbonaceous matter when subjected to a magnification of 200 diameters. In the work covered by this report, the test was standardized by using 2 parts by weight of carbon tetrachloride and 1 part by weight of asphaltic material in preparing the slides for observation. When prepared in this manner all of the materials but seven showed a clear field. In preparing the slides for the photomicrographs illustrated in figure 2, 6 parts by weight of carbon tetrachloride and 1 of the asphaltic material were used.

Because carbon tetrachloride has both solvent and flocculent properties, its use as a diluent was questioned. Therefore, slides were also prepared with the undiluted materials and it was found that only those materials that showed flecks when undiluted showed

Figure 1.-Relation of Percentage of Distillate by Volume to Distilling Temperature.
them in the 2 to 1 and 6 to 1 dilutions. This indicates that the insoluble matter was already flocculated and that carbon tetrachloride, in the quantities used, did not precipitate carbonaceous flecks in those materials not containing them when undiluted. Recently a sample was tested that contained flecks when undiluted that disappeared on dilution with carbon tetrachloride; and another sample that was practically clear when undiluted contained flecks when diluted. In the first case, the poor solvent properties of the distillate used in the material were responsible for incomplete solution of the base asphalt, that immediately went into solution with the addition of carbon tetrachloride. In the second case it was quite evident that the carbon tetrachloride acted as a flocculent. However, since 6 of the 7 samples that contained carbonaceous material had relatively high percentages of material insoluble in carbon tetrachloride, it is
probable that the flecks shown are particles of free carbon and carbenes.

In conducting the exposure tests three samples of each material were placed in seamless, flat-bottom tins having a diameter of $51 / 2$ inches and a depth of five-eighths inch. Fifty cubic centimeters of material were used to obtain a uniform film or layer thickness of about one-eighth inch. The samples were then placed in exposure boxes made of wood. A plateglass cover resting on strips of felt fastened to the edges of each box made a tight joint and excluded all dust and dirt. A current of air was passed through a wash bottle containing sulphuric acid to remove dust and eliminate moisture, and was admitted through the bottom of the boxes and escaped through slots in the sides, thus serving to carry off the vapors formed. The slots were protected from rain by thin boards extending from the top of the box downward at an

Figure 2.--Photomicrographs of Materials Containing Carbonaceous Matter (Magnified 200 Times). The Lower Two Illustrations Show Results Obtained With Sample 17; in the One on the Left the Material Was Diluted with Carbon Tetrachloride and the One on the Right Shows Undiluted Material.
angle of about 45°. Cotton batting inserted in the slots excluded dust. A thermometer in each box provided a means of determining the temperature. The assembly of the boxes is shown in figure 3 .

DIFFERENCES FOUND BETWEEN SLOW-CURING AND CUT-BACK PRODUCTS AFTER EXPOSURE

The samples were placed in the boxes on June 15, 1933, and were weighed periodically to determine the loss in weight. A complete set of samples was removed and tested at the end of 5 weeks, another set at 10 weeks, and the last set at 15 weeks. The temperature of the boxes was dependent entirely upon the radiant
heat of the sun and varied with the amount of sunshine. On clear days the temperature was extremely high, the maximum recorded being $196^{\circ} \mathrm{F}$, but on days with no sunshine the temperature in the boxes was the same as that of the air. During the period of exposure the average maximum daily air temperature was $85^{\circ} \mathrm{F}$. The samples exposed for 5 weeks were subjected to 333 hours of sunlight and those exposed for 10 and 15 weeks were subjected to 611 and 866 hours of sunlight, respectively. The percentage of loss at different periods of exposure is given in table 5 and the results of tests on the residues are given in table 6. Photographs of typical surfaces at the end of 15 weeks are shown in figure 4.

Figure 3.-Stability Specimens and Thin Films of Material Exposed to Sunlight.

While the majority of the materials progressively lost weight during the period of exposure, a number of them actually gained at first, although they later lost more than the amounts gained. An exception to this was sample 1, which had gained 3.6 percent at the end of 8 days and at the end of 15 weeks still showed a slight gain. The samples exposed for 15 weeks were used in determining the loss at $2,8,15,22,50$, and 105 days, while the percentage of loss given for the 35 - and 70 -day exposures was based on samples used for test at the end of 5 and 10 weeks, respectively. This was done to eliminate errors in calculating the results of subsequent tests made upon the respective residues and accounts for slight variations that may appear to indicate gains instead of losses.

As was expected, the cut-back products lost weight very rapidly. At the end of 2 days they had lost from 86 to 92 percent of their maximum loss with an average of 89 percent, and at the end of 35 days they had lost from 97 to 100 percent with an average of 99 percent. For the slow-curing products the rate of loss was mucb less, but was considerably more variable. In 2 days those samples that had undergone a loss had lost from 3 to 60 percent of their maximum loss with an average of 35 percent. In 15 days they had lost from 16 to 84 percent with an average of 50 percent, in 35 days from 63 to 100 percent with an average of 82 percent, and in 70 days from 74 to 100 percent with an average of 89 percent. Some idea of the relative speed of curing or volatility of the two types of material may be obtained by comparing their losses under these exposure conditions. The slow-curing materials took 70 days to lose an average of 89 percent of their volatile matter, while the cut-back materials underwent the same percentage loss in 2 days.

LOSS IN DISTILLATION TEST MOST NEARLY APPROXIMATED LOSS IN 15 WEEKS' EXPOSURE FOR ALL TYPES OF MATERIALS
Figure 5 shows the relation between the percentage of loss upon exposure and loss in the distillation test,

Table 5.-Loss in thin film exposure

Sample identification	Loss on exposure for-							
	$\stackrel{2}{\text { days }}$	$\stackrel{8}{\text { days }}$	$\begin{gathered} 15 \\ \text { days } \end{gathered}$	$\stackrel{22}{\text { days }}$	$\begin{gathered} 35 \\ \text { days } \end{gathered}$	$\begin{gathered} 50 \\ \text { days } \end{gathered}$	$\begin{gathered} 70 \\ \text { days } \end{gathered}$	$\begin{gathered} 105 \\ \text { days } \end{gathered}$
	Percent							
1	-2.6	-3.6	-3. 4	-3. 4	-3.0	-2.7	-2.7	-0.9
2	1.9	4.3	5.7	7.6	9.5	10.3	10.2	12.4
3	$-.2$	2.0	2.9	4.7	6. 6	8.0	8.0	9.4
4		1.5	1. 7	3.2	5. 1	4.4	5. 8	5.8
5	2.6	5.4	6.5	8.2	9.5	9.8	9.9	11.5
6	$-.3$	1.2	2. 0	4.1	5.1	6.1	8.5	8.2
7	7.8	12.9	14.6	17.7	20.2	20.0	21.0	21.5
8	-1.8				2.3		1.8	2. 0
9	. 3	2.4	4.0	5. 3	8.1	8.2	9.6	10.7
10	11.0	14.4	14.5	15.7	16. 4	16.7	16.8	17.3
11	7.8	14.7	16.4	18. 2	20.4	21.0	21.6	22.3
12	4.6	8.9	9.4	11.8	13.7	13.4	13.8	15.2
13.	. 4	2.6	4.3	6.1	7.3	10.1	8.5	9.8
14	-1.3	. 2	1. 3	3.4	5. 2	6.9	6. 0	8.1
15	1.9	5. 5	6.9	8.4	9.3	12.1	10.6	13.3
16	-3.5	-1.5	-1.0	1.8	4.6	5.7	5. 7	6.7
17	8.6	12.6	14.4	15.9	18.5	18.9	18.7	19.5
18	11.5	15.7	16.5	17.4	18. 2	19.2	17.7	19.0
19.	1. 4	5.0	6.1	8.6	10.1	12.4	12.0	13.8
20	2.3	6.8	7.8	9.8	11.7	12.6	11.5	13.6
21	-1.1	3.7	6. 4	8.2	12.5	13.6	12.9	14.3
22	. 6	3.4	5.1	6.7	8.5	9.8	9.1	10.5
23	1. 3	3.7	4.6	6. 6	8.3	10.6	13.1	11.2
24	19.4	21. 2	21.5	22.0	22.2	22.2	22.5	22.5
25	20.1	21.6	21. 9	22.1	22.2	22.0	22.0	22.2
26	20.5	21. 6	21.8	22.1	22.4	22.1	22.1	22.0
27	26.1	27.1	27.3	27.5	27.6	27.6	28.3	27.8
28	17.7	19.6	19.9	20.0	19.9	20.1	20.0	20.1
29.	19.2	20.8	21.3	21.4	21.6	21.4	21.4	21.4

loss in the two oven tests, and loss in the asphalticresidue test. Figure 5 indicates that for the slowcuring products the loss in 15 weeks' exposure was about $2 \frac{1}{2}$ times as great as that in the oven test on a 50 -gram sample, about $1 \frac{1}{2}$ times as great as that in the oven test on a 20 -gram sample, and about the same as the loss in the distillation test. No relationship was apparent between the loss in the exposure and asphalticresidue tests. The loss in the latter test was, however, invariably greater, ranging from $1 \frac{1}{3}$ to 14 times the loss occurring in 15 weeks' exposure with an average of $2 \frac{1}{2}$ times this loss. For the cut-back products the loss in all tests was approximately the same. In all the materials studied, both in 1932 and 1933, the total loss in

Table 6.-Results of tests on exposure residues

1 The 10 and 15 -week exposure residues of this sample were nonhomogeneous.
the distillation test most nearly approximated the loss in 15 weeks' exposure.

At the end of 15 weeks' exposure the surfaces of the samples varied greatly in appearance, as shown by the typical photographs in figure 4. The appearance of sample 14 was typical of samples $1,2,3,4,5,6,7,9,12$, $18,19,20,21$, and 22 . However, there were some variations in actual appearance that could not be shown in a photograph. Samples 1, 2, and 3 had mottled, slightly greasy surfaces. Samples 4, 9, and 19 had mottled, slightly greasy surfaces that were slightly iridescent. Samples 14, 21, and 22 had mottled, iridescent surfaces that were not greasy. Sample 5 had a uniformly mottled appearance neither iridescent nor greasy. Samples 6, 7, 12, 18, and 20 were smooth and glossy.

Sample 23 was mottled and slightly greasy, like samples 1,2 , and 3 , but had some dull areas as shown. Sample 13, while smooth and glossy, had some dull areas as shown; sample 16 was similar although it was slightly mottled.

Samples 10, 11, and 15 were checked over most of the area of their surfaces; their condition is shown by the photograph of sample 15. The unchecked areas in samples 10 and 11 were glossy but in sample 15 the surface was neither dull nor glossy. Samples 8 and 17 had very rough surfaces, shrunken and pitted as shown by their photographs. The material in the bottom of the cracks was soft but the outer surface was very hard. The cut-back products were all very rough and wrinkled, as shown by the photographs of samples 26,27 , and 28 .

The material in the cracks was glossy while the outer surface was dull.

At the end of 15 weeks all of the cut-back products were exceedingly hard. As they were originally combinations of semisolid asphalt and volatile fluxes and became semisolid in the laboratory tests, it would be expected that a semisolid residue would rapidly develop upon exposure. It has been believed generally that the asphalt base used in cut-back materials is relatively resistant to changes caused by weathering and that after the cutting medium is removed the character of the material changes but little. The six cut-back materials used in this study, while losing but little weight after 2 days, were much harder and had much less ductility at the end of 5 weeks' exposure than the asphalt used as base material.
The slow-curing products varied as greatly in consistency as in the rate and amount of volatile matter given off during exposure. At the end of 5 weeks all of them were harder than the residues from the distillation and oven tests, but only 5 had a penetration at 77° F. of less than 200. The consistency varied from a float of 34 seconds at $122^{\circ} \mathrm{F}$. to a penetration of 51 at $77^{\circ} \mathrm{F}$. At the end of 15 weeks only 3 materials had a penetration at $77^{\circ} \mathrm{F}$. of over 200 and one of these materials had disintegrated to such an extent that no true penetration test was possible. The consistency ranged from a float of 71 seconds at $122^{\circ} \mathrm{F}$. to a penetration of 20 at $77^{\circ} \mathrm{F}$. In the previous work, the slow-curing materials all developed residues after 15

Figure 4.-Condition of Surfaces After 15 Weeks of Exposure.
weeks that were as hard as or harder than their asphaltic residues of 100 penetration. It seems that it is impossible to predict, from the results of any of the laboratory tests, the consistency of the residues after exposure. Generally, however, those materials that took a long time to be reduced to 100 penetration in the asphalticresidue test and those whose residues from the distillation and oven tests had a low float-test value were the softest or most fluid at the end of 15 weeks.

ASPHALTIC RESIDUES DIFFERED IN CERTAIN RESPECTS FROM RESIDUES AFTER EXPOSURE OF ABOUT THE SAME PENETRATION

A comparison of the residues after exposure and asphaltic residues is of interest. All but 5 of the asphaltic residues had ductilities at $77^{\circ} \mathrm{F}$. of more than 110 cen-
timeters and 15 had ductilities at $34^{\circ}-35^{\circ} \mathrm{F}$. of $3 \frac{1}{2}$ centimeters or more. After 15 weeks' exposure only 7 products had ductilities at $77^{\circ} \mathrm{F}$. over 50 and only 4 over 110. Only 6 had ductilities at $34^{\circ}-35^{\circ} \mathrm{F}$. over $3 \frac{1}{2}$. These differences in ductilities may, in a number of instances, have been caused by differences in the consistencies of the residues after exposure and asphaltic residues.

However, in some cases one of the residues from exposure had approximately the same penetration as the asphaltic residue and the laboratory residues and residues after exposure may be compared directly. Table 7 shows the results of tests on both such residues and indicates that the two residues from the same material, although having the same consistency, varied considerably in other respects.

Figure 5.-Comparison of the Percentage of Loss After 15 Weeks of Exposure with Loss in the Laboratory Evaporation Tests.

The ratio of the penetration at $77^{\circ} \mathrm{F}$. to that at 32° F. was always lower for the residue from exposure. The ductility at $77^{\circ} \mathrm{F}$. of the residue from exposure was less than that of the asphaltic residue in all but two cases, and for these the ductility of both residues was $110+$. In five cases the ductility at $34^{\circ}-35^{\circ} \mathrm{F}$. of the residue from exposure was greater than that of the asphaltic residue. In every case except two the percentage of material insoluble in naphitha was greater for the residue from exposure than for the asphaltic residue. In every case where there was an appreciable amount of material insoluble in carbon tetrachloride
and carbon disulphide, the percentages were much greater for the residues from exposure.

Figure 6 shows the development of free carbon, carbenes, and asphaltenes in laboratory and exposure tests for the samples that originally contained or finally developed carbenes in appreciable amounts. Samples 8 , 23 , and 27 developed only relatively small amounts of carbenes and the development of the insoluble constituents is shown only for sample 27 . In figure 6 the volatile matter and the material insoluble in carbon disulphide, carbon tetrachloride, and $86^{\circ} \mathrm{B}$. naphtha are plotted for the original materials and their residues.

Table 7．－Comparison of residues of approximately the same penetration from the asphaltic－residue test and from exposure

	Asphaltic residue									Residue from exposure									
	Penetration				Ductility， 5 cm per minute			白 	白 	Penetration				Ductility， 5 cm per minute			白 		
														$\begin{aligned} & \text { ci } \\ & \stackrel{1}{1} \\ & \stackrel{4}{4} \end{aligned}$					
	100			${ }^{\circ} \mathrm{F}$ ．${ }_{109}$	Centi－ meters $110+$	Centi－ meters 0.0	Per－ cent 35.2	$\begin{aligned} & \text { Per- } \\ & \text { cent } \end{aligned}$ $\text { 2. } 16$	Per－ cent 0.16				${ }^{\circ} \mathrm{F} \cdot{ }_{108}$	Centi－ meters 63.0	Centi－ meters 1.5	Per－ cent 30.2	Per－ cent 9． 23	Per－ cent 2． 74	Weeks
3	105	15	7.0	107	$110+$	． 0	32.5	1． 50	． 16	62	22	2.8	127	5.0	． 0	31.3	11． 29	4． 46	10
4	107	18	5． 9	108	$110+$	． 0	25.5	1． 62	． 19	112	33	3.4	134	4.3	． 0	29.3	7.41	2． 46	10
5	105	28	3.8	113	$110+$	4.5	24.2	． 12		97	37	2.6	118	87.0	3． 8	30.5			10
10	106	35	3． 0	117	98	6.0	25.6	． 12		95	53	1．8	129	10.0	3． 5	29.4			10
11	84	21	4． 0	113	$110+$	． 1	21.1	． 03		73	35	2.1	121	17.0	1.5	29.3			10
13	93	27	3.4	115	$110+$	1.0	22.7	． 09		89	39	2.3	119	40.0	3.5	27.3			10
14	93	13	7.2	110	$110+$	－ 0	31.1	． 72	16	80	21	3.8	112	97.0	． 0	33.4	8.61	3． 07	15
15	103	25	4.1	115	$110+$	4.5	23.1	． 03		105	47	2.2	117	53.0	3． 5	30.3			10
18	88	27	3． 3	120	$110+$	4.8	18．5	． 15		93	28	3.3	116	$110+$	4.3	18.8	10		15
20	102	21	4． 9	114	$110+$	． 8	19.5	． 04		84	28	3.0	120	72.0	3.0	27.2	． 09		15
22	113	23	4.9	109	$110+$	． 0	14.5	． 05		112	28	4.0	111	$110+$	5.0	24.2	． 10		15

Figure 6．－Composition of Selected Materials and Their Residues as Determined by Solubility Tests．

All percentages are expressed in terms of the weight of the original material．

The solid portion in each vertical column represents free carbon or material insoluble in carbon disulphide． The remainder represents bitumen or material soluble in carbon disulphide．The double cross－hatched por－ tion represents carbenes or bitumen insoluble in carbon tetrachloride，and the single and double cross－hatched portions together represent asphaltenes or bitumen
insoluble in $86^{\circ} \mathrm{B}$ ．naphtha．The remainder of the column represents material soluble in $86^{\circ} \mathrm{B}$ ．naphtha that，in the original material，includes the more vola－ tile hydrocarbons vaporized and lost under test con－ ditions，as shown by the dotted area．The materials soluble in 86° B．naphtha have been termed＂malthenes＂ by Richardson．${ }^{3}$ This designation，however，has not been generally accepted in the United States．
${ }^{3}$ Clifford Richardson，The Modern Asphalt Pavement，p． 544 （2d ed．）．

As shown by figure 6, the material insoluble in naphtha included carbenes and free carbon; in fact, in the residue from 15 weeks' exposure of sample 19 the material insoluble in naphtha contained 19 percent free carbon and 27 percent carbenes. The term asphaltenes also includes carbenes. Nellensteyn ${ }^{4}$ has stated that asphaltenes, carbenes, and free carbon all consist of the same matter, that is, dispersed carbon in decreasing states of protection. The so-called "protective bodies" he designates as "micelles." He states that when extracted asphaltenes are heated at a temperature of $527^{\circ} \mathrm{F}$. they will be changed largely to free carbon, but a normal asphaltic material can be heated at $662^{\circ} \mathrm{F}$. for a long period with little production of free carbon. The reason for this is that in normal asphalts the amount of protective bodies, or micelles, is such that the decomposition of part of them influences their protective qualities only slightly. Marcusson ${ }^{5}$ states that the material soluble in $86^{\circ} \mathrm{B}$. naphtha (malthenes) is composed essentially of oily constituents and asphaltic resins. As the time of exposure increased, the percentage of asphaltenes, carbenes, and free carbon increased while the percentage of malthenes decreased.

In the 1932 investigation only those materials that had high specific gravities and initially contained some material insoluble in carbon disulphide with appreciable amounts insoluble in carbon tetrachloride developed carbenes either in laboratory or exposure tests. In the present study some of the materials such as samples 14 and 27 , that originally had high solubilities in carbon disulphide and carbon tetrachloride, developed carbenes even during some of the laboratory tests. In those materials in which carbenes and free carbon were developed, it may be considered that the amount or the protective quality of the micelles was insufficient to prevent carbonization.

All of the rapid-curing products at the end of 15 weeks had developed residues containing about 0.5 percent of material insoluble in carbon disulphide and carbon tetrachloride. For all materials the solubility

Figure 7.-Index of Increase in Material Insoluble in Naphtha in the Various Residues.

[^1] ${ }^{6}$ Sec Asphalts and Allied Substances by Herbert A braham, third edition, p. 755 .
in carbon disulphide was almost the same as the solubility in carbon tetrachloride, indicating the almost complete absence of carbenes.

MATERIAL INSOLUBLE IN NAPHTHA DEVELOPED MOST UNDER EXPOSURE AND LEAST IN THE DISTILLATION TEST

In figure 6, where all the percentages are expressed in terms of the weight of the original material, if the percentage of material insoluble in naphtha in any residue is divided by the percentage of material insoluble in naphtha in the original material and multiplied by 100, the result is the index of increase in material insoluble in naphtha. An index of 100 therefore indicates no change in the amount of material insoluble in naphtha. This index for all the samples is plotted in figure 7 and shows that generally there was an increase in material insoluble in naphtha during the various tests. Generally, this index was least for the distillation test and greatest for the 15 -week exposure test. In the distillation test it ranged from 88 to 129 .
While inaccuracies in testing may account for indexes of less than 100 in the distillation residues, it is possible for indexes actually to be below 100. Several samples of very viscous, slow-curing asphaltic material, really semisolid asphalts, were recently subjected to the distillation test. The materials did not yield any distillate but there was considerable loss on cooling. Nevertheless, the residues were softer than the original materials and contained less material insoluble in naphtha.
In the oven-loss test on 20 -gram samples the index varied from 101 to 161 and in the asphaltic residue test it varied from 96 to 302. In the case of the asphaltic residue the index was low when the time of reduction was low, and for the cut-back materials the asphaltic residue test was the least severe of all tests, although there is not much difference between this and the distillation test. The index was high when the time of reduction was high, as indicated by sample 18 which took 420 minutes to come to 100 penetration and had an index of 302 , and by sample 1 which took 280 minutes and had an index of 284 . The index varied from 105 to 294 for 5 weeks' exposure, from 119 to 361 for 10 weeks' exposure, and from 133 to 376 for 15 weeks' exposure. Except for four samples, the index of increase was greater for 5 weeks' exposure than for any of the laboratory tests. In the exposure tests, products originally containing the highest percentages of material insoluble in naphtha generally had the smallest indexes of increase.

OLIENSIS TEST INVESTIGATED

An interesting development in the study of asphaltic materials is the test for determining heterogeneity. This test has been called the Oliensis or spot test. The method of making the test and the interpretation of the results were outlined in a paper read before the 1933 meeting of the American Society for Testing Materials. In making this test on the original material, one part by volume of the asphaltic material was treated with 5.1 parts by volume of a special naphtha at such a temperature that solution or dispersion was complete in 6 to 8 minutes. After cooling to room temperature and adding fresh naphtha to replace any losses, a drop of the mixture was allowed to drop on a filter paper (J. H. Munktells, No. OO). The appearance of the resulting stain varied from a uniformly colored spot, in-
dicating complete dispersion, to stains in which the center was black and rough and surrounded by a lightercolored ring. When an entirely uniform stain was obtained another test was made after the mixture had stood for 24 hours. The appearance of the central spot was taken as an indication of the degree of heterogeneity, and those materials that gave a uniform stain after standing 24 hours were considered as homogeneous.

The test is presumed to give an insight into the conditions of manufacture. The types of asphaltic products that should be expected to appear homogeneous are as follows:

1. Steam-refined residuals known to have been refined without serious cracking.
2. The bitumen of certain native asphalts.
3. Some types of slightly oxidized residuals from as-phaltic-base crude oils.

The materials that should be expected to appear heterogeneous are:

1. Steam-refined residuals that have been overheated during the refining process.
2. Cracking-coil residuals.
3. Highly blown residuals

The test was initially developed and used to determine whether or not petroleum asphalts had been subjected to higher temperatures than usually occur in steam refining. It has been used by some States as an identification test for the control of liquid asphaltic materials. Recently the test procedure has been standardized by a group of Middle-Western States. In applying the test to slow-curing materials they state that if the material has less than 15 percent of distillate by volume at $680^{\circ} \mathrm{F}$., the test may be made on the original material. For all other materials of the slow-, medium-, or rapidcuring classes the test shall be made on the distillation residue. The presence of the volatile distillate in these types of materials was thought to interfere with the sensitivity of the test. It will be noted that in the case of the slow-curing materials investigated the test may be run on 18 samples as received, since in only 5 cases was the percentage of distillate by volume at $680^{\circ} \mathrm{F}$. more than 15 percent.

The identification of the character of the manufacturing process was the main object of this test, and for this purpose it should be made only on the finished products as they leave the refinery and not after they have been subjected to various laboratory heat tests. However, in order to determine if the character of the materials underwent a change during the laboratory tests and under exposure, the residue from the distillation test, the 20 -gram oven-loss test, and the asphalticresidue test, as well as the residues from the 5 -week and 15 -week exposures were subjected to the Oliensis test.
For the original materials 5.1 parts of naphtha by rolume were mixed with 1 part of asphaltic material. For the various residues the volume of naphtha was kept constant and the weight of a unit volume of the original material minus the weight of volatile matter that occurred in producing the residue was used. Table \& shows the ratio of naphtha to asphaltic material used for each sample. Only in the case of the asphaltic residue of sample 11 did the ratio of naphtha to asphaltic material exceed 7 to 1 by weight, the proportion that was being used by one State at the time these tests were made. It is thought that the variations in proportions of naphtha used in this work were not sufficiently wide to affect the character of the stains

Table 8.-Ratio of naphtha to asphaltic material in Oliensis test

Sample identification	Origi- nal ma- terial ${ }^{1}$ (by weight)	Distillation residue		20-gram loss residue (by weight)	Asphaltic residue (by weight)	Residue from exposure for-	
		By Weight	$\begin{gathered} \text { By } \\ \text { volume } \end{gathered}$			5 weeks (by weight)	15 weeks (by weight)
1	4. 10	4. 21		4.12	5. 69	4. 10	4. 10
2	3. 74	4. 20	5.83	4. 01	5. 00	4. 13	4. 27
3	3. 74	4.01	5. 51	3.92	5. 22	4.00	4. 13
4	3. 79	4.01		3. 96	5. 07	3.99	4.02
5	3. 96	4. 58	6.04	4. 33	5. 61	4.37	4.47
6	4. 06	4. 38		4. 26	6. 49	4.35	4. 42
7	4. 11	5. 37	6.90	4.30	6. 37	5.15	5. 24
s	4. 13	4. 51		4. 27	6.32	4. 20	4. 22
9.	3. 83	4. 29	5. 86	4. 11	5. 55	4.16	4.28
10.	4. 10	5. 28	6.84	4.92	6. 22	4.90	4.96
11	3.91	5. 22	6. 94	4. 61	7.35	4.91	5. 03
12.	4. 10	4. 99	6.38	4.57	6.68	4.75	4.84
13.	3. 91	4.31	5. 68	4. 17	5.86	4.21	4.33
14	3.73	3.92		3.89	5. 36	3. 93	4.06
15.	4.03	4. 77	6.18	4.42	6. 54	4. 44	4. 65
16.	4.07	4.37		4. 22	6. 56	4. 26	4.37
17	3.83	4.82	6.80	4.52	5. 18	4.70	4. 76
18.	4.13	5.02	6. 42	4.95	5. 52	5.07	5. 10
19.	3. 65	4. 05	5. 76	3. 97	4.73	4.06	4. 23
20.	4. 12	4. 78	6.05	4. 53	5. 95	4. 65	4.76
21.	4. 06	4. 77	6.07	4. 55	6. 52	4.64	4.74
22	4.05	4. 48	5. 70	4.38	5. 76	4.42	4.52
23.	3.90	4.41	5. 86	4. 29	6. 44	4.25	4. 40
24	4.06	5. 40	7.40	5. 22	5. 27	5. 22	5. 24
25	4. 17	5. 48	7.24	5. 38	5. 34	5. 36	5.36
26	4. 16	5. 44	7.14	5. 36	5.31	5.37	5.34
27.	3.99	5. 72	7.98	5. 54	5. 50	5. 52	5. 54
28.	4. 14	5. 24	6.90	5. 20	5. 15	5.77	5. 18
29.	4.11	5. 38	7.29	5. 24	5. 24	5. 24	5.24

${ }^{1}$ All original material 5.1 naphtha to 1 of sample by volume.
Table 9.-Character of original materials and residues as determined by the Oliensis test ${ }^{1}$

Sample identification	Original material	Distillation residue	$\begin{aligned} & 20 \text {-gram } \\ & \text { loss } \\ & \text { residue } \end{aligned}$	Asphaltic residue	5-week exposure residue	15-week exposure residue
1	H	H	H	H	H	H
2	H	H	H	H	H	H
3	H	H	H	H	H	H
4.	H	H	H	H	H	H
5.	H	H	H	H	H	H
6.	0	0	0	0	SH	H
7.	SH	O	O	0	H	H
8.	0	SH	SH	SH	H	H
9.	H	H	H	H	H	H
10	0	SH	SH	O	H	H
11	H	H	H	H	H	H
12	O	O	SH	SH	H	H
13	H	H	H	H	H	H
14	H	H	H	H	H	H
15	\bigcirc	SH	SH	SH	H	H
16	SH	SH	SH	H	H	H
17.	H	H	H	H	H	H
18	SH	SH	0	O	SH	H
19.	H	H	H	H	H	H
20	SH	SH	0	0	H	H
21	O	O	O	0	H	H
22	O	0	O	O	H	H
23	H	H	H	H	H	H
24	H	H	H	H	H	H
25.	0	O	0	0	SH	SH
26	0	SH	SH	0	SH	SH
27.	H	H	H	H	H	H
28	0	\bigcirc	O	O	SH	SH
29	H	H	H	H	H	H

$$
{ }^{1} \mathrm{H}=\text { Heterogeneous; } \mathrm{O}=\text { Homogeneous; } \mathrm{SH}=\text { Slightly heterogeneous. }
$$

obtained. Table 9 gives a classification of the stains and figures 8,9 , and 10 show stains typical of those obtained with the various samples and their residues.

Since the results of the tests were based upon the appearance of the stain as interpreted by the observer, it is difficult if not impossible to distinguish between border-line materials or to express clearly the apparent degree of heterogeneity that may be indicated by the varying degrees of nonuniformity in the stain. The classification given in table 8 should be understood to mean that, in the judgment of the observers, the materials and their residues gave stains that appeared either entirely uniform throughout or were only slightly non-

SAMPLE - 2

SAMPLE - 8 A-ORIGINAL MATERIAL
B-DISTILLATION RESIDUE

C-20. GRAM LOSS RESIDUE D-ASPHALTIC RESIDUE

SAMPLE - 16

SAMPLE - 18
E-RESIDUE AFTER 5 WEEKS EXPOSURE
F-RESIDUE AFTER 15 WEEKS EXPOSURE

Figure 8.-Typical Oliensis Stains.

SAMPIE-20

SAMPLE - 10
A-ORIGINAL MATERIAL C-20-GRAM LOSS RESIDUE B-DISTILLATION RESIDUE D-ASPHALTIC.RESIDUE

SAMPLE - 26

SAMPLE - 12
E-RESIDUE AFTER 5 WEEKS EXPOSURE
F-RESIDUE AFTER 15 WEEKS EXPOSURE

SAMPLE - 7

SAMPLE-6

A-ORIGINAL MATERIAL B-DISTILLATION RESIDUE

SAMPLE-25

SAMPLE-21
E-RESIDUE AFTER 5 WEEKS EXPOSURE F-RESIDUE AFTER 15 WEEKS EXPOSURE

Figure 10.-Typical Oliensis Stains.
uniform, having a slightly darker, more-pronounced center, or else they had a definite dark to black center surrounded by a uniformly lighter-colored stain and were consequently classified as homogeneous, slightly heterogeneous, and heterogeneous, respectively. No attempt was made to indicate the extent or degree of heterogeneity other than to classify as slightly heterogeneous those materials and residues giving stains only slightly nonuniform.

all exposure residues found to be heterogeneous

A study of the results of the Oliensis test shows that of the 29 materials, 10 were homogeneous, 4 slightly heterogeneous, and 15 definitely heterogeneous in their original state. All the residues from exposure were heterogeneous or slightly heterogeneous. Of the 10 materials appearing homogeneous in their original state, 5 developed homogeneous residues in all 3 laboratory loss tests, 2 developed slightly heterogeneous residues in all 3 tests, 2 developed slightly heterogeneous residues in the oven test and distillation test but not in the asphaltic-residue test, and 1 developed slightly heterogeneous residues in the oven test, and asphaltic-residue tests but not in the distillation test.
Of the 4 materials appearing slightly heterogeneous in their original state, 1 developed homogeneous residues in all 3 laboratory tests, 2 developed homogeneous residues in the asphaltic-residue and loss tests but remained heterogeneous in the distillation test, and one material remained heterogeneous in all tests. The 15 materials that appeared heterogeneous in their original state all developed heterogeneous residues.

A comparison of these materials according to the character of the stains produced in the laboratory and their behavior under laboratory and exposure conditions may be of interest. Nine of the materials, samples 2, $3,4,9,14,17,19,23$, and 27 , were heterogeneous originally and had heterogeneous residues. The photograph of sample 2 in figure 8 is typical. All of the above samples, except 23 and 27 , showed micropscopic flecks as shown in figure 2 when examined under the microscope. All except samples 1423 , and 27 had appreciable amounts of material insoluble in carbon tetrachloride in the original sample. Samples 14, 23, and 27 developed carbenes at the end of 15 weeks of exposure and the other samples showed an increase in carbenes and free carbon.

All of the nine samples, except sample 23, had high percentages of material insoluble in naphtha. All had specific gravities greater than 1.01, except sample 27. This material has a very high specific gravity for a fluid cut-back and its behavior and characteristics place it in this group having high specific gravities. The asphaltic residues of the 9 samples showed the effect of changes in temperature, having low penetration at $32^{\circ} \mathrm{F}$. and no ductility at $34^{\circ}-35^{\circ} \mathrm{F}$., although all had ductilities of over 110 at $77^{\circ} \mathrm{F}$.

After 15 weeks' exposure all the materials were very hard, except sample 9 , which, at the end of 5 weeks, had separated into two parts, one hard and brittle, the other soft and oily. It was impossible to flux these two parts so that, while having a float at $122^{\circ} \mathrm{F}$. of over 1,000 seconds at the end of 5 weeks, it was impossible to get a penetration until the end of 15 weeks. When running the softening point test on the residues of this sample, after exposure, the material did not flow slowly to the bottom but dropped immediately at the temperature reported in table 5. Ductility tests were made on this
sample but the results are unimportant as no true ductility value was obtained. The residues after 15 weeks' exposure of samples $2,3,4,17,23$, and 27 had very low ductility at $77^{\circ} \mathrm{F}$. but samples 14 and 19 had ductilities at $77^{\circ} \mathrm{F}$. of 97 and $110+$, respectively. None of the residues had any ductility at $34^{\circ}-35^{\circ} \mathrm{F}$.

Three of the materials, 5,11 , and 13 , gave Oliensis stains identical with those of the preceding samples. They did not, however, have as high specific gravities, were clear in the microscopic test, and did not, even at the end of 15 weeks, develop any carbenes. Their asphaltic residues had some ductility at $34^{\circ}-35^{\circ} \mathrm{F}$. and, at the end of 15 weeks, while having low ductility at $77^{\circ} \mathrm{F}$., samples 5 and 13 had some ductility at $34^{\circ}-$ $35^{\circ} \mathrm{F}$.
The remaining 17 materials all had low specific gravities, were clear in the microscopic test, did not have carbenes, and, with 1 exception, did not develop them. They showed various types of stains in the Oliensis test although all were heterogeneous at the end of 5 weeks. Their asphaltic residues varied in ductility and effect produced by changes in temperature as did their residues after exposure.

The stains of samples 1,24 , and 29 , while resulting in photographs similar to those of the high-gravity materials, did not have the nuclei as raised or as rough as the stains of the materials with high specific gravities. The producers of the cut-back asphalt designated as sample 24 stated that their plant had no cracking equipment. This material, therefore, had evidently become heterogeneous in the refining process because of overheating, since the residue obtained in laboratory tests had good ductility, indicating that it had not been overblown. Sample 29 likewise was a cut-back asphalt with a ductile base. Sample 16 was slightly heterogeneous originally, produced slightly heterogeneous residues by distillation and volatilization, and produced a heterogeneous asphaltic residue. The asphaltic residues of these four samples were not especially affected by temperature change, having some ductility at $34^{\circ}-$ $35^{\circ} \mathrm{F}$., although the asphaltic residues of samples 1 and 16 had comparatively low ductilities at $77^{\circ} \mathrm{F}$. The residues of samples 1 and 16 after exposure had low ductility at $77^{\circ} \mathrm{F}$. Those of samples 24 and 29 (cutback asphalts) were very hard and consequently had very low ductility.

OLXENSIS TEST MORE SENSITIVE THAN MICROSCOPIC TEST IN DETECTING OVERHEATED MATERIALS
Samples 8 and 15 were homogeneous but all of their residues from laboratory tests were slightly heterogeneous. The asphaltic residue of sample 8 had relatively low ductility at $77^{\circ} \mathrm{F}$. but that of sample 15 had good ductility. Both asphaltic residues had good ductilities at $34^{\circ}-35^{\circ} \mathrm{F}$. The residue of sample 15 after exposure had low ductility at $77^{\circ} \mathrm{F}$. Sample 8, the only material of low specific gravity to develop carbenes, separted in the exposure test in the same manner as sample 9.
Samples 18 and 20 were both slightly heterogeneous but their asphaltic and loss-test residues were homogeneous. Their asphaltic residues and their residues after exposure had good ductility at $77^{\circ} \mathrm{F}$. Although the asphaltic residue of sample 20 had a ductility of only three-fourths centimeter at $34^{\circ}-35^{\circ} \mathrm{F}$., the ductility of its residue after exposure, as well as the ductility of the two residues of sample 18 , was good at $34^{\circ}-35^{\circ} \mathrm{F}$. Sample 18 developed a residue at the end of 5 weeks'
exposure that was the least heterogeneous of any of the residues from the slow-curing materials.
Samples 10 and 26 and their asphaltic residues were homogeneous. The asphaltic residues of both samples had good ductility at $77^{\circ} \mathrm{F}$. and $34^{\circ}-35^{\circ} \mathrm{F}$. At the end of 15 weeks, sample 10 had low ductility at $77^{\circ} \mathrm{F}$. but good ductility at $34^{\circ}-35^{\circ} \mathrm{F}$., while sample 26 , a cut-back asphalt, was extremely hard and nonductile.

Sample 12 was homogeneous as was its residue after distillation. Its asphaltic residue had good ductility at $77^{\circ} \mathrm{F}$. and $34^{\circ}-35^{\circ} \mathrm{F}$. and the residue after exposure had fair ductility at $77^{\circ} \mathrm{F}$. and good ductility at $34^{\circ}-35^{\circ} \mathrm{F}$.

Sample 7 was slightly heterogeneous but all of its residues from laboratory tests were homogeneous. Its asphaltic residue was ductile at $77^{\circ} \mathrm{F}$. but only slightly so at $34^{\circ}-35^{\circ} \mathrm{F}$. and its residue after 15 weeks of exposure had good ductility at $77^{\circ} \mathrm{F}$. and at $34^{\circ}-35^{\circ} \mathrm{F}$.

Samples 6, 21, 22, 25, and 28 were homogeneous with homogeneous residues from laboratory tests. All of their asphaltic residues had good ductility at $77^{\circ} \mathrm{F}$. and all except those of samples 21 and 22, the California residuals, had good ductility at $34^{\circ}-35^{\circ} \mathrm{F}$. At the end of 15 weeks, sample 6 was still fluid, while the cutback asphalt samples 25 and 28 were very hard and nonductile. Samples 21 and 22 had good ductility at $77^{\circ} \mathrm{F}$. and at $34^{\circ}-35^{\circ} \mathrm{F}$. although their asphaltic residues were nonductile at $34^{\circ}-35^{\circ} \mathrm{F}$.
It is readily apparent that the laboratory tests did not produce residues that gave stains in the Oliensis test radically different from the stains of the original materials. The behavior of the residues from exposure showed, as did the other tests, that outdoor exposure alters asphaltic materials far more than any of the laboratory heat tests. This was strikingly shown by the decidedly heterogeneous stains obtained with the residues from exposure, especially in the case of the materials originally homogeneous. It is not believed, however, that it is possible to predict the physical and chemical characteristics of the material after exposure from the results of the Oliensis test, whether made on the original material, the residues from laboratory tests or both. Residues having what are believed to be desirable qualities were obtained from both homogeneous and heterogeneous materials, although heterogeneous materials undoubtedly have a more pronounced tendency to carbonize and their slow-curing products generally develop a less-ductile residue.

For detection of materials that have been inadvertently or intentionally subjected to too high a temperature during the refining process, the Oliensis test seems to be more sensitive than the microscopic test. All of the materials that had the characteristics of overheated or cracked materials were heterogeneous in the Oliensis test but only seven of them showed microscopic flecks.

HUBBARD-FIELD STABILITY TEST USED TO MEASURE BONDING STRENGTH AND DEVELOPMENT OF BONDING STRENGTH UPON EXPOSURE
Cylinders were made according to the Hubbard-Field method and tested to determine the adhesiveness or bonding strength of the original material, the residue after distillation and the asphaltic residue, and the development of bonding strength by the original materials after exposure. The first series, for the determination of bonding strength, consisted of 3 sets of 3 cylinders each for each material. The first and second
sets contained 16.6 percent by volume of the original material and distillation residues respectively mixed with 83.4 percent of a standard sand. The third set contained the same percentage of asphaltic residue by weight as was contained in the cylinders made with the original materials that gave an almost constant percentage of bitumen by volume in the cylinders of this set. All cylinders of series 1 were tested immediately for stability at $77^{\circ} \mathrm{F}$.
The second series of cylinders, for determination of the development of bonding strength, likewise consisted of 3 sets of 3 cylinders using the same aggregate used in the first series and the same percentage of the original materials by volume. These three sets were placed in the exposure boxes and subjected to the same exposure conditions as the thin films. One set was removed at the end of 5,10 , and 15 weeks. The cylinders were weighed before and after exposure and the loss in weight was expressed as a percentage of the bituminous material present in the cylinder as made. After weighing, the cylinders were tested for stability at $77^{\circ} \mathrm{F}$.
For comparative purposes two additional sets of cylinders were made, using as a binder the amounts of distillation residue and asphaltic residue that would have been obtained if the bitumen in the cylinders containing the original material had been subjected to the distillation or asphaltic-residue test. The aggregate used was a Potomac River sand that had been separated on standard sieves and recombined to give the following grading:

Percent

Passing no. 10, retained on no. 20
3. 7

Passing no. 20, retained on no. 30...
Passing no. 30, retained on no. 40_..................................... 18. 1

Passing no. 50, retained on no. 80 36.6
Passing no. 80, retained on no. 100 6. 6. 1
Passing no. 100, retained on no. 200
3. 2

Passing no. 200
This sand had a specific gravity of 2.666 and the voids in the mineral aggregate, determined on the compacted cylinders of both series, were 38 percent for the cylinders made with the original materials, 37.4 percent for the cylinders made with the distillation residue, and 36.9 percent for the cylinders made with the asphaltic residue.
The method of mixing and molding the cylinders was the same as that used in 1932. The results of the tests on the cylinders of series 1 and 2 are given in tables 10 and 11, respectively. All results are the averages of three tests.
The results of tests on the cylinders of series 1 are shown graphically in figure 11. The stability of the cylinders at $77^{\circ} \mathrm{F}$. was plotted against the Furol viscosity at $122^{\circ} \mathrm{F}$., and the results of the float test at $77^{\circ} \mathrm{F}$. for the cylinders made with the original materials and against the float test results at $122^{\circ} \mathrm{F}$. and the penetration at $77^{\circ} \mathrm{F}$. for the cylinders made with the distillation residue. Since the asphaltic residues are all of approximately the same consistency, the stabilities were plotted for each sample independently.

Figure 11 shows that although the stability of the mixtures was roughly proportional to the consistency of the contained bitumen, materials having the same consistency as measured by viscosity at $122^{\circ} \mathrm{F}$., float test at $77^{\circ} \mathrm{F}$. and $122^{\circ} \mathrm{F}$., and penetration at $77^{\circ} \mathrm{F}$. had different stabilities. This was especially noticeable

Table 10.-Results of tests on series 1 cylinders

Sample identification	Original material			Distillation residue			Asphaltic residue	
	Stabil- ity at $77^{\circ} \mathrm{F}$	$\begin{gathered} \text { Float } \\ \text { at } 77^{\circ} \mathrm{F} \end{gathered}$	Furol viscosity at $122^{\circ} \mathrm{F}$.	$\begin{aligned} & \text { Stabil- } \\ & \text { ity at } \\ & 77^{\circ} \mathrm{F} . \end{aligned}$	Float at 122° F.	Penetration at $77^{\circ} \mathrm{F}$.	Stability at $77^{\circ} \mathrm{F}$.	Penetration at $77^{\circ} \mathrm{F}$.
	Pounds	Seconds	Seconds	Pounds	Seconds		Pounds	
1.	75	100	294	125	24		2,275	96
2	125	52	303	400	60		3,975	100
3	125	50	274	200	43		3,775	105
4	150	63	404	250	45		3,600	107
5.	125	36	331	325	58		2,575	105
6	75	21	335	150	21		2, 275	99
7	75	9	181	375	62		2,575	92
8	100	60	277	100	27		2,100	100
9	100	33	175	200	44		3, 500	86
10	75	11	197	475	87		2,425	106
11	25	4	50	175	34		3, 175	84
12	100	13	182	200	38		2, 450	97
13	150	41	406	200	37		2,775	93
14	125	49	278	150	36		3, 675	93
15	75	21	219	175	41		2,675	103
16	75	38	217	100	25		2,225	109
17	150	20	205	1,000	110		2,700	102
18	125	9	199	400	60		1,900	100
19	175	75	320	475	57		3, 775	102
20	100	46	300	350	50		2,325	104
21.	75	23	293	200	41		2, 375	110
22	150	60	768	325	56		2,325	113
23.	75	12	123	150	27		2,700	98
24	75	14	241	3,925		76	2,950	101
25	275	31	472	3,225		77	2,825	94
26	150	35	351	3, 025		84	2,725	95
27	25	3	47	3, 800		87	3,850	90
28.	200	19	303	3, 775		65	3, 725	97
29	275	17	260	3,850		72	3,650	100
30	125	39	350	3,475		81	3, 000	104
31	100	37	431	2, 325		205	2,950	112
32.	75	25	331	1,500		298	3,075	101

Table 11.-Results of tests on series 2 stability cylinders

	Cylinders made with the original materials							Cylinders made with distillation residue		Cylinders made with asphaltic residue	
	Stability at $77^{\circ} \mathrm{F}$.				Loss of bitumen			$\begin{gathered} \text { Sta- } \\ \text { bility } \\ \text { at } \\ 77^{\circ} \mathrm{F} . \end{gathered}$	Theo-retical loss of bitumen	Stability at $77^{\circ} \mathrm{F}$	Theo-retical loss of bitumen
	When made	$\begin{aligned} & \text { In } 5 \\ & \text { weeks } \end{aligned}$	In 10 weeks	In 15 weeks	$\begin{array}{\|c} \text { In } 5 \\ \text { weeks } \end{array}$	In 10 weeks	$\left\lvert\, \begin{gathered} \text { In } 15 \\ \text { weeks } \end{gathered}\right.$				
	Lbs.				Percent	Per- cent	Per -				Per-
1	75	300	$\begin{gathered} L b s . \\ 300 \end{gathered}$	$\begin{aligned} & \text { Lbs. } \\ & 425 \end{aligned}$	cent	cent	cent	$\begin{array}{r} L b s . \\ 125 \end{array}$	$\begin{array}{r} \text { cent } \\ 3 \end{array}$	$\begin{aligned} & L b s . \\ & 1,975 \end{aligned}$	cent
2	125	900	1, 100	1,300	7	12	12	425	11	3,575	25
3	125	750	1, 000	1, 150	6	10	11	250	7	3,075	28
4	150	600	1, 750	850	3	6	6	300	6	3,150	25
5	125	675	1, 025	1,275	6	11	11	475	14	2, 400	29
6	75	225	250	1, 300	4	9	9	175	7	1,975	38
7	75	425	550	600	15	20	21	425	23	2,075	35
8	100	250	300	300	3	5	6	175	6	1,750	35
9	100	550	775	800	7	12	12	325	11	3,075	31
10	75	775	950	1,250	14	18	18	550	22	2,175	34
11	25	425	500	1, 800	18	21	22	275	25	2,450	47
12	100	350	425	550	10	14	15	275	18	2, 050	38
13	150	650	700	875	6	10	10	275	18	2, 350	38 33
14	125	650	900	1, 025	4	8	8	225	5	2,900	30
15	75	475	550	- 600	8	12	13	300	15	2,325	38
16	75	250	325	350	4	8	9	175	7	1,875	38 38
17	150	950	1,000	1,200	15	19	21	1,275	21	2,325	28
18	125	825	1, 950	1, 200	16	20	20	1,275 500	18	1,750	25
19	175	1,650	2,525	3, 075	7	11	11	625	10	2,825	24
20	100	725	1, 000	1,250	8	12	13	350	14	2,050	31
21	75	525	1, 700	1,850	8	13	14	300	15	I, 950	37
22	159	775	1, 075	1, 400	5	9	9	350	10	2, 100	29
23	75	275	550	, 750	7	11	11	200	12	2,175	39
24	75 275	4, 275	4,325	5,200	20	23	22	3,650	25	2,800	23
25	275	3,700	3,750	3,850	17	19	19	3, 025	24	2,650	22
26	150	3,500	3, 125	3,550	21	24	23	2,800	23	2, 2,775	22
27	25	1,450	1,500	1,650	28	30	29	2,875	30	3,600	27
28	200	4, 650	4,250	4,975	16	18	18	3, 400	21	3, 475	20
29 30	275 125	4, 400	4, 100	4,825	13	16	16	3, 250	24	3, 400	21
30	125							3,175	26	2,700	24
31	100							2, 075	20	2,675	21
32	75							1,425	22	2,775	25

in the results with the cylinders made with the asphaltic residue. Although all of these residues had approximately the same penctration, the stability of the cylinders varied from 1,900 pounds for sample 18 to 3,975 pounds for sample 2.

Figure 11.-Relation Between the Consistencies of Original Materials, Distillation Residues, And Asphaltic Residues and the Stability at $77^{\circ} \mathrm{F}$. of Cylinders of SERies 1.

It is seen that the cylinders made with the asphaltic residues of samples $2,3,4,9,11,14$, and 19 all had stabilities of over 3,000 pounds. All of these materials were heterogeneous originally, all were materials of high specific gravity, and all except sample 11 contained or developed carbenes and free carbon. Sample 11 had a relatively high specific gravity but did not develop

Figure 12.-Comparison of Loss of Bitumen and Stability of Series 2 Hubbard-Field Cylinders.
carbenes. Samples 5, 7, 13, 15, 17, and 23 had stabilities between 2,500 and 3,000 pounds. Samples 17 and 23 were heterogeneous materials of high specific gravity that contained or developed carbenes. Samples 5 and 13 were heterogeneous materials of fairly high specific gravity but they did not develop carbenes, and samples 7 and 15 were materials of low specific gravity. All of the cut-back products had asphaltic residues giving stabilities of 2,500 pounds or over and five gavestabilities of 3,000 pounds or over.
Figure 12 shows the results of stability tests on the cylinders of series 2 . The loss of bitumen in 5 and 15 weeks of exposure and the theoretical loss of bitumen in the cylinders made with the distillation and asphaltic residues were plotted for each sample. The stabilities at $77^{\circ} \mathrm{F}$. for each sample were also plotted.
In this figure it is seen that, in the case of the slowcuring materials, although the loss of bitumen in the exposed cylinders was approximately the same as the loss in the distillation test, the exposed cylinders had greater stability than the cylinders made with the distillation residue except in the case of sample 17. This sample, even in 15 weeks, did not attain as high a stability as the cylinders made with the distillation residue. It is also seen that the loss in 15 weeks' exposure did not approach the loss in the asphaltic residue test and that the stability of the exposed cylinders did not approach the stability of the cylinders made with the asphaltic residue, except in the case of sample 19.
For the cut-back materials the indicated losses were probably in error due to unavoidable loss of volatile matter while mixing and molding the cylinders. The losses in 5 and 15 weeks of exposure probably should have been about the same as the losses in the distillation and asphaltic residue tests. The stabilities at 5 weeks
were higher than the stabilities of cylinders made with the asphaltic and distillation residues except in the case of sample 27 .
satisfactory checks obtained with results of 1932 tests
After the exposure tests had been started, a question was raised concerning the use of plate glass covers for the exposure cabinets because it prevented the active ultra-violet rays from acting on the materials. Fused quartz glass not being available, Vita glass, which, after a short stabilization period, is guaranteed to permanently transmit an effective volume and combination of wave lengths of active ultra-violet light, was used to determine the effect of the passage of more active light. Duplicate sets of 10 of the slow-curing materials, 2 of the rapid-curing materials, and sample 27 and 3 new medium-curing materials, samples 30 , 31 , and 32 , were exposed under both Vita and plate glass for 5 - and 10 -week periods. The materials were exposed in thin films and also admixed with the standard sand in the form of Hubbard-Field cylinders.
This exposure was started August 28, 1933. During the first 5 -week period the average maximum air temperature was $80^{\circ} \mathrm{F}$. and the number of sunlight hours was 266 . During the 10 -week period the average maximum air temperature was $73^{\circ} \mathrm{F}$. and the number of sunlight hours was 512. The results of the tests on the thin films are given in table 12, and those on the Hubbard-Field cylinders in table 13.

As shown by tables 6 and 12, the materials did not lose as much nor get as hard in 10 weeks as they did in the original 5 weeks of exposure. This was due to the lower air temperature and also to the fact that the sun's rays striking at an oblique angle did not cause the material to get as hot as earlier in the summer. There was little if any difference between the materials exposed under the different types of glass. The samples exposed under Vita glass had a little more material insoluble in carbon disulphide and carbon tetrachloride and generally had a little more material insoluble in naphtha. Each solubility reported was the average of 3 or more tests. The results of the stability tests do not show that there was any difference between the two types of glass. The comparative study of the effectiveness of Vita glass and plate glass as cover for the exposure of the samples did not.produce differences great enough to indicate their relative efficiency for this purpose.
As stated previously, four of the samples tested in 1932 were included in the 1933 work and the results obtained, as shown in table 14, were in remarkably close agreement with the previous tests. In the case of samples 17 and 19 the residues from the 1933 exposure tests had greater percentages of free carbon and carbenes than did residues from the 1932 exposure tests.

The results of the two sets of stablity tests were not in such close agreement because the aggregate used in the 1933 tests was somewhat coarser than that used in 1932. In 1932, cylinders made with sample 17 were the only ones that, after 15 weeks' exposure, had a stability about the same as those made with the distillation residue. In 1933 the cylinders made with sample 17, after 15 weeks' exposure, had less stability than the cylinders made with the distillation residue. Cylinders of sample 19 that in 1932, after 15 weeks' exposure, had a stability approaching that of the asphaltic-residue cylinders, in 1933, after 15 weeks' exposure, had a stability higher than that of the asphaltic-residue specimens.
T.able 12.-Results of tests on plate and Vita glass exposure residues

5 WEEKS' EXPOSURE

10 WEEKS' EXPOSURE

CONCLUSIONS

The results of this investigation substantiate most of the conclusions arrived at in the 1932 investigation, modify two of the conclusions, and indicate some new conclusions. The conclusions substantiated are:

1. Materials of high specific gravity and their residues are, in general, more susceptible to changes in temperature than materials of low specific gravity and their residues.
2. Hardening due to causes other than loss of volatile matter, and changes in inherent characteristics that may be attributed to oxidation, polymerization, and carbonization, occur to the greatest extent upon exposure and least during distillation.
3. The development of a ductile residue either in the asphaltic-residue test or, in the case of cut-back materials, in the distillation test, does not indicate that the material will develop a ductile residue upon exposure.
4. The bonding strength of the original materials and their residues is roughly proportional to their consistencies, but materials having the same consistency as measured by the present tests do not always give the same stability. The reasons for these differences in stability cannot be determined under the present methods of testing.

The following conclusions are somewhat modified from 1932:

Table 13.-Results of stability tests on cylinders exposed under plate and Vita glass

Sample identification	Loss of bitumen				Stability at $77^{\circ} \mathrm{F}$.			
	In 5 weeks		In 10 weeks		In 5 weeks		In 10 weeks	
	Plate	Vita	Plate	Vita	Plate	Vita	Plate	Vita
	Percent	Percent	Percent	Percent	Pounds	Pounds	Pounds	Pounds
		1	2	1	225	250	275	375
2	8	5	8	7	850	700	850	800
13	7	4	6	5	450	450	500	425
14	4	2	4	3	475	. 400	500	450
17.	13	12	15	13	650	700	650	700
18.	18	16	18	17	500	500	525	500
19.	8	6	8	8	1, 075	1,000	1, 250	1,275
20.	8	7	8	8	550	500	500	525
21.	8	7	8	8	325	350	350	350
23.	5	4	6	5	225	200	250	250
26.	21	21	24	23	2,775	2, 650	3,550	3,500
27.	28	28	30	30	1,225	1, 225	1,575	1,350
29.	12	12	14	13	3, 775	3,725	4, 600	4, 575
30	23	23	24	24	2,575	2,550	2, 850	3, 025
31	18	19	20	20	2,325	2,375	2,725	3, 125
32.	18	17	19	20	1,675	1,725	2, 200	2,675

5. The relative rates of volatilization of the various materials can be anticipated most readily from the distillation curves. The different classes of material may be differentiated in the loss and asphaltic-residue tests, especially if the time of reduction to 100 penetration is considered. However, sharp distinctions in initial curing properties, that may be of importance in some types of construction, can be determined only from the distillation curves.
6. Carbonization generally occurs in materials that originally contain some material insoluble in carbon disulphide and carbon tetrachloride, but some materials with exceptionally high solubility in these solvents show a tendency to carbonize under both laboratory and exposure conditions.

The following conclusions are developed upon the basis of the data collected in 1933 only:
7. The Oliensis test is more sensitive than the microscopic test in the detection of materials that have been subjected to excessively high temperatures in manufacture. However, neither test seems definitely to distinguish products that will weather badly.
8. The use of Vita glass in place of plate glass for the cover of the exposure boxes did not materially change the results. However, because of the lateness in the year when these tests were started the results are considered inconclusive.
9. If like periods of the year are used for exposure, satisfactory check tests can be obtained with the exposure assembly used in these investigations.

Many of the laboratory heat tests have been criticized as producing conditions dissimilar to and more severe than service conditions. These investigations have shown that the physical and chemical characteristics generally believed to belong to unsatisfactory materials are developed upon exposure in many products that satisfactorily withstand laboratory testing. While it is possible, by the utilization of identification tests, to restrict materials to a limited number of sources or manufacturing processes, it is impossible to predict, with any degree of accuracy, the weather-resisting properties of the material thus obtained. It is believed that efforts should be directed to the modification of some of the present laboratory heat tests so that differences in the tendency of various materials to develop unsatisfactory residues may be recognized.

Table 14.-Comparison of 1932 and 1933 exposure tests TESTS ON RESIDUES AFTER EXPOSURE

TESTS ON HUBBARD-FIELD CYLINDERS

Loss of bitumen:								
In 5 weeks, percent	15	15	18	16	8	7	9	8
In 10 weeks, percent.	18	19	19	20	10	11	12	12
In 15 weeks, percent-	21	21	21	20	14	11	13	13
Stability at $77^{\circ} \mathbf{F} .11$								
Original cylinders, pounds	275	150	200	125	325	175	225	100
After 5 weeks' exposure, pounds. \qquad	1,100	950	800	825	1,375	1,650	775	725
After 10 weeks' exposure, pounds	1,575	1,000	1,125	950	3,175	2, 525	1, 525	1,000
After 15 weeks' exposure, pounds.	1,550	1,200	1,650	1, 200	4,050	3,075	1,975	1,250
Series 2, distillation residue cylinders, pounds.	1,475	1,275	750	500	800	625	500	350
Series 2, asphaltic residue cylinders, pounds	4, 050	2, 325	12,925	1,750	4,900	2,825	3,325	2, 050

1 Differences in stability probably are caused by differences in grading of the sand.

The following symbols are used to designate certain classes or uses of motor fuel exempted from tax payment, subject to refund of the tax, or taxed at a lower rate:
F-Sales to Federal Government. or municipal governments. \quad NH-Uses other than for propelling motor vehicles on the highways. \quad B-Mot
P-(Public) sales to State, county, or

STATE MOTOR-FUEL TAX EARNINGS, 1934

State	Tax rate per gallon		Date of rate change	Gross tax assessed ${ }^{4}$	Refunds earned or paid 5	Net earnings on all motorfuel taxed 4	Classification of tax earnings 1					Other earnings in connection with motor-fuel tax ${ }^{3}$					Grand total earnings	
			By rate of tax				By use of fuel ${ }^{2}$											
	$\underset{\substack{\text { On } \\ \text { Jan. } \\ \hline}}{ }$	$\begin{gathered} \text { On } \\ \text { Dec. } \\ 31 \end{gathered}$					At full rate	At reduced rates ${ }^{6}$		For highway	For other uses	Dis-tributors' licenses	$\begin{gathered} \text { Deal- } \\ \text { ers' } \\ \text { li- } \\ \text { censes } \end{gathered}$	In-spection fees	Other fees, etc.	Total		
								Rate per gallon	Amount									
	Cents	Cents			$\begin{aligned} & 1,000 \\ & \text { dollars } \end{aligned}$	$\begin{aligned} & 1.000 \\ & \text { dollars } \end{aligned}$	$\begin{aligned} & 1,000 \\ & \text { dollars } \\ & 0.200 \end{aligned}$	$\begin{aligned} & 1,000 \\ & \text { dollars } \end{aligned}$	Cents	$\begin{aligned} & 1,000 \\ & \text { dollars } \end{aligned}$	$\begin{gathered} 1,000 \\ \text { dollars } \end{gathered}$	$\begin{gathered} 1.000 \\ \text { dollars } \end{gathered}$	$\begin{gathered} 1.000 \\ \text { dellars } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { dollars } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { dollars } \end{gathered}$	$\begin{gathered} 1,000 \\ \text { dollars } \end{gathered}$	$\begin{gathered} 1.000 \\ \text { dollars } \end{gathered}$	$\begin{aligned} & 1,000 \\ & \text { dollars } \\ & 9,2 c 9 \end{aligned}$
Alahama Arizona.	5	5		3, 542	514	3.028	3,028			-3,028					1	1	3, 3,29	
Arkansas	6	$61 / 2$	Feb. 3	8, 118	254	7,864	7,047	6, 5, 4, 2	7817	87.481	8383						7,864	
California	3	3		39,621	3,661	35, 960	35, 960			35, 960		10				10	35, 970	
Colorado.	$\bigcirc 4$	4	Feb. 1 and	7,591	1,116	6,475	3,719	64	2,756	6,475							6,475	
Connecticut	2	2		5, 199	126	4,973	4,973			4.973			(10)				4,973	
Delaware	3	3		1, 246 16,499	61	1,185 16,499	1.185 16,499			1,185			1135			35	1,185 16,534	
Georgia	6	6		14,366		14,366	14.366										14,366	
Idaho	5	5		3, 169	298	2, 871	2,865	$21 / 2$	6	2,865	6					1	2, 872	
Illinois.		3		30,772	1. 646	29, 126	29. 125			29,126					5	5	29, 131	
Indiana	4	4		18,626	1,076	17,550	17,550			17,550					20		17,570	
Iowa	3	3		12.114	864	11. 250	11. 250			11, 250		1			4		11,255	
Kansas,	3 5	3 5		8.516 9.218		8.516 9.218	8,516 9.218 8.9			8,516		5		76	37 3	118 3	8,634 9,221	
Louisiana	5	5		8,923		8.923	8,922	4	1								8,923	
Maine.	4	4		4,632	146	4, 486	4,437	1	49	4. 43 T	49						4.486	
Maryland	4	4		${ }^{8} 8.251$	442	7.809	7.758 17	3	51	127.809							7.809 17.002	
Michigan...	3	3		22,068	1,090	20,978	20,961	132	17	20,961	17		4		2	6	20,984	
Minnesota	3	3		12,150	1,305	10,845	10, 845			10, 845			1	97			10,943	
Mississippi	,	6		7,519	6.31	6, 888	6, 760	1	128	6, 760	128				13137	137	7,025	
Missouri.	2	2		9. 810	23.5	9,575	9, 575			9. 575				98	8	106	9,681	
Montana.	5	5		4, 274	610	3, 664	3,664			3,664								
Nebraska	4	4		8,667	97	8. 570	8,570							85	1	86	8,656	
Nerada.	4	4		988	94	894	894			894							894	
New Hampshire	4	4		2, 8 , 226	80	2, 746	2,746			2.744							2,746	
New Jersey --	3	3		17,035	1	17,034	17,032	2	2	17,032	2		25	39		64	17,098	
New Mexico	5	5		2, 809	252	2,557	2,557			2, 557		9	9					
New York---	3	3		45, 044	1,117	43, 927	43, 927			43.927			58			58	43, 985	
North Carolina	6	6		16,788	306	16, 482	16, 421	1	61	16, 421	61			14704	5	709	17, 191	
North Dakota	3	3		2,906	644	2, 262	2, 262			2, 262							2,262	
Ohio	4	4		38, 982	1.364	37, 618	36,409	1	1,209	36, 409	1,209						37,618	
Oklahoma	5	4		10,817		10.817	10,817			10, 817					4	4	10, 821	
Oregon ${ }^{\text {Pennsylvania }}$	5	5 3		8,299 33,409	1,047	7,252 33,409	7,246 33,409	1	6	7,246	6				4	4	7.252 33,413	
Rhode Island.	2	,		2,177	120	2, 057	2,057			2, 057			3			3	2,060	
South Carolina.	6	6		7, 836	117	7,719	7. 719										7,719	
South Dakota	4	4		3,960	195	3,765	2, 570	2	195	3, 570	195						3,765	
Tennessee.-	7	7		14, 114		14,114	14, 114										14, 114	
Texas	4			35, 005	3,365	31, 640	31, 640			31,640					111	111	31, 751	
Vtah	4	4		2, 514		2, 514	2,514						1			1	2,515	
Virginia_	5	5		13,205	728	12,477	12,477			12,477	----						12,477	
Washington-	5	5		13,039	1,080	11,959	11,959			11, 959							11, 959	
West Virginia		4		5,905	, 209	5.,696	5,696			5, 996		2	5		1	8	5,704	
W isconsin. Wyoming	4 4	4		16,829 1,764	1,430	15,399 1,764	15,399 1,764			15,399		153				4	15,399	
Dist. ©f Columbia. -	2	2		2,077	14	2,063	2,063			2,063							2,063	
Detailed totals ${ }^{10} \ldots$							-----	-		434, 634	2,056							
Grand totals......			3. 56	591,995	26,9f8	565, 027	559, 729	-........	5, 298			30	141	1,099	345	1,615	566, 642	

See preceding table for gross gallons of motor fuel reported, exemptions, allowances, etc., gross gallons taxed, gallons subject to refund, net gallons taxed, and information regarding classes of use exempted, subject to refund, or taxed at lower rates.

The purpose of this classification is to distinguish hetween the tax earnings on motor fuel sold for use in motor vehicles on the highways and tax earnings on motor fuel sold for other uses. In the case of those States that do not make this distinction, the classification is omitted.

Amounts less than $\$ 500$ not tabulated.
In the great majority of cases the assessments or earnings of the calendar year were reported. A few States reported the actual collections of the year, which lag the assessments by 1 to 2 months.
${ }^{b}$ In most cases the refunds reported were those actually paid during the year, rather than refunds claimed on motor fuel purchased during the year. The error involved in deducting refunds paid from gross tax assessed tends to balance over an annual period. The refunds tabulated include both refunds of the entire

In the tial perund
II the case of Arkansas and Colorado, where the rate was changed during the year, the tax earnings at the lower rates, 6 and 4 cents, respectively, are shown under this heading.
${ }^{7}$ Includes $\$ 445,000$ on 6 -cent tax prior to Feb. 13, 1934, and amounts at reduced rates at State borders, as follows: At 5 cents, $\$ 7,000$; at 4 cents, $\$ 347,000$; at 2 cents, $\$ 18,000$.

Estimated by State

- Rate was 5 cents from Feb. 1 to Aug. 31, 1934

10 Retail gasoline station licenses, $\$ 45,000$, included in report on motorvehicle receipts.

Includes distributors' licenses
12 Refunds are made on all nonhighway uses with the exception of fuel used in commercial motor boats. Earnings on motor-boat fuel (amount not reported) are included.
${ }^{13}$ Includes $\$ 138,560$, earnings on special gasoline tax collected in Gulf Coast counties (Hancock, Harrison, and Jackson) for seawall protection, and $\$ 1,559$ in penalties, less $\$ 2,629$, refunds for notary fees

14 Inspection fees on gasoline and kerosene; bulk of receipts on gasoline.
15 Includes dealers' licenses.
${ }_{17}$ Classification by use includes 36 States and the District of Columbia.
17 Wr eighted average rate.

							だ路き Sơo $\therefore \mathrm{mi}$							ベった。 Nơ Nu No N						우N 케	※寻素 ジmい 8゙oํㅜㄴ バキ		－
				$\stackrel{2}{2}$	$\begin{aligned} & \mathscr{\circ} \\ & \frac{\ddot{U}}{5} \\ & \frac{4}{2} \end{aligned}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\sim}$	cix	$\because \because \underset{\sim}{\sim}$		\because		Rom	$\stackrel{\infty}{\infty}$				$\begin{aligned} & \text { 응 } \\ & \stackrel{y}{\prime} \end{aligned}$	$0 \pm=$		$\stackrel{\rightharpoonup}{\text { in }}$	\square	边
				$\begin{aligned} & \frac{3}{2} \\ & \frac{2}{4} \\ & \stackrel{2}{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & \text { n } \\ & \text { ó } \\ & \text { on } \end{aligned}$					Now		※్జ	$\begin{array}{ll} 0 & 8 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$				$\begin{aligned} & \text { 等 } \\ & \text { and } \\ & \text { and } \end{aligned}$			\％	笭
				$\begin{aligned} & \text { e. } \\ & \text { 号 } \\ & \frac{2}{2} \\ & \frac{2}{4} \end{aligned}$				～～～～～ ～우			$\stackrel{7}{3}$	$\begin{aligned} & 8 \\ & \hline 8 \\ & \dot{8} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{N}} \\ & \stackrel{~}{二} \end{aligned}$		子丸灬		$$			$\begin{aligned} & \text { aog } \\ & \text { Mo } \\ & \text { cin } \end{aligned}$	¢	
						Sin	$\begin{aligned} & \hline \text { nuन } \\ & \text { inj } \\ & \text { nin } \end{aligned}$	r-		－－¢					$\dot{y} \dot{\sim}$	추ํ	분			－¢		¢	－
				$\begin{aligned} & \text { Z } \\ & \stackrel{y}{4} \\ & \stackrel{y}{4} \\ & \hline \text { N } \end{aligned}$															$\begin{aligned} & 500 \\ & \text { No } \\ & \text { No } \end{aligned}$			等	－
														$\begin{aligned} & \text { 素㫛 } \\ & \text { 二喜 } \end{aligned}$		$\begin{aligned} & \text { Ben } \\ & 000 \\ & \text { ont } \end{aligned}$	$\begin{aligned} & 0 . n v \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & m \end{aligned}$	$\begin{aligned} & \text { 名品志 } \\ & \text { ond } \\ & \text { ond } \end{aligned}$				$\xrightarrow{\text { T }}$	\％
												\＆ơoㅇ 合寻志 －in			 							\％ \％ \vdots \vdots 	－
										$\begin{aligned} & \text { Mom } \\ & -\mathrm{m}=\mathrm{m} \end{aligned}$	Mr 	$\begin{aligned} & \Rightarrow \text { an } \\ & n_{n} \end{aligned}$		Tnion	Fiv	A※ٌon						$\dot{\sim}$	\％
				苼						운むた 	웅숭웅 ตัain					$\begin{aligned} & \text { ono } \\ & \text { nuno } \\ & \text { any } \end{aligned}$			$\begin{aligned} & \text { man } \\ & \text { An } \\ & \text { Anin } \\ & \text { nin } \end{aligned}$				第
														noio థ్ర్రియ ตัง				등む ภioni				＋	尔
											․․웅 ぎo゙ぁ		$\begin{aligned} & 80 \\ & 80 \\ & \text { jow } \\ & \text { fon } \\ & \text { nino } \end{aligned}$									－	等
				$\sum_{\substack{0 \\ y}}^{0}$								さを長高 ผัฒ －imin						ミ゙ぎ守定突				\％	
													$\begin{gathered} \text { mup } \\ \text { Now } \\ \text { an } \\ \text { min } \\ \text { min } \end{gathered}$		の管等 どぎき minio		哃等ま ºinc न ${ }^{\circ}{ }^{\circ}$	noor ஜ゙N゙ ज				考 ／ d -	N
																							骨

								シige ix						䍂解						$\stackrel{\circ}{7}$			彦
									$\stackrel{\text { ® }}{\sim}$													\％	
						\cdots	\％	～ํ	N－	－9\％	－	\cdots	ぶべャ	$\stackrel{\square}{\square}$	¢゙ッ	－	ังッ	－	－	の品	$\stackrel{90}{9}$		苼
				然然	号蜜								等						$\begin{aligned} & \text { cige } \\ & \text { No } \\ & \text { No } \end{aligned}$			器	
				$\frac{3}{2}$								椋	路	$\stackrel{\square}{\square}$		$\stackrel{\square}{\square}$		$\begin{gathered} \text { en } \\ \substack{0 \\ 0} \end{gathered}$	$\stackrel{8}{8}$			筫	
						\pm	800	考	－	－Mo	omo	$\stackrel{\text {－}}{\text {－}}$	－	べ	－	Foす！		がmoy	－	－	－	$\stackrel{\square}{+}$	～
													0									免	
				zeze																袁菏	商	\％	
													高菏								$\stackrel{t}{t}$	\％	
				$\begin{aligned} & 2 \\ & \frac{2}{4} \\ & \frac{3}{3} \\ & \frac{3}{8} \end{aligned}$	范	¢゙う			¢n¢	¢๐\％		－		\％\％		ưno		－i¢	Mぃゆ．	－		込	－
				8												ఇig	Bieq				$\begin{aligned} & \vec{g} \\ & \stackrel{\rightharpoonup}{\dot{g}} \end{aligned}$	等	
																$\begin{aligned} & \text { åo } \\ & \text { ong } \\ & \text { ing } \end{aligned}$					吡	号	
																					\％	皆	
																						$\stackrel{\rightharpoonup}{5}$	\％
																					\％	号	
				－																33	亳	－	

PUBLICATIONS of the BUREAU OF PUBLIC ROADS

Any of the following publications may be purchased from the Superintendent of Documents, Government Printing Office, Washington, D. C. As his office is not connected with the Department and as the Department does not sell publications, please send no remittance to the United States Department of Agriculture.

ANNUAL REPORTS

Report of the Chief of the Bureau of Public Roads, 1924. 5 cents.
Report of the Chief of the Bureau of Public Roads, 1927. 5 cents.
Report of the Chief of the Bureau of Public Roads, 1928. 5 cents.
Report of the Chief of the Bureau of Public Roads, 1929. 10 cents.
Report of the Chief of the Bureau of Public Roads, 1931. 10 cents.

Report of the Chief of the Bureau of Public Roads, 1932. 10 cents.
Report of the Chief of the Bureau of Public Roads, 1933.
Report of the Chief of the Bureau of Public Roads, 1934.

DEPARTMENT BULLETINS

No. 136D . . Highway Bonds. 20 cents.
No. 347D . . Methods for the Determination of the Physical Properties of Road-Building Rock. 10 cents.
No. 583D . . Reports on Experimental Convict Road Camp, Fulton County, Ga. 25 cents.
No. 1279D . . Rural Highway Mileage, Income, and Expenditures, 1921 and 1922.

TECHNICAL BULLETINS

No. 55 T . . . Highway Bridge Surveys. 20 cents.
No. 265 T . . . Electrical Equipment on Movable Bridges. 35 cents.

MISCELLANEOUS CIRCULARS

No. 62MC . . Standards Governing Plans, Specifications, Contract Forms, and Estimates for FederalAid Highway Projects. 5 cents.

MISCELLANEOUS PUBLICATIONS

No. 76MP . . The results of Physical Tests of Road-Building Rock. 25 cents.
Federal Legislation and Regulations Relating to Highway Construction. 10 cents.
Supplement No. 1 to Federal Legislation and Regulations Relating to Highway Construction.
No. 191 Roadside Improvement. 10 cents.
The Taxation of Motor Vehicles in 1932. 35 cents.

REPRINT FROM PUBLIC ROADS

Reports on Subgrade Soil Studies. 40 cents.

Single copies of the following publications may be obtained from the Bureau of Public Roads upon request. They cannot be purchased from the Superintendent of Documents.

SEPARATE REPRINT FROM THE YEARBOOK

No. 1036Y . . Road Work on Farm Outlets Needs Skill and Right Equipment.

transportation Survey reports

Report of a Survey of Transportation on the State Highway System of Ohio (1927).

Report of a Survey of Transportation on the State Highways of Vermont (1927).
Report of a Survey of Transportation on the State Highways of New Hampshire (1927).
Report of a Plan of Highway Improvement in the Regional Area of Cleveland, Ohio (1928).
Report of a Survey of Transportation on the State Highways of Pennsylvania (1928).
Report of a Survey of Traffic on the Federal-Aid Highway Systems of Eleven Western States (1930).

A complete list of the publications of the Bureau of Public Roads, classified according to subject and including the more important articles in PUBLIC RoADS, may be obtained upon request addressed to the U. S. Bureau of Public Roads, Willard Building, Washington, D. C.

State	APPORTIONMENTS		COMPLETED				UNDER CONSTRUCTION				APPROVED FOR CONSTRUCTION			BALANCE OF FUNDS AVAILABLE FOR NEW PROJECTS	
	Sec. 204 of the Act of June 16, 1933 (1934 Fund)	Act of June 18, 1934 (1935 Fund) (1935 Fund)	Total Cost	$\begin{aligned} & 1934 \\ & \text { Public Works } \\ & \text { Funds } \end{aligned}$	$\begin{aligned} & 1935 \\ & \text { Public Works } \\ & \text { Funds } \end{aligned}$	Mileage	$\begin{aligned} & \text { Estimated Total } \\ & \text { Cost } \end{aligned}$	$\begin{gathered} 1934 \\ \text { Public Works } \\ \text { Funds } \end{gathered}$	$\begin{aligned} & 1935 \\ & \text { Public Works } \\ & \text { Funds } \end{aligned}$	Mileage	$\begin{aligned} & 1934 \\ & \text { Public Works } \\ & \text { Funds } \end{aligned}$	$\begin{aligned} & 1935 \\ & \text { Public Works } \\ & \text { Funds } \end{aligned}$	Mileage	$\begin{aligned} & 1934 \\ & \text { Public Works } \\ & \text { Funds } \end{aligned}$	$\begin{aligned} & 1935 \\ & \text { Public Works } \\ & \text { Funds } \end{aligned}$
Alabama. Arizona Arkansas.	$\begin{array}{r} \$ 8,370,133 \\ 5,211,960 \\ 6,748,335 \end{array}$	$\begin{array}{r} \$ 4,259,842 \\ 2,641,935 \\ 3,428,049 \end{array}$	$\begin{array}{r} \$ 10,544,744 \\ 6,801,137 \\ 7,113,454 \end{array}$	$\begin{array}{r} \$ 7,135,888 \\ 4,, 83,509 \\ 5,417,547 \end{array}$	$\begin{array}{r} \$ 455,986 \\ 1,006,882 \\ 965,678 \end{array}$	$\begin{aligned} & 550.3 \\ & 466.5 \\ & 409.1 \end{aligned}$	$\begin{array}{r} \$ 3,756,109 \\ 1,174,076 \\ 2.823,623 \end{array}$	$\begin{array}{r} \text { \$1,110,985 } \\ 174,322 \\ 1,096,989 \end{array}$	$\begin{array}{r} \$ 2,322,031 \\ 1,496.161 \\ 1,503.655 \end{array}$	$\begin{array}{r} 185.9 \\ 78.5 \\ 153.6 \end{array}$	$\begin{array}{r} \text { \$ } 49.951 \\ 15.039 \\ 140.639 \end{array}$	$\begin{gathered} \$ 47.178 \\ 770.583 \end{gathered}$	$\begin{aligned} & 25.4 \\ & 39.1 \end{aligned}$	$\begin{array}{r} 73.309 \\ 39.090 \\ 93.159 \\ \hline \end{array}$	$\begin{array}{r} \$ 1.034,647 \\ 138,892 \\ 188,133 \\ \hline \end{array}$
California Colorado Connecticut	$\begin{array}{r} 15,607,354 \\ 6,874,530 \\ 2,865,740 \end{array}$	$\begin{aligned} & 7,932,206 \\ & 3,486,006 \\ & 1,454,368 \end{aligned}$	$\begin{array}{r} 20,609,040 \\ 10,014,539 \\ 2,671,380 \end{array}$	$\begin{array}{r} 14,793,908 \\ 6,637.716 \\ 2,570,712 \end{array}$	$\begin{array}{r} 1,672,798 \\ 2,615,817 \\ 22,251 \end{array}$	$\begin{array}{r} 616.3 \\ 575.4 \\ 46.0 \end{array}$	$\begin{aligned} & 7,677,909 \\ & 1,187,154 \\ & 1,553,894 \end{aligned}$	802,964 198,405 295,028	$\begin{array}{r} 4.557 .069 \\ 836,831 \\ 920,127 \end{array}$	$\begin{array}{r} 120.0 \\ 70.5 \\ 23.2 \end{array}$		$\begin{array}{r} 1,363.631 \\ 134,613 \end{array}$	$\begin{array}{r} 37.7 \\ 1.3 \end{array}$	$\begin{aligned} & 10,482 \\ & 38,409 \end{aligned}$	$\begin{array}{r} 338,709 \\ 33,357 \\ 377.377 \end{array}$
Delaware Florida Georgia	$\begin{array}{r} 1,819,088 \\ 5,231,334 \\ 10,091,185 \end{array}$	$\begin{array}{r} 923,395 \\ 2,661,343 \\ 5,113,491 \end{array}$	$\begin{aligned} & 2,207,097 \\ & 6,903,553 \\ & 9,067,538 \end{aligned}$	$\begin{aligned} & 1,594,418 \\ & 5,074,597 \\ & 7,800,494 \end{aligned}$	$\begin{aligned} & 576,536 \\ & 705,545 \\ & 971,664 \end{aligned}$	$\begin{aligned} & 110.8 \\ & 235.6 \\ & 539.0 \end{aligned}$	$\begin{array}{r} 433,426 \\ 1,581,213 \\ 3,628,865 \end{array}$	$\begin{array}{r} 223,925 \\ 69,148 \\ 1,819,406 \end{array}$	$\begin{array}{r} 200,847 \\ 1,426,517 \\ 1,703,148 \end{array}$	$\begin{array}{r} 18.5 \\ 72.7 \\ 178.9 \end{array}$	$\begin{array}{r} 578 \\ 23,968 \\ 6,394 \end{array}$	$\begin{aligned} & 378,683 \\ & 217.429 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.8 \\ & 5.0 \end{aligned}$	$\begin{array}{r} 167 \\ 64,121 \\ 464,391 \end{array}$	$\begin{array}{r} 146.013 \\ 150.298 \\ 2,221,250 \end{array}$
Idaho Illinois Indiana	$\begin{array}{r} 4,486,249 \\ 17.570,770 \\ 10,037,843 \end{array}$	$\begin{aligned} & 2,277,486 \\ & 8,921,401 \\ & 5,088,963 \end{aligned}$	$\begin{array}{r} 5,355,529 \\ 12,809,564 \\ 8,500,128 \\ \hline \end{array}$	$\begin{array}{r} 4,273,123 \\ 12,173,189 \\ 8,027,933 \end{array}$	$\begin{aligned} & 788,715 \\ & 245,922 \\ & 157,034 \end{aligned}$	$\begin{aligned} & 423.4 \\ & 311.8 \\ & 243.3 \end{aligned}$	$\begin{array}{r} 1,119,277 \\ 11,858,629 \\ 5,673,057 \end{array}$	$\begin{array}{r} 131,759 \\ 5.304,498 \\ 1,658,495 \end{array}$	$\begin{array}{r} 954,290 \\ 6,554,131 \\ 3,965,895 \end{array}$	$\begin{array}{r} 67.2 \\ 364.9 \\ 228.8 \end{array}$	$\begin{array}{r} 50,260 \\ 226,066 \end{array}$	$\begin{array}{r} 36,670 \\ 1.270,898 \\ 568,302 \\ \hline \end{array}$	$\begin{array}{r} 3.3 \\ 11.0 \\ 18.4 \end{array}$	$\begin{array}{r} 81,367 \\ 42,823 \\ 125,350 \end{array}$	$\begin{aligned} & 497.811 \\ & 850,450 \\ & 397.732 \end{aligned}$
Iowa Kansas Kentucky	$\begin{array}{r} 10,055,660 \\ 10,089,604 \\ 7,517,359 \end{array}$	$\begin{aligned} & 5,118,361 \\ & 5,117,675 \\ & 3,818,311 \end{aligned}$	$\begin{array}{r} 10,610,364 \\ 11,266,962 \\ 7,639,339 \end{array}$	$\begin{aligned} & 9.378 .197 \\ & 9.551,326 \\ & 6.657 .329 \end{aligned}$	$\begin{array}{r} 928,005 \\ 1,323,424 \\ 543,581 \end{array}$	$\begin{aligned} & 835.3 \\ & 918.4 \\ & 560.4 \end{aligned}$	$\begin{aligned} & 4,966,043 \\ & 4,177,107 \\ & 3,685,737 \end{aligned}$	$\begin{aligned} & 676,717 \\ & 336,982 \\ & 723,296 \end{aligned}$	$\begin{aligned} & 3,505,891 \\ & 3,757,029 \\ & 2,717,809 \end{aligned}$	$\begin{aligned} & 377.2 \\ & 214.1 \\ & 241.6 \end{aligned}$	$\begin{aligned} & 92,417 \\ & 30,000 \\ & \hline \end{aligned}$	$\begin{array}{r} 167,600 \\ 37,222 \\ 190,281 \\ \hline \end{array}$	$\begin{aligned} & 8.7 \\ & 3.8 \\ & 7.3 \end{aligned}$	$\begin{array}{r} 746 \\ 8,878 \\ 106,735 \end{array}$	$\begin{aligned} & 516,865 \\ & 366,639 \end{aligned}$
Louisiana Maine Maryland	$\begin{aligned} & 5,828,591 \\ & 3,369,917 \\ & 3.564,527 \end{aligned}$	$\begin{aligned} & 2,963,932 \\ & 1,711,586 \\ & 1,810,058 \end{aligned}$	$\begin{aligned} & 5,011,374 \\ & 4,162,421 \\ & 2,280,231 \end{aligned}$	$\begin{aligned} & 4,279,444 \\ & 3,256,241 \\ & 2,040,690 \end{aligned}$	$\begin{aligned} & 342,291 \\ & 756,964 \\ & 183,820 \end{aligned}$	$\begin{array}{r} 152.3 \\ 173.3 \\ 90.5 \end{array}$	$\begin{array}{r} 3,432,133 \\ 892,890 \\ 2,481,446 \end{array}$	$\begin{array}{r} 1,340,921 \\ 94,506 \\ 1,179,136 \end{array}$	$\begin{array}{r} 1,895,906 \\ 784,708 \\ 488,790 \end{array}$	$\begin{aligned} & 80.9 \\ & 13.2 \\ & 35.5 \end{aligned}$	$\begin{array}{r} 192.479 \\ 9,800 \end{array}$	$\begin{aligned} & 333,452 \\ & 158,253 \\ & 222,970 \end{aligned}$	$\begin{array}{r} 13.4 \\ 2.5 \\ 6.3 \end{array}$	$\begin{array}{r} 15,747 \\ 19.170 \\ 334,901 \end{array}$	$\begin{array}{r} 392,282 \\ 11,661 \\ 914,478 \end{array}$
Massachusetts Michigan Minnesota	$\begin{array}{r} 6.597,100 \\ 12.736,227 \\ 10.656,569 \end{array}$	$\begin{aligned} & 3,350,474 \\ & 6,452,568 \\ & 5,425,551 \end{aligned}$	$\begin{array}{r} 4,200,967 \\ 12,338,753 \\ 12,727,520 \end{array}$	$\begin{array}{r} 3,620,889 \\ 11,269,771 \\ 9.578 .333 \end{array}$	$\begin{array}{r} 98,359 \\ 380,200 \\ 2,756,603 \end{array}$	$\begin{array}{r} 67.6 \\ 490.3 \\ 1.392 .2 \end{array}$	$\begin{aligned} & 4,694,815 \\ & 6,756,794 \\ & 2,957.995 \end{aligned}$	$\begin{array}{r} 2,929.059 \\ 1,330.627 \\ 880,181 \end{array}$	$\begin{aligned} & 1,588,958 \\ & 5,367,203 \\ & 1,903,508 \end{aligned}$	$\begin{array}{r} 41.0 \\ 247.9 \\ 216.3 \end{array}$	$\begin{array}{r} 19.400 \\ 64,220 \\ \hline \end{array}$	$\begin{aligned} & 313,670 \\ & 487,225 \\ & 308,065 \end{aligned}$	$\begin{array}{r} 4.6 \\ 24.5 \\ 40.7 \\ \hline \end{array}$	$\begin{array}{r} 47.152 \\ 116,430 \\ 133,835 \end{array}$	$\begin{array}{r} 1,249,487 \\ 217,939 \\ 457,375 \end{array}$
Mississippi. Missouri. Montana	$\begin{array}{r} 6,978.675 \\ 12,180,306 \\ 7.439 .748 \\ \hline \end{array}$	$\begin{aligned} & 3,540,227 \\ & 6,173.740 \\ & 3.769,734 \\ & \hline \end{aligned}$	$\begin{array}{r} 8,075,785 \\ 11,550,962 \\ 9.998 .341 \\ \hline \end{array}$	$\begin{array}{r} 4,964,483 \\ 10,097,170 \\ 7,102,183 \end{array}$	$\begin{array}{r} 820,235 \\ 689,581 \\ 2.389,133 \\ \hline \end{array}$	$\begin{aligned} & 473.0 \\ & 943.8 \\ & 897.3 \end{aligned}$	$\begin{aligned} & 3,887,419 \\ & 5,682,707 \\ & 1,304,064 \end{aligned}$	$\begin{array}{r} 1,809,872 \\ 1,604,956 \\ 68,540 \end{array}$	$\begin{aligned} & 1,482,473 \\ & 3,817,898 \\ & 1,118,507 \\ & \hline \end{aligned}$	$\begin{array}{r} 208.1 \\ 450.1 \\ 96.6 \\ \hline \end{array}$	$\begin{array}{r} 60,531 \\ 245,950 \\ 147,641 \end{array}$	$\begin{array}{r} 776,653 \\ 1,666,261 \\ 203.306 \\ \hline \end{array}$	$\begin{aligned} & 49.3 \\ & 60.1 \\ & 29.9 \end{aligned}$	$\begin{aligned} & 143.788 \\ & 232,230 \\ & 121,384 \end{aligned}$	460,866 $58,788$
Nebraska Nevada New Hampshire.	$\begin{aligned} & 7,828,961 \\ & 4,545,917 \\ & 1,909,839 \end{aligned}$	$\begin{array}{r} 3,964,364 \\ 2,302,356 \\ 969,462 \\ \hline \end{array}$	$\begin{array}{r} 10,124,912 \\ 5,569,952 \\ 2,354,103 \end{array}$	$\begin{aligned} & 7,762,597 \\ & 4,253.523 \\ & 1,809,280 \end{aligned}$	$\begin{array}{r} 1,263,400 \\ 1,208,851 \\ 449,896 \end{array}$	$\begin{array}{r} 853.6 \\ 532.7 \\ 62.7 \end{array}$	$\begin{array}{r} 2,756,165 \\ 1,083,897 \\ 504,101 \end{array}$	21.644 216.818 29,000	$\begin{array}{r} 2,389,925 \\ 806,830 \\ 468,508 \end{array}$	$\begin{array}{r} 159.7 \\ 175.3 \\ 14.5 \end{array}$	$\begin{aligned} & 52,327 \\ & 13,044 \end{aligned}$	$\begin{aligned} & 112,536 \\ & 224,197 \end{aligned}$	$\begin{array}{r} 17.0 \\ 18.6 \\ .4 \end{array}$	$\begin{aligned} & 44,620 \\ & 23,249 \\ & 58,515 \end{aligned}$	$\begin{array}{r} 198,502 \\ 62,479 \\ 51,058 \end{array}$
New Jersey New Mexico New York	$\begin{array}{r} 6,346,039 \\ 5,792,935 \\ 22,330,101 \\ \hline \end{array}$	$\begin{array}{r} 3,220,879 \\ 2,941,700 \\ 11,327,921 \end{array}$	$\begin{array}{r} 5,383,742 \\ 7,478,122 \\ 24,139,758 \end{array}$	$\begin{array}{r} 4,891,660 \\ 5,665,578 \\ 19,340,340 \end{array}$	$\begin{array}{r} 138,352 \\ 1,598,756 \\ 1,415,479 \\ \hline \end{array}$	$\begin{array}{r} 61.4 \\ 672.9 \\ 402.1 \\ \hline \end{array}$	$\begin{array}{r} 3,104,136 \\ 1,089,970 \\ 15,212,881 \end{array}$	$\begin{array}{r} 1,295,764 \\ 36,931 \\ 2,514,309 \end{array}$	$\begin{aligned} & 1,473,052 \\ & 1,050,748 \\ & 9,030,332 \end{aligned}$	$\begin{array}{r} 22.1 \\ 95.9 \\ 413.3 \\ \hline \end{array}$	$\begin{aligned} & 12,633 \\ & 74,732 \\ & \hline \end{aligned}$	$\begin{aligned} & 812,020 \\ & 183,963 \\ & 238,050 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.1 \\ & 1.1 \\ & 7.7 \end{aligned}$	$\begin{aligned} & 158,615 \\ & 77,794 \\ & 400,720 \\ & \hline \end{aligned}$	$\begin{aligned} & 797.455 \\ & 108,232 \\ & 644,061 \end{aligned}$
North Carolina North Dakota Ohio	$\begin{array}{r} 9,522,293 \\ 5,804,448 \\ 15,484,592 \end{array}$	$\begin{aligned} & 4,840,941 \\ & 2,938,967 \\ & 7,865,012 \end{aligned}$	$\begin{array}{r} 10,828,792 \\ 5.986,728 \\ 17.011,922 \end{array}$	$\begin{array}{r} 7,997,214 \\ 5,055,278 \\ 15,026,171 \\ \hline \end{array}$	$\begin{array}{r} 1.746,315 \\ 454.581 \\ 856.625 \end{array}$	$\begin{array}{r} 1,061.5 \\ 1,607.2 \\ 594.5 \end{array}$	$\begin{array}{r} 3,006,699 \\ 926,427 \\ 6,284,657 \end{array}$	$\begin{aligned} & 927.348 \\ & 325,115 \\ & 370,463 \end{aligned}$	$\begin{array}{r} 1,955.421 \\ 463,333 \\ 5,385.716 \\ \hline \end{array}$	$\begin{aligned} & 242.4 \\ & 243.2 \\ & 165.4 \end{aligned}$	$\begin{aligned} & 182,655 \\ & 331,561 \end{aligned}$	$\begin{aligned} & 548,144 \\ & 651,058 \\ & 107,800 \end{aligned}$	$\begin{array}{r} 32.8 \\ 191.7 \\ 6.5 \\ \hline \end{array}$	$\begin{array}{r} 415.077 \\ 92,493 \\ 87.958 \\ \hline \end{array}$	$\begin{array}{r} 591,061 \\ 1,369.996 \\ 1.514,871 \end{array}$
Oklahoma Oregon Pennsylvania	$\begin{array}{r} 9,216,798 \\ 6,106,896 \\ 18,891,004 \end{array}$	$\begin{aligned} & 4,685,180 \\ & 3,097,814 \\ & 9,590,788 \end{aligned}$	$\begin{array}{r} 9,725,336 \\ 7,318,249 \\ 19,883,931 \end{array}$	$\begin{array}{r} 8,414,407 \\ 5,816,229 \\ 16,945,385 \end{array}$	$\begin{array}{r} 907,677 \\ 877,871 \\ 2,153,200 \\ \hline \end{array}$	$\begin{aligned} & 653.1 \\ & 381.6 \\ & 777.7 \end{aligned}$	$\begin{aligned} & 4,085,897 \\ & 2,314,336 \\ & 8,255,684 \end{aligned}$	$\begin{array}{r} 792,103 \\ 188,715 \\ 1,777,929 \\ \hline \end{array}$	$\begin{aligned} & 2,910,290 \\ & 1,977,371 \\ & 6,176,980 \end{aligned}$	$\begin{array}{r} 135.5 \\ 83.7 \\ 281.2 \\ \hline \end{array}$	$\begin{array}{r} 6,016 \\ 518 \\ 2,126 \end{array}$	$\begin{array}{r} 296,985 \\ 80,000 \\ 430,893 \end{array}$	$\begin{array}{r} 14.0 \\ .2 \\ 7.9 \end{array}$	$\begin{array}{r} 4,272 \\ 101,434 \\ 165.564 \end{array}$	$\begin{aligned} & 570,229 \\ & 162,572 \\ & 829.715 \end{aligned}$
Rhode Island South Carolina South Dakota	$\begin{aligned} & 1,998,708 \\ & 5,459,165 \\ & 6,011,479 \end{aligned}$	$\begin{aligned} & 1,014,572 \\ & 2,770,954 \\ & 3,047,643 \end{aligned}$	$\begin{aligned} & 2,142,381 \\ & 5,080,044 \\ & 6,206,513 \end{aligned}$	1,858,334 4.646,088 5.046.355	$\begin{aligned} & 204,739 \\ & 365,578 \\ & 668,338 \end{aligned}$	$\begin{array}{r} 66.7 \\ 391.7 \\ 1,103.5 \end{array}$	$\begin{array}{r} 710,175 \\ 2,462,517 \\ 2,100,519 \end{array}$	$\begin{array}{r} 79,740 \\ 735,422 \\ 678.409 \end{array}$	$\begin{array}{r} 614,156 \\ 1,675,694 \\ 1,372,984 \end{array}$	$\begin{array}{r} 16.9 \\ 229.9 \\ 361.5 \end{array}$	$\begin{array}{r} 27,225 \\ 40,456 \\ \hline \end{array}$	$\begin{array}{r} 36,815 \\ 66,990 \\ 362,719 \\ \hline \end{array}$	$\begin{array}{r} 1.4 \\ 2.1 \\ 40.4 \\ \hline \end{array}$	$\begin{array}{r} 60,634 \\ 50,430 \\ 246,258 \\ \hline \end{array}$	$\begin{aligned} & 158,863 \\ & 662,692 \\ & 643,602 \\ & \hline \end{aligned}$
Tennessee Texas Utah	$\begin{array}{r} 8,492,619 \\ 24,244,024 \\ 4,194,708 \end{array}$	$\begin{array}{r} 4,302,991 \\ 12,291,253 \\ 2,132,691 \end{array}$	$\begin{array}{r} 9,440,710 \\ 26,579,948 \\ 5,469,792 \end{array}$	$\begin{array}{r} 7.692,903 \\ 22,965,929 \\ 3,926,218 \\ \hline \end{array}$	$\begin{array}{r} 1,007,766 \\ 2,413,912 \\ 946,763 \\ \hline \end{array}$	$\begin{array}{r} 378.9 \\ 2,168.4 \\ 512.9 \\ \hline \end{array}$	$\begin{aligned} & 3,041,605 \\ & 9,248,040 \\ & 1,538,328 \end{aligned}$	647.892 954, 287 260,153	$\begin{aligned} & 2,297,311 \\ & 7,907,205 \\ & 1,030,350 \end{aligned}$	$\begin{array}{r} 98.5 \\ 530.3 \\ 88.7 \\ \hline \end{array}$	$\begin{aligned} & 20,090 \\ & 52,140 \end{aligned}$	$\begin{array}{r} 420,530 \\ 1,143,107 \\ 17.000 \\ \hline \end{array}$	$\begin{array}{r} 7.8 \\ 66.7 \\ 1.1 \end{array}$	$\begin{array}{r} 131,734 \\ 271,668 \\ 8,337 \end{array}$	577.383 827,030 138.577
Vermont Virginia Washington	$\begin{aligned} & 1,867.573 \\ & 7,416,757 \\ & 6,115,867 \end{aligned}$	$\begin{array}{r} 948,007 \\ 3,765,387 \\ 3,106,412 \end{array}$	$\begin{aligned} & 2,467,174 \\ & 8,323,716 \\ & 7,036,158 \end{aligned}$	$\begin{aligned} & 1,806,908 \\ & 6,644,620 \\ & 5,832,732 \end{aligned}$	$\begin{array}{r} 387,121 \\ 1,090,583 \\ 1,127,179 \\ \hline \end{array}$	$\begin{aligned} & 116.6 \\ & 433.4 \\ & 259.5 \end{aligned}$	$\begin{array}{r} 573,768 \\ 2,804,093 \\ 2,214,757 \end{array}$	$\begin{array}{r} 26,801 \\ 55,86166 \\ 281,291 \end{array}$	$\begin{array}{r} 510,540 \\ 1,971,201 \\ 1,805,387 \end{array}$	$\begin{array}{r} 22.1 \\ 149.2 \\ 42.9 \end{array}$	$\begin{array}{r} 4,042 \\ 161,555 \end{array}$	$\begin{array}{r} 43.110 \\ 50,740 \\ 137.968 \end{array}$	$\begin{array}{r} .9 \\ 27.9 \\ .3 \end{array}$	$\begin{array}{r} 29,821 \\ 52,416 \\ 1,845 \end{array}$	7.236 195.864 35.878
West Virginia Wisconsin Wyoming	$\begin{aligned} & 4,474,234 \\ & 9,724,881 \\ & 4,501,327 \end{aligned}$	$\begin{aligned} & 2,280,335 \\ & 4,941,837 \\ & 2,287,712 \end{aligned}$	$\begin{array}{r} 4,249,980 \\ 10,718,068 \\ 5,125,126 \end{array}$	$\begin{aligned} & 3,738,906 \\ & 9,052,904 \\ & 4,123,788 \end{aligned}$	$\begin{array}{r} 387,201 \\ 1,184,352 \\ 817,355 \end{array}$	$\begin{aligned} & 148.5 \\ & 480.6 \\ & 719.2 \end{aligned}$	$\begin{aligned} & 1,655,705 \\ & 3,997,931 \\ & 1,707,858 \end{aligned}$	$\begin{aligned} & 671,325 \\ & 532,063 \\ & 363,973 \end{aligned}$	$\begin{array}{r} 934,380 \\ 3,179,755 \\ 1,316,601 \end{array}$	$\begin{array}{r} 49.5 \\ 133.1 \\ 312.1 \end{array}$	$\begin{aligned} & 56,511 \\ & 82,664 \end{aligned}$	$\begin{array}{r} 142,561 \\ 408,632 \\ 84,735 \end{array}$	7.9 7.6 5.2	$\begin{array}{r} 7.492 \\ 57,250 \\ 13.566 \end{array}$	$\begin{array}{r} 766,192 \\ 169.097 \\ 69,021 \end{array}$
District of Columbia Hawaii	$\begin{aligned} & 1,918,469 \\ & 1,871,062 \end{aligned}$	$\begin{aligned} & 973,842 \\ & 949.778 \end{aligned}$	$\begin{aligned} & 2,038,295 \\ & 1,007,238 \end{aligned}$	$\begin{gathered} 1,668,009 \\ 704,442 \end{gathered}$	370,286	$\begin{aligned} & 16.9 \\ & 24.2 \end{aligned}$	$\begin{array}{r} 643.229 \\ 1,430.997 \end{array}$	$\begin{array}{r} 250,164 \\ 1,126,855 \end{array}$	$\begin{array}{r} 393.065 \\ 99.424 \end{array}$	$\begin{array}{r} 2.7 \\ 20.8 \end{array}$	20,973	$\begin{array}{r} 75,395 \\ 345,645 \end{array}$	$\begin{array}{r} .6 \\ 6.0 \end{array}$	$\begin{array}{r} 295 \\ 18.793 \end{array}$	$\begin{aligned} & 135,097 \\ & 504.709 \end{aligned}$
TOTALS	394,000,000	200,000,000	424, 155.312	345,064,988	45,439.500	26,004.8	170,845.754	41.523 .397	114,215.941	7.880.9	2.516.601	17.531.538	876.3	4,895,014	22,813,021

[^0]: ${ }^{2}$ A qualitative test for determining the degree of heterogeneity of asphalts. G. L Oliensis, Proc. A. S. T. M., vol. 33, pp. 715-728.

[^1]: - Report by F. J. Nellensteyn and R. Loman, Sixth Congress, Permanent International Association of Road Congresses, first section, second question, paper 2-O

