级

A JOURNAL OF HIGHWAY RESEARCH

[^0]
PUBLIC ROADS $\ldots 4$ Highway Research

Issued by the
UNITED STATES DEPARTMENT OF AGRICULTURE
BUREAU OF PUBLIC ROADS
Volume 16, No. 5
July 1935

The reports of research published in this magazine are necessarily qualified by the conditions of the tests from which the data are obtained. Whenever it is deemed possible to do so, generalizations are drawn from the results of the tests; and, unless this is done, the conclusions formulated must be considered as specifically pertinent only to described conditions.

In This Issue

Microchemical Examination of Soil Solutions 77
State Motor-Vehicle Registrations and Receipts, 1934 90

THE BUREAU OF PUBLIC ROADS Willard Building, Washington, D.C. REGIONAL HEADQUARTERS Mark Sheldon Building, San Francisco, Calif.

DISTRICT OFFICES

DISTRICT No. 1. Oregon, Washington, and Montana.
Post Office Building, Portland, Oreg.
DISTRICT No. 2. California, Arizona, and Nevada.
Mark Sheldon Building, 461 Market St., San Francisco, Calif.
DISTRICT No. 3. Colorado, New Mexico, and Wyoming.
237 Customhouse, Nineteenth and Stout Sts., Denver. Colo.
DISTRICT No. 4. Minnesota, North Dakota, South Dakota, and Wisconsin.
907 Post Office Building, St. Paul, Minn.
DISTRICT No. 5. Iowa, Kansas, Missouri, and Nebraska.
Saunders-Kennedy Building. Omaha, Nebr.
DISTRICT No. 6. Arkansas, Louisiana, Oklahoma, and Texas.
Room 502, United States Courthouse, Fort Worth, Tex

DISTRICT No. 7. Illinois, Indiana, Kentucky, and Michigan. South Chicago Post Office Building, Chicago, Ill.

DISTRICT No. 8. Alabama, Georgia, Florida, Mississippi, South Carolina, and Tennessee.

Post Office Building, Montgomery, Ala.
DISTRICT No. 9. Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, and Vermont.

505 Post Office Building, Albany, N. Y
DISTRICT No. 10. Delaware, Maryland, North Carolina, Ohio, Pennsylvania, Virginia, and West Virginia.

Willard Building, Washington, D. C.
DISTRICT No. 11. Alaska.
Room 419, Federal and Territorial Building, Juneau, Alaska. DISTRICT No. 12. Idaho and Utah.

Federal Building, Ogden, Utah.

Because of the necessarily limited edition of this publication it is impossible to distribute it free to any person or institutions other than State and county officials actually engaged in planning or constructing public highways, instructors in highway engineering, and periodicals upon an exchange basis. At the present time additions to the free mailing list can be made only as vacancies occur. Those desiring to obtain Public Roads can do so by sending $\$ 1$ per year (foreign subscription $\$ 1.50$), or 10 cents per single copy, to the Superintendent of Documents, United States Government Printing Office, Washington, D. C.

MICROCHEMICAL EXAMINATION OF SOIL SOLUTIONS

BY THE DIVISION OF TESTS, U. S. BUREAU OF PUBLIC ROADS

Reported by JAMES A. KELLEY, Junior Highway Engineer

SOILS for highway purposes are tested to determine the characteristics indicative of their performance as road surfaces, bases for thin wearing courses, subgrades, and as foundations for retaining walls, bridges, and similar structures. Information on physical properties such as stability, compressibility, elasticity, and capillarity is generally sought. In such determinations soil is assumed to consist of inert solids of constant volume and containing pores that enlarge and shrink as the soil mass changes in volume.

This assumption is not strictly true as soluble materials, organisms, and bacteria are usually present, although not in sufficient amounts to require consideration in the interpretation of the results of physical tests.
The character and amount of the soluble soil constituents may have an important bearing upon such problems as the durability of concrete and the selection of admixtures for use in the stabilization of soils. But accurate, quantitative, chemical analyses of soil solutions are difficult to make, even by the most elaborate methods. After some investigation it has been found that a comparatively simple and more or less qualitative microchemical method may be usefu in analyzing soil solutions.

SOIL MOISTURE CONTAINS MINERAL MATTER IN SOLUTION 1

According to the soil scientist the mincral constituents of soils are products of the disintegration and degradation of rocks. However, due to mixing and transporting agencies, more minerals are likely to be present than those furnished by the rocks from which a soil is primarily derived. Even in beach sand it is surprising how many minerals other than quartz can usually be found. Hence there is the generalization that practically every soil contains all of the common rock-forming minerals.

Aside from silicon and iron oxide, the principal soil minerals are silicates, ferro-silicates, alumino-silicates, or ferro-alumino-silicates of the common bases-sodium, potassium, calcium, magnesium, and ferrous iron. Other bases such as lithium, barium, or the heavy metals may occasionally be present in appreciable amounts as may other types of silicates or other mineral salts.

The silicates or silico minerals are all somewhat soluble in water, and, being salts of weak acids with strong bases, they are greatly hydrolyzed. A convenient illustration is afforded by the well-known rock and soil mineral, orthoclase, that with alteration may become kaolin. The reaction of orthoclase with water may be represented as follows:

$$
\mathrm{KAl} \mathrm{Si}_{3} \mathrm{O}_{8}+\mathrm{HOH} \rightleftarrows \mathrm{H} \mathrm{Al} \mathrm{Si} 3_{3} \mathrm{O}_{8}+\mathrm{KOH}
$$

Under ordinary soil conditions, with a relatively large proportion of carbon dioxide in the soil atmos-

[^1]phere, the potash formed would be more or less completely transformed to the bicarbonate as follows:
$$
\mathrm{KOH}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{KHCO}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

Unless the hydrolysis of a silicate of the alkalis or alkaline earths is a reversible action, no minerals containing silicon could persist in the soil for any length of time and all soils would soon become sterile wastes composed essentially of quartz, kaolin, and ferruginous oxides. It has been suggested that the original mineral particles are protected from decomposition by a jellylike coating on the surface of the soil grains.

If a soil be shaken up thoroughly with water, the resulting solution filtered free of suspended matter and then boiled to eliminate the carbon dioxide, generally the solution will give an alkaline reaction. This is true also of the waters of most springs, ponds, or creeks. However, the mineral content of such waters varies widely. The water that passes down through the larger interstices of the soil is not long in contact with the individual soil particles and floccules, and, because diffusion of dissolved mineral substances is quite slow especially in dilute solutions, it takes up but little matter from such aqueous films as it may intercept.

Different conditions govern the action of the soil water that returns towards the surface by capillary action to form the great, natural, nutrient medium for plants. This water moves slowly over the soil particles in films. It is in contact with successive fragments of any particular mineral and with all the different minerals making up the soil for long periods of time. Consequently, it tends to become a solution saturated with the minerals encountered.

Many attempts have been made to extract and analyze solutions naturally existing in the soil. The results obtained have not been very satisfactory, mainly because solution in a soil, under conditions suitable for crop growth, is held by a force of great magnitude9,000 to 15,000 atmospheres.

By means of powerful centrifuges it has been possible to obtain from soils small quantities (a few centimeters at a time) of dilute solutions containing about 6 to 8 parts per million of phosphoric acid $\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$ and 25 to 30 parts per million of potash $\left(\mathrm{K}_{2} \mathrm{O}\right)$. The analysis of a few cubic centimeters of a very dilute solution is in itself very difficult, necessarily involving uncertainty as to the value of the results.

Wheat, corn, and some common grasses have been grown to a satisfactory maturity in tap water having a concentration of seven parts per million of potassium and one-half part per million of phosphoric acid. In this connection, investigators believe that the ratio of potassium to phosphoric acid of 14 to 1 is quite important. Wheat, grasses, cowpeas, vetches, potatoes, and other plants have been grown satisfactorily in solutions made by shaking up a soil in distilled water and separating the solution from the solid particles with an unglazed porcelain filter.

MANY DIFFERENT MATERIALS FOUND IN SOIL SOLUTIONS

Some idea of the kinds and quantities of soluble constituents of soils is furnished by analyses of plant ashes and waters from springs, lakes, and rivers. Analyses of ashes of ordinary crops are given in table 1.2 In presenting these data attention is called to the fact that plant physiologists and soil scientists are divided into different schools. One group maintains that plants do not dissolve significant quantities of minerals that would otherwise remain undissolved; another school emphasizes the important role that the root exudations exercise in this connection. ${ }^{3}$

Table 1.-Chemical composition of ashes of ordinary crops

Crops	Potash and soda alkalis	Magnesia	Lime	Phosphoric acid	Silica	Sulphuric acid	Chlorine
Cereals: Grain Straw	$\begin{array}{r} \text { Percent } \\ 30 \\ 12-27 \end{array}$	Percent	Percent	Percent 46 5	$\begin{array}{r} \text { Percent } \\ 2 \\ 50-70 \end{array}$	$\begin{array}{\|r} \text { Percent } \\ 2.5 \\ 2.5 \end{array}$	Percent
Iegumes: Kernel Straw.	44 $27-41$	7 7	5 $25-39$	35 8	1 5	2-3	6-7
Root crops: Roots.	60	3-9	6-12	8-18	1-1	5-12	3-9
Tops	37	3-16	10-35	3-9	3	6-13	5-17
Grasses in flower	33	4	8	8	35	4	5

Table 2 from Hilgard ${ }^{4}$ contains data on the chemical composition of river waters. Additional analyses are given in table 3. Table 4, also from Hilgard, affords some insight into the actual and possible solvent effects of water in the soil.

Authorities agree that it seems impossible to exhaust a soil's solubility by successive leachings with water. This was demonstrated in 1863 and 1864 by Ulbricht ${ }^{5}$ and by Schultze ${ }^{6}$; their general conclusions were corroborated by King ${ }^{7}$ in 1904.

King's first leaching experiments were made by shaking up the soil sample with 10 times its dry weight of water for 3 minutes, then determining the ingredients of the filtrates by very delicate (mostly colorimetric) methods. The soil was dried at $120^{\circ} \mathrm{C}$. between successive leachings. At each drying not only is the soluble matter again drawn to the surface but heating a soil renders additional amounts of soil ingredients soluble in both water and acids. (See Hilgard.)

Table 2.-Chemical composition of river waters

	Potash and soda	Magnesia	Lime	Phosphoric acid	Silica	Sulphuric acid	Chlorine
Yukon (Aisska)	Parts per million 8	$\begin{gathered} \text { Parts } \\ \text { per } \\ \text { million } \\ 7 \end{gathered}$	Parts per milicion 30	$\begin{gathered} \text { Parts } \\ \text { per } \\ \text { million } \end{gathered}$	Parts per million 8	$\begin{gathered} \text { Parts } \\ \text { per } \\ \text { million } \\ 9 \end{gathered}$	$\begin{gathered} \text { Parts } \\ \text { per } \\ \text { million } \\ 0.4 \end{gathered}$
St. Lawrence (Pointe des Cascades)	r 8	10 18	30 45 58	Trace	8 33	9 48	0.4 2.0
Missouri (Montana) ...	32	18	58	0.22	19	22	18.0
Mississippi (near Carrollton, La.)	20	41	41		9	16	10.0
Rio Grande (Fort. Craig, N. Mex.)	44	2	23		10	47	36.0

[^2]WATER-SOLUBLE SOIL CONSTITUENTS HAVE POSSIBLE INFLUENCE ON THE DURABILITY OF CONCRETE STRUCTURES
At the eleventh annual meeting of the Highway Research Board, it was suggested that disintegration of concrete could be of three types; chemical, part chemical and part physical, and physical. ${ }^{8}$.

The purely chemical type of disintegration results from such causes as contact with sea water, alkali, sodium and magnesium sulphates, various acids found in ground waters and sewage, or the many chemical compounds of a greater or less stability that under certain conditions may be set up in the hydration of cements. ${ }^{9}$ The detrimental chemical, whether in soil or water, must be present in sufficient amount to produce a readily discernible action. Such action involves base exchange and would be expected to begin where the concrete is in contact with the detrimental agency and to progress from this location toward the interior of the structure. In road slabs detrimental action of this type would begin at the bottom and progress upward.

It is assumed that in the physico-chemical type of disintegration, the active chemical is either in solution in water that enters the slab by capillary movement or is dissolved by moisture contained within the structure. It is then deposited at some location on the interior of the structure where the rate of percolation changes, or at the surface where evaporation occurs. This theory serves to explain why piers, piles, and similar structures, immersed in water with chemical content obviously too low to injure the completely immersed portions of the structure, may, by continued capillary flow and evaporation, accumulate enough chemicals just above the water line to be detrimental. The theory also serves to explain the deterioration of pavement slabs that begins at the top and works downward.
The purely physical type of disintegration results from the growth of crystals without chemical action. The crystals may be formed by the freezing of water or by the crystallization of dissolved chemicals due to the evaporation of the liquid carrier. ${ }^{10}$ This, like the physico-chemical type of disintegration, can be expected to begin at the surface of freezing or evaporation and to progress toward the interior of the slab.

Figure 1 illustrates the manner in which soil solutions are assumed to travel vertically through road slabs in order that crystals may be deposited at the tops of the slabs. The rate of travel depends upon the permeability and this is controlled more by the character of voids than by their percentage in the mortar. Fine cracks that are almost invisible to the eye afford more or less continuous channels to the surface and greatly increase the permeability.

It is well known that disintegration progresses more rapidly in natural rocks that contain cracks and laminations than in those that do not. In experiments on the phenomenon of crystal growth, Professor Taber ${ }^{11}$ found that such materials as brick, cement mortar, and pottery also were less resistant to disintegration when containing small fissures.

[^3]Table 3.-Results of water analyses ${ }^{1}$

$\begin{gathered} \text { Sample } \\ \text { no. } \end{gathered}$	Source	Location	Potassium and sodium	$\begin{gathered} \text { Magne- } \\ \text { sium } \end{gathered}$	Calcium	Carbonic acid	Silica	$\underset{\text { acid }}{\text { Sulphuric }}$	Chlorine
1	Spring	Paris, Maine---	Parts per million 27	Parts per million 16	Parts per million 136	Parts per million 27	Parts per million 17	$\begin{gathered} \text { Parts per } \\ \text { million } \\ 370 \end{gathered}$	Parts per million Trace
${ }_{3}^{2}$	Well	Caledonia, N. Y.	102	30	180	1	8	293	206
4		W ashington, D.	6 10	3	3 4		${ }_{33}^{25}$		10
5	Spring	Loudoun County, Va	84	15	524		21	1,287	10
${ }_{7}^{6}$.-.-.do-	Virginia Hot Springs, Va	22	35	133	223	24	- 129	3
8	Well	Charleston, S. C	1.055	8	151	40	39 36	Trace	944
9	Strface drainage.	St. Augustine, Fla	1. 74	17	80		15	52	108
10	Well.	Clinton, Miss..	132	74	198		75	985	72
11	Spring	Mountain City, Tenn	8	${ }^{2}$	12		22	13	1
12	Well.	Frankfort, Ky	481	19	21		10	187	522
13	Spring	Leansboro, Ill	300	447	542	113	14	3,004	35
14		Nashville, Ill...-	681	277	427	1, 142	12	1,695	24
15	Well-.	Story City, Iowa	19	32	76	219	Trace		1
16	Spring	Thurman, Mo--	3 4	Trace ${ }^{3}$	43		15 12	8	${ }_{3}^{2}$
18	--do	Sulphur, Okla-....	293		86	121	24	32	482
19	Lake.-	Yellowstone Lake, W yo	20	3	9		42	8	9
20	River.	Hot River, W yo-	197	63	236		50	508	160
22	Springs	Livingston, Mont	30	44	168	248	29	222	12
22	Well.	Denver, Colo- Pueblo, Colo.	6, 5261	$\begin{array}{r} 7,287 \\ 33 \end{array}$	$\begin{array}{r}302 \\ 58 \\ \hline\end{array}$		28 10	41, 362	1,492
24		Coalburg, W. Va			$\begin{aligned} & \text { Milli- } \\ & \text { grams } \\ & \text { per liter } \\ & 2,220 \end{aligned}$	Milli- grams per liter Trace	Miliigrams per liter	$\begin{gathered} \text { Milli- } \\ \text { grams } \\ \text { per liter } \end{gathered}$	
25	Brine from oil field	Houston, Tex..	31,380	290	2, 000			3,510	53, 070
26	Lake..	Lake De Smet, W yo	1,424	406	71		14	4,129	58
27	River-	Bear River, Utah..		13	43	97	7	11	
28	Spring	Near Ogden, Utah	7, 083	93	1,143	144	46	218	13, 703
29	River-	Walker River, Nev	32	4		56	23	29	13
30	Lake.	Lake Tahoe, Calif	11	3	9	28	14	5	2
31	Spring	Mono, Calif..	670	60	59	578		313	227
32	Lake-.-	Albert Lake, Oreg	15, 228			6, 006	232	706	13,462
33	--.-do.-	Soap Lake, Wash	10,504	108	Trace	6, 419	113	4,362	3,526
34	Sea water	Gulf of Mexico, near Tortuga	11, 596	1,305	442	126		2, 742	20, 076

${ }^{1}$ These analyses were made in the laboratory of the U. S. Geological Survey. See Water Supply Paper 364, by F. W. Clarke, 1914.

Table 4.-Water-extracted chemicals from soils

Soil	Potash and soda	Mag. nesia	Lime	Phosphoric acid	Silica	Sulphuric acid	Sodium ride	Carbonic acid
	$\begin{gathered} \text { Parts } \\ \text { per } \\ \text { million } \end{gathered},$	Parts per million	$\begin{gathered} \text { Parts } \\ \text { per } \\ \text { million } \end{gathered}$	$\begin{gathered} \text { Parts } \\ \text { per } \\ \text { million } \end{gathered}$	$\begin{gathered} \text { Parts } \\ \text { per } \\ \text { million } \end{gathered}$	Parts per million	Parts per million	$\begin{gathered} \text { Parts } \\ \text { per } \\ \text { million } \end{gathered}$
Chemn, Saxony-...-	$\begin{array}{r}126 \\ 38 \\ \hline\end{array}$	38 37	128 84	${ }_{\text {Trace }}{ }^{31}$	${ }_{26}^{48}$	100	59 48	
Sassafras sandy loam.	13	18	74	7		54		14
Norfolk, N. C., sandy	21	23	58	10	8	43		20
Janesville, W is., loam_	25	52	135	17	40	125		29
Hagerstown, Pa., clay loam	22	77	165	12	21	188		97

The movement of solutions through mortar is disclosed by the formation of crystalline deposits such as are illustrated in the photomicrograph shown in figure 2.

ELECTROLYTIC PROPERTIES OF MINUTE FILMS IMPORTANT IN THE STABILIZATION OF SOIL

The theory of adhesives ${ }^{12}$ has much significance in the selection of chemical admixtures for stabilizing soils. For a given cementing material to adhere strongly to a solid surface it must be adsorbed at the solid surface; it must wet the solid surface and form a liquid film there. For an adhesive to wet a soil particle coated with an existing soil gel or in the presence of air, the adhesive must be adsorbed more strongly than either the gel or the air and must displace whichever one is present.

After a period of drought, adsorbed air on the surface of dust particles will often cause raindrops to roll

[^4]$\left|\begin{array}{cc}1 & 1 \\ \text { EVAPORATION REMOVES WATER }\end{array}\right|$

WATER REMOVES SOLUBLE CHEMICALS FROM SUBGRADE
Figure 1.-Illustrating Growth of Crystals by Chemicals Thrown Out of Solution.
along in the dust without wetting it. Even after a heavy shower the dust may be wetted only to a depth of less than $1 / 4 \mathrm{inch}$. Any treatment that cuts down the amount of adsorbed air makes the dust more easily wetted. In like manner any treatment that reduces the affinity of the soil particle for the existing film of gel with which it may be covered makes the soil particle easier to coat with the soil-stabilizing adhesive.

However, materials used to reduce or increase the affinity of soil particles for existing coatings can be selected only after obtaining some knowledge of the electrolytic properties of the soil particles, of the existing films, and of the proposed adhesives.

For a given adhesive and given soil particles, the thinnest film is the strongest. A slight change in either the adhesive or the materials to be cemented is sufficient to cause considerable variation in the thickness of the adhesive film and consequently in the

Figure 2.-Deposits of Chemical at Edges of Fissure in Mortar. Length of Fissure Shown About One-Sixteenth Inch. Magnified 55 Diameters.
strength of the resulting mixture of adhesive and aggregate.

A knowledge of the chemical composition of materials serves to throw some light on their electrolytic properties. The chemical composition of the water-soluble constituents of soils controls to some extent the electrolytic properties of the existing gel films. This explains the interest aroused in the study of soil solutions in connection with research on soil stabilization by means of chemicals or admixtures of substances other than soil materials. Such research, however, is just getting under way. To date microchemical analyses have been used principally in studying the durability of concrete and the warping of concrete pavements.

SIMPLE PROCEDURE INVOLVED IN ANALYSIS BY THE MICRO-

 CHEMICAL METHODExamination has been made of samples of subgrade soil and concrete from numerous locations in the United States, of samples of ground water and solutions of soil chemicals made synthetically, and of cement mortar samples treated specially in the laboratory. The procedures used were essentially as follows:

Soil samples.-Thirty-five grams of soil, air dried and prepared as for routine subgrade tests (see Public Roads, September 1931), were placed with 30 grams of distilled water in a crystallizing dish about 2 inches in diameter and $1 \frac{1}{4}$ inches high and were thoroughly mixed four times by stirring at intervals of 1 hour. The apparatus used is shown in figure 3. One hour after the last mixing the solution portion of the mixture was decanted with a pipette and filtered through highgrade filter paper. Six drops of the filtrate were then placed on a glass slide which was then placed in a desiccator. The slide was examined under the microscope when the liquid had evaporated. Photomicrographs were made of the crystal formations either as nuclei or as a mass.

Cement mortar and scale samples.-Samples of concrete, concrete scale, and the like were pulverized in a mortar with a pestle. Twenty-five grams of the resulting powder and 15 grams of distilled water were then placed in a crystallizing dish. The mixture was stirred and the slides were then prepared in the same manner as was done with the soil samples.

Ground water.-Ground water, sampled full-strength in the field, was filtered in the laboratory in the same manner as the soil and scale solutions. Slides were made from the resulting filtrates in the manner just described for the soil filtrates.

Solutions of known chemicals and synthetic alkalis.Solutions of known chemicals and synthetic alkalis were filtered and then examined in the same manner as the other filtrates described above.

Figure 3.-Apparatus Used in the Preparation of Samples for Microscopic Examination.

A - DILUTE SODIUM HYDROXIDE
50 D

C-SODIUM CARBONATE
100 D

B - CONCENTRATED SODIUM HYDROXIDE 50 D

D - SODIUM CHLORIDE 100 D

E-DILUTE SODIUM SULPHATE 100D

F - MODERATE SODIUM SULPHATE 100 D

G - CONCENTRATED SODIUM SULPHATE
64 D

Figure 4.-Typical Sodium Crystals.

TYPICAL CRYSTALS OF WATER-SOLUBLE MATERIALS PHOTOGRAPHED
Figures 4,5 , and 6 show photomicrographs of crystals of the well-known chemicals examined. An attempt was made to include the constituents of common soils and chemicals that various authorities believe may attack concrete. ${ }^{13}$ In figure 4 and those that follow
the magnification is shown in diameters, the letter " D " being used to indicate diameters.

[^5]
B.-CALCIUM CHLORIDE. 135D

C. - CALCIUM SULPHATE CRYSTAL. 1.7 D

D.- CALCIUM SULPHATE. 45 D

E-CALCIUM SULPHATE. 45 D
Figure 5.-Typical Calcium Crystals. D Shows Crystals Formed From a Weak Solution and E Shows Crystals Formed From a Strong Solution.

Additional information on the appearance of typical crystals is furnished by a number of reproductions of photomicrographs by Arthur W. Doubleday ${ }^{14}$ and drawings by Carl G. Hinricks. ${ }^{15}$

Terms such as "strong," "normal," "weak," and "amorphous" were used to designate the degrees of crystal concentration found.
"Strong" signifies a vigorous mass-growth, one crystal occasionally extending throughout the field of vision (figs. $4-\mathrm{B}$ and $5-\mathrm{E}$).
"Normal" was used to signify definitely formed individual crystals distributed generally throughout the field of vision (figs. 4-D and 6-C).
"Weak" was used to designate crystal nuclei of which a relatively few occurred in the field of vision (figs. 5-B and 6-E).
"Amorphous" was used to designate growths similar in appearance to cement mortar (fig. 6-F).

It is interesting to note how the crystals of some chemicals differ in character due to differences in the strengths of the solutions from which the crystals were obtained. This is true of crystals from sodium hydrox-

[^6]ide (figs. $4-\mathrm{A}$ and $4-\mathrm{B}$), from sodium sulphate (figs. $4-\mathrm{E}, 4-\mathrm{F}$, and $4-\mathrm{G}$), and from calcium sulphate (figs. $5-\mathrm{D}$ and $5-\mathrm{E})$. This was not found true for crystals from magnesium sulphate solutions.

The calcium sulphate or gypsum crystal shown in figure $5-\mathrm{C}$, has a maximum lineal dimension of about 2 inches. It was obtained by W. I. Watkins from the Red River valley in Minnesota. Samples of gumbo soil from this location were examined in connection with studies of the warping of concrete pavements. The alkali crystals (fig. 6-C) were made up synthetically to represent crystals that might be expected to be formed by the water at Billings, Mont. The effect of this water on concrete has been extensively studied. ${ }^{16}$ The alkali crystals and those shown in figure 6-E have a typical saw-buck form similar to crystals from dilute sulphate solutions.
The crystals shown in figures $6-\mathrm{F}$ and $6-\mathrm{G}$ are from two samples of the same cement mortar. The sample of figure $6-G$ was subjected to the action of a synthetic alkali solution while that represented by figure $6-\mathrm{F}$ was not subjected to such action. The mortar furnishing the crystals shown in figure 6-G was obtained from that portion of a test sample located about 2 inches above the portion of the sample in contact with the chemical solution. The treatment had progressed for about 2 months.

The hexagonal crystals from the treated mortar (fig. $6-\mathrm{G}$) were probably produced by the same sulphates that produced the saw-buck crystal. The hexagonal form of the sulphate crystal has been found only in cement mortars and concretes, and may be due to the presence of sulphur in the mortar as well as in the penetrating chemical solution.

VARIABLES AFFECTING CRYSTAL GROWTH DISCLOSED BY OBSERVATIONS ON MORTAR SAMPLES IN THE LABORATORY

Field inspections of concrete pavements show that crystal growth is quite erratic, occurring at times on one side of the pavement and not on the other, and even in one portion of a slab and not in the remainder. This suggests the possibility that mixing or curing conditions in addition to characteristics of materials may influence crystal growth. Variables that should be investigated are the amount of water used in the mixture, the manner of curing, and the loss of moisture from the slab by evaporation due to temperature and wind and due to absorption by the subgrade soil.

Some information was obtained on this phase of the problem as a result of observations made on three sets of samples subjected to the action of synthetic alkali solutions in the laboratory. The first set consisted of 8 samples, 2 inches in diameter and $1 \frac{1}{2}$ inches high made with $1: 2$ mortar in the spring of 1932. The second set consisted of 8 samples, 4 inches wide, 6 inches long, and $1 / 2$ inch thick made with $1: 1 \frac{1}{2}$ mortar at the same time as the first set. The third set consisted of 4 samples, 4 inches in diameter and 4 inches high, made with $1: 1 \frac{1}{2}$ mortar in the spring of 1933.

All of these samples were placed on porous sand bases saturated with alkali solution. An impervious seal was placed around each sample to prevent the escape of the alkali solution except by capillary action through the sample.

[^7]

Observations of these samples definitely disclosed that disintegration is caused by solutions drawn upward by capillary action. The disintegration began at the top of samples and progressed downward. It was also disclosed that the rate at which disintegration occurs, if it occurs at all, is considerably affected by slight changes in materials, in the method of mixing and placing, and in the curing. Figure 7 shows variations in the condition of samples of the first set after subjection to the alkali action for approximately 6 weeks.

In studying the durability of concrete, inspections were made of many concrete pavements and some attention was also given to culverts, retaining walls, piers, abutments, and sidewalls. Aside from pavements in good condition, the examinations were confined to areas with conditions as shown in figure 8.

In general, concrete pavements and adjacent subgrades were sampled in the following manner: A loca-
tion representative of conditions was selected after careful visual inspection and the soil was sampled through a hole dug in the shoulder adjacent to the pavement as shown in figure 9. The concrete was sampled above the location of the soil sample by means of hammer and drill. Results of the analyses are shown in figures 10 to 18 inclusive.

Figure 11 shows crystals formed from subgrade soli beneath pavements in New York State.
Figure 13 shows a disintegrated concrete gutter, a scaled pavement adjacent to the gutter, a crystal produced from the mortar of the gutter, and a crystal produced from the subgrade soil beneath the gutter.

Figure 14 shows a miscellaneous group of saw-buck crystals formed from subgrade soils beneath pavements that had scaled and crystals formed from concrete surfaces and structures that had deteriorated.

Figure 7.-Cement Mortar Samples Subjected to Sulphate Action.

A.- MOTTLED SLAB. SERVICEABILITY

NOT REDUCED. AGE 7 YEARS

C.-CONCRETE POWDERED AND

COHESIONLESS.AGE 10 YEARS

Figure 9.-Method of Sampling

B.- PROGRESSIVE SCALE

AGE 9 YEARS

D. - MAP CRACKING AGE 4 YEARS

Figure 10.-Crystals Formed From Deteriorated Structures and the Adjacent Soil and Water. A, From Soil Under Progressively Scaled Section of Road in Virginia. The Fissure Shown in Figure 2 Was in a Scaled Section of This Road. B, From Disintegrated Tile in Damaged Wall in Buffalo, N. Y. C, From a Badly Disintegrated Wall in Pennsylvania. D, From Water Flowing Over Same Wallas in C. E, Amorphus Calcium Carbonate From Soil in Pennsylvania. F, From Soil Under Fissured Pavement Shown in H. G, Salt Crystals From Concrete in Badly Cracked and Checked Road in Alabama. H, Fissured Pavement in Georgia.

Figure 15 shows crystals produced from a scaled section of concrete slab, and also from the saturated sand cushion, the ground water, and the subgrade soil beneath the slab.

Figure 16 shows damage to new and old sections of a retaining wall and sulphate crystals formed from samples from the new wall and from the soil.

Figure 17 shows the hexagonal form of sulphate crystals made from six samples of mortar from different concrete structures. Five of the six structures showed evidences of scaling. The lower right crystal was made from a sample from the culvert head-wall shown.

The upper pictures of figure 18 show salt crystals formed from deteriorated concrete, probably damaged by ice-prevention measures. The lower pictures of figure 18 show strong sulphate crystals made from spring water from a side-hill cut adjactent to concrete that had disintegrated.

LABORATORY TESTS CONVINCING THAT HARMFUL CHEMICALS ARE DEPOSITED BY CAPILLARY ACTION
The foregoing data have been presented to demonstrate the suitability of the microchemical method of analysis for determining the presence of chemicals in

165 D
165 D

Figure 11.--Progressive Scaling of Pavement, and Crystals Formed from Soli, Samples Taken from Beneath the Pavement.

Figure 12.--Typical Crystals from Solls and Mortars. A, From Red River Valley Gumbo in Minnesota. B, and C, From Deteriorated Pavement Slab in Alabama. D, From a Texas Soil Assoriated with Pavement Warping E and F, From California Soils Associated with Pavement Warping.

Figure 13.-Scaling of Concrete Gutter and Adjacent Road Surface. The Left Inset Shows a Crystal (220 D) Formed from the Soil Beneath the Gutter, and the Right Inset Shows a Crystal (70 D) Formed from a Sample of Concrete from the Gutter.

Figure 14.-The Two Upper Rows Show Crystals Formed from Solls Beneath Pavements that mad Scaled. The Lower Row Shows Similar Crystals Formed from Concrete that had Deteriorated, the Source of Fach Crystal Being Indicated.
weak solutions containing soluble constituents of soil, concrete, or other materials.

In studies of soil stabilization it is important that something be known of the character of the films surrounding soil particles. This is indicated by studies made by R. C. Schappler of the Missouri State Highway Department. Referring to clay binders ${ }^{17}$ he states that:

The nature of the ions held on the surface of the colloid, besides affecting the plastic index of the soil, also influences the vapor pressure and the swelling properties of the clay in contact with free water surfaces. The importance of the above facts is apparent since, by taking advantage of the base exchange capacity of the soils a vailable, it is possible in some cases to adjust the properties of soil so as to supply a satisfactory binder. With a given soil it is possible to select a cation for exchange which will result in a small amount of swelling, a relatively large plastic index and a low vapor pressure.

None of our highway surfaces are ideal in composition since they all have voids or interstices filled with unstable materials, air or water being the most common. The distribution of these voids has been shown by Professor Taber's experiments to be of primary importance. A rigid body of porous, homogeneous material will withstand weathering much better than a body having a fissured or laminated composition. The fissured condition produces planes of weakness and the fissures are accentuated by thermal changes, flow of

[^8]

Figure 15.-Crystals Made from Materials Taken from the Same Location on a Concrete Road.

Fifure 16.-- Disintegrated Retaining Walls and Crystals Formed from the Concrete and Adjacent Soil Indicating Presence of Sulphates.
moisture, and concentration of deposited material carried in solution or suspension. Fissured surfaces of materials such as rock, wood, and concrete often have a ridge of foreign material along the opening of each fissure.

All natural waters carry some material in solution or suspension, and the logical sources of the material are the soil and the atmosphere. Ground water with concentrations of chemicals as low as seven parts per million of potash and one-half part per million of phosphoric acid will sustain the growth of wheat, corn, or hay. Ground waters and river waters as a rule have much higher concentrations and, in addition to the potash and phosphoric acid, they may contain crystal-forming chlorides, sulphates, and carbonates. A concrete pavement does not have a root system for collecting water from deep in the soil but subgrades often have high capillarity and are capable of continuously supplying moisture to the bottom of the pavement slab. The amount of moisture entering the bottom of the slab and escaping by evaporation from the top depends upon the permeability of the concrete.

Laboratory tests on mortar samples clearly disclosed how solutions in contact with the bottom of the samples were able to pass up through the mortar, deposit crystals, and thus cause deterioration beginning at the tops of the samples. With the crystal growth, there was a lorizontal expansion of the mortar amounting to as

Figure 17.-Six-sided Crystals from Deteriorated Concrete. The Crystals, with the Exception of the One Illustrated on the Lower Right, Were Made from Samples of Road Surfaces. The Lower Right Crystal Was Made from a Sample of the Culvert Head-wall Shown.
much as several percent in a month and occurring throughout the height of the sample.
Some samples were able to withstand sulphate action indefinitely without showing any signs of distress. In others resistance to the sulphate action varied greatly depending upon the water-cement ratio used in mixing and also upon the methods of curing.
Table 5 is based on the field studies made and shows that of the 98 samples of mortar from sections of pavement that had scaled, 71 contained soluble chemicals; 78 were from sections constructed on subgrade with poor drainage; 88 were on subgrades with high capillarity; and 65 were on subgrades that furnished crystals, of which 39 were of the saw-buck type.
Of 28 samples of mortar from pavements that had not scaled, but 5 contained soluble chemicals, only one of which furnished crystals of the saw-buck type. Twentytwo samples were from sections laid on poorly drained subgrades, 23 were from sections on subgrades with high capillary properties, and 12 were from sections on subgrades furnishing crystals four of which were of the saw-buck type.

Of 43 samples of mortar from pavements located on subgrade soils yielding the sulphate crystal of saw-buck shape, 39 were from pavements that had scaled.

In some instances, the data may seem to indicate quite positively that a definite relation exists between

Table 5.-Classification of pavement and subgrade samples studied

Pavement condition	Subgrade soil										Crystals of soluble chemicals in concrete			
	Drainage conditions			Capillary properties			Crystals of soluble chemicals							
	A Good	B Poor	$\begin{gathered} \text { Ratio } \\ \mathrm{A}: \mathrm{B} \end{gathered}$	C Low	D High	Ratio C:D	E None	FSawhuck type		Ratio $E:(F+G)$	$\begin{gathered} \text { H } \\ \text { None } \end{gathered}$	ISawhuck type		Ratio $\mathrm{H}:(\mathrm{I}+\mathrm{J})$
Good. Scaled.	Number 6 20	$\begin{array}{r} \text { Number } \\ 22 \\ 78 \end{array}$	$\begin{aligned} & 1: 3.7 \\ & 1: 3.9 \end{aligned}$	$\begin{array}{r} \text { Number } \\ 5 \\ 10 \end{array}$	$\begin{array}{r} \text { Number } \\ 23 \\ 88 \end{array}$	$\begin{aligned} & 1: 4.6 \\ & 1: 8.8 \end{aligned}$	Number 16 33	$\begin{array}{r} \text { Number } \\ 4 \\ 39 \end{array}$	$\begin{array}{r} \text { Number } \\ 8 \\ 26 \end{array}$	$\begin{aligned} & 1: 0.8 \\ & 1: 2.0 \end{aligned}$	$\begin{array}{r} \text { Number } \\ 23 \\ 27 \end{array}$	Number 1 21	Number 4 50	$\begin{aligned} & 1: 0.2 \\ & 1: 2.6 \end{aligned}$
Total -	126			126			126				126			

the performance of pavements and the occurrence or the character of soluble chemicals in the subgrade soils under the pavements. However, the pavements studied have been subjected to a number of other influences with individual effects that have not been disclosed by the present investigations.

Crystals from the Red River valley gumbo soil on which pavement slabs had warped slightly were similar to gypsum crystals that were found in a Mississippi soil under warped pavement investigated by the bureau. ${ }^{18}$ Saw-buck crystals, indicative of the presence of sulphates, were found also in Texas and California soils under slabs that had warped. However, it is not yet definitely known whether the presence of the sulphates was due to a coincidence or if they were factors contributing to the warp.

Until the relative effect of such variables as the drainage and physical characteristics of the subgrade has been determined, data on the association of the water-soluble constituents of the subgrade soil and the occurrence of crystal growth in concrete pavements can be considered of value only as assistance to those interested in making similar research. Information is presented for this reason and not because it is in any way conclusive.

CONCLUSIONS PRESENTED

Results of investigations seem to indicate that in studies of the factors affecting the performance of concrete surfaces and structures careful consideration should be given to the drainage of the subgrade, the capillarity of the subgrade soil, and the water-soluble constituents in both the concrete and the contiguous soil.

While much yet remains to be learned regarding the microchemical method of analysis, it seems to be especially promising for use as an indicator of the presence of very small amounts of soluble constituents in cements, mortars, road soils, and similar substances.

[^9]

130 D

Figure 18.-The Upper Row Shows Salt Crystals Made from Samples of Concrete. The Lofer Illustrations Show Sulphate Crystals Made from Spring Water.

PUBLICATION ON BRIDGE PIERS AVAILABLE

Bridge Piers as Channel Obstructions, by David L. Yarnell, senior drainage engineer of the Bureau of Agricultural Engineering, has recently been published by the Department of Agriculture as Technical Bulletin No. 442.

This bulletin presents the results of numerous experiments on the obstruction of bridge piers to the flow of water. It describes test procedures used and develops coefficients for different shapes of piers using
larger piers and a more extensive range of conditions than has hitherto been attempted. The four bridgepier formulas most commonly used in the United States are discussed.

The bulletin contains numerous illustrations, charts, and applications of the bridge-pier formulas to test and theoretical conditions.

Copies of this publication may be purchased from the Superintendent of Documents, Government Printing Office, Washington, D. C., for 10 cents each.

$\begin{aligned} & \text { g } \\ & \text { 政 } \end{aligned}$					
					\circ \forall
			 		¢ 0 0 0 0 -
			 a		
					\％ 0 0
		边	 		
					$\stackrel{8}{8}$
		－			＋
	$\begin{array}{r} 50 \\ \text { 50 } \\ 0.0 \\ 0 \\ \hline \end{array}$		 		¢ ¢ §
			 		10 0 0 0 0
				N ¢ क	
		边		\＃	
		$\begin{aligned} & \vec{\Xi} \\ & \stackrel{0}{\circ} \end{aligned}$	 $=$		\＃
				$\begin{aligned} & \stackrel{\sim}{\infty} \\ & \infty \\ & \infty \end{aligned}$	
		$\begin{aligned} & \dot{0} 0 \\ & 0 \\ & 0 \\ & 0 \\ & 4 \\ & 4 \end{aligned}$		¢	
			్ర心． 		O 0 H \＃ －
			 क \quad i \quad i		

Included in "private"and commercial registrations Included with freight motor vehicles.

Not reported.
Includes 41,150 light trailers licensed without charge.
Trailers prohibited on highways although permitted in cities under city license; tractor-semitrailers regis-

trailers with freight motor van

${ }^{20}$ Includes unknown number of agricultural tractors.
Date of ending registration year changed in 1933 from June 30 to Dec
31, 1933, as follows: Passenger motor vehicles, 208,166; freight vehicles,
185: motorcycles,
22 For registration year ended Oct. 31, 1934. The 1933 registration was for 10-month period.
${ }^{2}$ For 15-month period ended Mar. 31, 1935. Date of ending registration year changed from Dec. 31.

Contract and common-carrier trailers included with freight motor vehicles.
For 6 -month period ended June 30,1934 . Date of ending registration year
${ }^{27}$ Totals of columns for which figures were obtained from only part of the States. Only the grand totals
(line below) give full national figures.
Includes 13,139 registrations issued without charge to public service corporations, which pay a gross receipts
All common carriers, both passenger and freight, are included with these vehicles.
Common
All common carriers, both passenger and freight, are included with these vehicc
Common-carrier busses with passenger registrations, contract carriers with trucks
Includes 23,194 contract carriers, both freight and passenger; common carriers inc
rations.
[Includes registration fees, miscellaneous receipts of motor-vehicle departments, and special taxes imposed on motor carriers] [Compiled from reports of State authorities]

Included with fees of freight motor rehicles.

Not reported.
Includes $\$ 180,000$ in service charges on registrations in branch officec, not searegated by type of vehicle.
Negative item due to deduction of refunds from miscellaneous receipts.
Fees of light trailers only; fees of heavy trailers with those of freight motor vehicies.
or vehicles.
21 Bus fees $\$ 420$.
23 Included with
23 Date of endin
6-month period. $\begin{gathered}24 \\ \text { For registration year ended Oct. } 31,1934 .\end{gathered}$
24 For registrate fees $\$ 399$.
${ }^{25}$ Motorcyce For 15 -month period ended Mar. 31, 1935. Date of ending registration year changed from Dec. 31 .
27
Fees of light delivery trucks with those of
For registration year ended Mar. 31, 1935 .
F
88 For registration year ended Marrier trailers included with those of freight motor vehicles.
${ }^{20}$ Foes of contract and common carrien period ended June 3i), 1934. Date of ending registration year changed from Dec. 31 .
 below) give full national figures.

 tabulated the fees or busses qre included in the total passenger registration fees, except as otherwise noted. York
I Included in total for freight motor vehicles, except where tabulated separately
o Special taxes, sueh as mileaze, ton-mile, and passenger-mile taxes, gross receipts taxes, franchise fees, and
gross receipts taxes o special taxes, such as mileace, on vehicles operated for hire and other motor carriers. Gross receipts taxes
special licence fees. imposed on moter vasses in
TTotal including special taxes paid by motor carriers.
For re istration year ended sept. 30,1934 . 10 (iross receipts taxes paid by common carrier busses included with passenger vehicle fees; registration fees paid he contract carriers of passengers included with freight vehicle fees. carriers included with passenger vehicle fers.
12 Includes $\$ 305,000$ paid in $\$ 1$ assessments on motor vehicle registrations for old age pension fund.
SGILITVdIDINRN dO צaiSlno wals

S92．208．6	$5+78^{\circ} \mathrm{S} 88^{\circ} \mathrm{T}$	$1 \cdot 519$	$86 \pi^{\circ}+1000 \%$	259＇196	$9.200 \cdot 4$	L95．966． 25		611．292＇88	$9 \cdot 1 \varepsilon \varepsilon \cdot \varepsilon \tau$	¢¢t＇892．9\％	$926.850^{\circ} 295$	9 $99.519 \cdot 102$		922．$¢ ¢ 2 \cdot G 85$	STVIOL
$292.52 ¢$	โ61＇95	L．I	91ヶ「とLz	£16．02	£．02		¢58＇92I＇I	2LS．t¢§＇โ	$\varepsilon \cdot 6$ r		nel．ses	620＇628	911－868		
		$\begin{aligned} & 6 \cdot 02 \\ & 8 \cdot 9 \\ & 1 \cdot \pi \end{aligned}$	$\begin{aligned} & 26 \varepsilon \cdot 85 \mathrm{I} \\ & 962 \cdot 26 \\ & 180^{\circ} 6 \mathrm{II} \end{aligned}$		$\begin{aligned} & 8 \cdot 961 \\ & 9.26 \\ & 2.41 \end{aligned}$	Ont 1 OESO．I TMO＇IES＇I 899＇95t		$962^{\prime} 6 \xi z^{\prime} 1$ $616^{\prime} 990^{\circ} \mathrm{C}$ $\$ 28$＇ 1 โร	$\begin{aligned} & 8 \cdot \operatorname{sig} G \\ & 8 . \pi i z \\ & \xi \cdot 62 \end{aligned}$	$+8 z^{2} 25$ 098 ＊G65		269．619＇2 126 $8 \mathrm{EL} \mathrm{\prime} \mathrm{C}$		 	
			$\begin{aligned} & 662^{\prime} 0 \leq 1 \\ & 121^{\prime} 681 \\ & 2 \pi^{\prime} .89 \end{aligned}$	64\％ 089	$\begin{aligned} & 9 \cdot[2 \\ & 2 \cdot L L \\ & 1 \cdot L I \end{aligned}$	£02＇ス1て＇！ 9LI．＇RITI 	$226 \cdot 122$ $598 \cdot \frac{1}{2}$ 019＇01	S01． 095 ． 5 SE\｛＇HIS＇T 	$\begin{aligned} & \pi \cdot 901 \\ & 0 \cdot 59{ }^{\circ} \\ & 0 \cdot 9 \pi \end{aligned}$	$\begin{aligned} & 125.002 \\ & 5+6.69 \pi \\ & 510.42 \end{aligned}$					
			$000^{\prime} \mathrm{GT}$ 891.859 $068 \cdot 21 \%$ 068 ＇ 214	$565^{\circ} \mathrm{C}$	$\begin{aligned} & \pi \div 62 \\ & 0 . \leftarrow 1 K \\ & i \cdot G G \end{aligned}$			$\begin{aligned} & 2 L\{.90 G \\ & \xi_{10} 0^{\circ} \mathrm{CII} \cdot \mathrm{G} \\ & +6 \mathrm{I}^{\circ} 98 \mathrm{~S}^{\circ} \mathrm{l} \end{aligned}$	$\begin{aligned} & 6 \cdot 8 L \Sigma \\ & 1 \cdot L I T \cdot I \\ & E \cdot 26 T \end{aligned}$			$350^{\circ} 55^{\prime \prime}$ ．Σ $995{ }^{4}+\mathrm{H} 51.21$ $676^{\circ} 816^{\prime} \pi$			
tors．0sin 002.05	$\begin{aligned} & 092.65 \\ & 118.5 \AA \end{aligned}$	¢ 0.1ε	$\begin{aligned} & 988^{\circ} 212 \\ & 022^{\circ} \mathrm{Lz} \end{aligned}$	$\begin{aligned} & 181.215 \\ & 025^{\prime} .81 \end{aligned}$			2ाट＇ 18 It 0×9.475 $0+1.62$ ont 62		$\begin{aligned} & 1 \cdot 9 G G \\ & 0.142 \\ & 5.02 \end{aligned}$	$\begin{aligned} & 941^{\circ} \mathrm{Ogr} \\ & 996^{\circ} \mathrm{LK} \end{aligned}$		H 2tit＇996＇ 2 $500^{\prime} 896$			
	$\begin{aligned} & 2 n_{n} \cdot 9 \\ & 588 \\ & 69 \varepsilon 6 \end{aligned}$	$2 \cdot 1$	$\begin{aligned} & 918^{\circ} 9 \\ & 14 \tau^{\prime} 298 \end{aligned}$	$\begin{aligned} & 921^{\prime} \mathrm{Z} \\ & 6 \tau 8^{\circ} \mathrm{Or} \end{aligned}$	$\begin{aligned} & 1 \cdot 78 \\ & 5.56 \\ & 5.62 \end{aligned}$		$\begin{aligned} & \begin{array}{l} 150^{\circ} 2^{2+h} \\ 065 \\ \hline 85^{\circ} \cdot 98 \end{array} \end{aligned}$						280° ． $45^{2} 5^{\prime}$ ． $065^{\circ} 2 \pi 2$	 	
	 		$\begin{aligned} & 02 \pi \cdot \varepsilon \\ & 960 \cdot 5 \mathrm{~K} 2 \\ & 692^{\prime} .198 \end{aligned}$	008^{\prime} 侮 $94 \varepsilon .8 \pi$ OSt ${ }^{+4+9}$		 S1£＇ 604 $689.82\}$	$\begin{aligned} & \begin{array}{l} 180.981 \\ 120.26 \\ 1259^{\circ} 981 \end{array} \end{aligned}$					OSI． 615% 	SS2．6६s． Cot 		
216． 4 R S09＇058	$\begin{aligned} & 2 \tau 6 \cdot \tau 6 \tau \\ & \text { cot'\$ } k \end{aligned}$	9.85			$\begin{aligned} & \pi_{0} \cdot \underline{\xi_{I}} \\ & 0 . \xi_{\pi} \\ & z \cdot \xi_{I} \end{aligned}$	で5．9れて＇§ 946.295 $109 \cdot G 15$						 	691．9／9．I $6 L$ ． 156	$229^{\circ} \mathrm{G9}$ \＃$^{\circ} \mathrm{OI}$ $8+9^{\circ} 9+8^{\circ}$ C 650＇民1T＇ε	
$000^{\circ} \mathrm{nz}$ ITE 21 69 © 95	099＇£	$\underline{\pi^{\circ}}$	$\begin{aligned} & 2 \pi \varepsilon^{\prime \prime}+1 \varepsilon z \\ & 118^{\circ} 0 \pi \end{aligned}$	$806 \times$ ¢	$\begin{aligned} & 2.01 \\ & 1.66 \\ & 0.607 \end{aligned}$	TET CLS 981． 86 21く＇sth＇T		ISR＇ ESMn_{n} $160^{\prime} / 289$ $40^{\circ}+25^{2}$ C				Sos＇szl $6 T\left\{{ }^{\circ} 008{ }^{\prime} \varepsilon\right.$ 		817． 269 L88． 606^{\prime}＇ 2 18\％＇ヶ 76 ＇Σ	
985 ＇姩 999＇〔६โ	$\begin{aligned} & 660^{\circ} 99 \\ & \text { Hen } 90 \\ & \text { mtro } 0^{\prime} 89 \end{aligned}$	$\begin{aligned} & 2 . \\ & 0 \cdot r_{3} \\ & 9 \cdot{ }_{2} \end{aligned}$		HLS．S			62I＇カ 685＇ 198 018^{\prime} 〔68	$206^{\prime} 180^{\prime} 5$ $021 I^{\prime 256} 6^{\circ} \mathrm{Z}$ $088^{\circ} 028^{\circ} \mathrm{C}$	$\begin{aligned} & \pi \cdot 0 G \\ & i=86 I \\ & 2 \cdot 69 z \end{aligned}$	182＇995＊ 1 £ $89^{\circ} \mathrm{OG}$ 力					
	$\begin{aligned} & 86 \overbrace{\prime}^{\prime 28} \\ & 16 \mathrm{I}^{\prime}+\hbar 4 \end{aligned}$	$\begin{aligned} & g \cdot 1 \pi \\ & 9 \cdot 92 \end{aligned}$		29tios	$\begin{aligned} & 6 \cdot 6 \mathrm{6II} \\ & 8.9 \mathrm{l}_{1} \\ & 2.02 \end{aligned}$		$\begin{aligned} & 8+2.26 I \\ & 008.4120^{\circ} I \\ & 189^{\prime} 2 S^{\prime} \end{aligned}$	596.626 009.2 Th＇ 5 158．+760 ＇ 1	$\begin{aligned} & 10016 \\ & \begin{array}{l} 20+\pi z \\ \pi \cdot 1 反 \end{array} \end{aligned}$	$\begin{aligned} & 525^{\circ} 9 g \varepsilon^{\prime} I \\ & 00 t^{\prime} 18 \end{aligned}$			 \＃ $188^{\circ} 289^{\prime}$ ！	9il＇sot＇t	
		$\begin{aligned} & 1 \cdot 1 \\ & 8: 9 \\ & 0^{\circ} \cdot 9 \end{aligned}$		$\begin{aligned} & 9+9^{\prime} 901 \\ & 020^{\circ} 11 \end{aligned}$	$\begin{aligned} & \varepsilon \cdot 12 \\ & 1.101 \\ & 6.82 \end{aligned}$	LLS ． 8 LT Scs．4ET $001^{\prime} 860^{\prime}$ โ		C08＇G16 $69 \pi^{\prime 2} 219$ $898^{\circ} 029^{\prime} I$	$\begin{aligned} & \xi \cdot G_{1} \\ & \pi \cdot L_{1} \\ & 8 \cdot 9 l \end{aligned}$				$\begin{aligned} & 609^{\circ} 682 \\ & 561^{\circ} 281 \\ & 6 \text { r }^{\circ} 08 \Sigma^{\prime} 1 \end{aligned}$		
sLE． $8 L$ 2．2 ${ }^{\circ} 0$ 亿！	$\begin{aligned} & 981 \cdot G G \\ & 9 L 8 \cdot 8 \end{aligned}$	$\begin{aligned} & 2 \cdot 1 I \\ & \xi \cdot I \\ & 0 \cdot \pi \end{aligned}$					$\pi T S \cdot 9 \pi$ oest is 	$86 \varepsilon^{\prime}$ 〔6\％＇！ 2nc．9491 －10＇0\＆ร＇と		585．961 610.082 029 ＇切反	＋ $6 \Sigma^{\circ}+100 \cdot \mathrm{~s}$ 0\＆6＇021＇H		$602^{\prime 2} 205^{\circ} \mathrm{I}$ 198゙したて		
＋ $795 \cdot 811$ §ะ0．6ヶट				$\begin{aligned} & 156 \cdot \cdot 12 \\ & 000^{\circ} \varepsilon \end{aligned}$			806.12 H ＇ 1 $289^{\circ} 200^{\circ} \mathrm{C}$ $69 L^{\circ}$ TโT	$+0^{\circ} 2 \angle 8^{\circ} \varepsilon$ 2LS＇066＇ε 6 6＾＇${ }^{\circ} 09$	$\begin{aligned} & 6.211 \\ & \varepsilon .0 .01 \\ & 5.865 \end{aligned}$			 $981.6 \underbrace{\circ} \mathrm{C}$			
		$9 \cdot \pi$		H6\＆．9 280 \％				HLL＇012＇z 912 ＇+98 〔己ら＇8\＆5	$\begin{aligned} & 0.61 \% \\ & 9 \cdot 621 \\ & 9 \cdot 5 \pi \end{aligned}$				$\begin{aligned} & 5+L^{\prime} 95 s^{\circ} 2 \\ & 009^{\circ} 95 I^{\circ} I \\ & 169^{\prime} I 9 \pi \end{aligned}$	$265 \cdot 5+0 \cdot \mathrm{~s}$ 018.69 ＇ 2 995．LL8	
＋1L＇z9 162 ＇6 s．ls＇ 162	$\begin{aligned} & 966 \\ & 09 £ \cdot \tau \end{aligned}$	$\begin{aligned} & \xi \cdot \zeta \\ & \varepsilon \cdot \hbar \varepsilon \end{aligned}$	を1z＇gz8	L29＇9			$\begin{aligned} & 462.119 \\ & 169 \cdot 28 \\ & 1 \pi l^{2} .897 \end{aligned}$	 	$\begin{aligned} & 5 \cdot \pi i \\ & 6: 2 \pi z \\ & 1:+99 \end{aligned}$	$166^{\circ} 829^{\circ} 1$ $000^{\circ} g l \pi$		 $52 \pi^{\circ} 616^{\circ} 0$ or			
262．997 $9 \leqslant 1.6$ $680^{\prime} 66\{$		$\begin{aligned} & 8 \cdot 6 \\ & S \cdot S_{T} \end{aligned}$	268＇8ร5 	$\begin{aligned} & 616^{\prime} 85 \mathrm{r} \\ & 99 \pi^{\prime} 2 \varepsilon \$ \end{aligned}$	$\begin{aligned} & 0.06 \\ & \pi \cdot 2 \pi \\ & 0 . \hbar z \tau \end{aligned}$	$\begin{aligned} & S_{I L} L^{\circ}\{16 \\ & 250^{\circ} 018 \\ & \xi I S \cdot G \varepsilon Z^{\prime} \tau \end{aligned}$	9ど「种9 292＇05s \＄						000 ＇rictr 211＇8民と＇I 126＇621＇ 2		sesury euozy eurequy exity
		วชอบ！\％			28อว！	$\begin{gathered} \substack{\text { spund } \\ \text { supu } \\ \text { suctiqnd } \\ \text { SE6I }} \end{gathered}$			28อว！ W			${ }^{350}{ }^{182}$	$\begin{gathered} \text { (pung SE6I) } \\ \text { te6t '8! 2unf } \\ 10 \text { jכV } \end{gathered}$		alvis
		NOHLTK4ISNOJ yos agnoyddy			NOLLOM4．SNOD צacnn				acıajawoo				SLNawnoilyoddy		

気

 Nま納

 0%
00
0
Bin
0

 な్రై
 ～～～ 둔 กัロ 웅

势品
 Min Mz
总

$\begin{gathered} \text { Public Works } \\ \text { Funds } \end{gathered}$	$\begin{gathered} 1935 \\ \text { Public Works } \\ \text { Funds } \end{gathered}$

 $\stackrel{n}{2}$
 훙 ＂

 \rightarrow
．
aLvis

Texasse．．．
Utah．．．．
Vermont

 West Virginia
Wisconsin
Wyoming
 TOTALS

PUBLICATIONS of the BUREAU OF PUBLIC ROADS

Any of the following publications may be purchased from the Superintendent of Documents, Government Printing Office, Washington, D. C. As his office is not connected with the Department and as the Department does not sell publications, please send no remittance to the United States Department of Agriculture.

ANNUAL REPORTS

Report of the Chief of the Bureau of Public Roads, 1924. 5 cents.
Report of the Chief of the Bureau of Public Roads, 1927. 5 cents.
Report of the Chief of the Bureau of Public Roads, 1928. 5 cents.
Report of the Chief of the Bureau of Public Roads, 1929. 10 cents.
Report of the Chief of the Bureau of Public Roads, 1931. 10 cents.
Report of the Chief of the Bureau of Public Roads, 1932. 10 cents.
Report of the Chief of the Bureau of Public Roads, 1933. Report of the Chief of the Bureau of Public Roads, 1934.

DEPARTMENT BULLETINS

No. 136D . . Highway Bonds. 20 cents.
No. 347D . . Methods for the Determination of the Physical Properties of Road-Building Rock. 10 cents.
No. 583D . . Reports on Experimental Convict Road Camp, Fulton County, Ga. 25 cents.
No. 1279D . . Rural Highway Mileage, Income, and Expenditures, 1921 and 1922.

TECHNICAL BULLETINS

No. 55 T . . Highway Bridge Surveys. 20 cents.
No. 265T . . Electrical Equipment on Movable Bridges. 35 cents.

MISCELLANEOUS CIRCULARS

No. 62MC . . Standards Governing Plans, Specifications, Contract Forms, and Estimates for FederalAid Highway Projects. 5 cents.

MISCELLANEOUS PUBLICATIONS

No. 76MP . . The results of Physical Tests of Road-Building Rock. 25 cents.
Federal Legislation and Regulations Relating to Highway Construction. 10 cents.
Supplement No. 1 to Federal Legislation and Regulations Relating to Highway Construction.
No. 191 . . . Roadside Improvement. 10 cents.
The Taxation of Motor Vehicles in 1932. 35 cents.

REPRINT FROM PUBLIC ROADS

Reports on Subgrade Soil Studies. 40 cents.

Single copies of the following publications may be obtained from the Bureau of Public Roads upon request. They cannot be purchased from the Superintendent of Documents.

SEPARATE REPRINT FROM THE YEARBOOK

No. 1036Y . . Road Work on Farm Outlets Needs Skill and Right Equipment.

TRANSPORTATION SURVEY REPORTS

Report of a Survey of Transportation on the State Highway System of Ohio (1927).
Report of a Survey of Transportation on the State Highways of Vermont (1927).
Report of a Survey of Transportation on the State Highways of New Hampshire (1927).
Report of a Plan of Highway Improvement in the Regional Area of Cleveland, Ohio (1928).
Report of a Survey of Transportation on the State Highways of Pennsylvania (1928).
Report of a Survey of Traffic on the Federal-Aid Highway Systems of Eleven Western States (1930).

A complete list of the publications of the Bureau of Public Roads, classified according to subject and including the more important articles in PUBLIC ROADS, may be obtained upon request addressed to the U.S. Bureau of Public Roads, Willard Building, Washington, D. C.

[^0]: IN YOSEMITE NATIONAL PARK

[^1]: The material under this heading is summarized from the text book The Soil Solution, by Frank K. Cameron, U. S. Bureau of Chemistry and Soils. The Chemical tion, hy Frank K. Cameron, U. S. Bureau of Chemistry and soils. The Themical
 Publishing Co., Easton, Pa., 1911, and Williams and Norgate, 14 Henrietta Street, Publishing Co., Easton, Pa., 1911, a
 Covent Gardens, London, England.

[^2]: ${ }^{2}$ From the text book How Plants Grow by Samuel W. Johnson, Orange Judd Company, New York, 1908, page 171.
 ${ }^{3}$ See The Feeding Power of Plants by Walter Thomas, Plant Physiology, vol. 5, No. 4, October 1930.
 No. The text book Soils by Eugene Woldemar Bilgard, The MacMillan Co., New York, 1910, and The MacMillan Co., Ltd., London.
 \$ Die Landwirtschaftlichen Versuchs Stationen, vol. V (1863), p. 207.
 6 Dio Landwirtschaftlichen Versuchs Stationen, vol. VI (1864), p. 411.
 ${ }^{7}$ Proceedings of the 25th Annual Meeting of the Society for the Promotion of Agricultural Science (1904), p. 171-190.

[^3]: ${ }^{8}$ Functions of Steel Reinforcement in Concrete Pavements and Pavement Bases, by C. A. Hogentogler and E. A. Willis. Proceedings Eleventh Annual Meeting. Highway Research Board, 1931, page 299
 The Durability of Concrete by C. H. Scholer. Proceedings Tenth Annual Meeting, Highway Research Board, 1930, page 132.
 ${ }^{10}$ The Mechanism of Corrosion of Portland Cement Concrete with Special Reference to the Role of Crystal Pressure, by F. O. Anderegg, 1929. Proc. A. C. I., vol. 25, 1929.
 it Frost Heaving, by Stephen Taber. The Journal of Geology, vol. 37, No. 5,
 July-August 1929, p. 440.

[^4]: ${ }^{12}$ Sea Applied Colloid Chemistry, by Wilder D. Bancroft. MeGraw-Hill Book Co., Ine., New York and London, 1932.

[^5]: ${ }^{13}$ Disintegration of Concrete, report of committee no. 803, by G. M. Williams, Journal A. C. I., vol. 1, no. 1, November 1929.
 The Action of Sulphate Water on Concrete, by D. G. Miller, Public Roads, vol. 8, no. 9, November 1927
 The Causes of Concrete Destruction on Reconditioned Soils, by C. H. Gessner, Proceedings First International Congress of Soil Science, 1927, pp. 663-685.

[^6]: 14 Photomicrographs of Crystallizable Salts, by Arthur W. Doubleday, 1916.
 Research Pubishing Coid Boston, Mass.
 10 Miero-chemical Analysis, by Carl 1 . Hinricks.

[^7]: ${ }^{16}$ Bulletin No. 81 of Montana Agricultural College Experiment Station.

[^8]: ${ }^{17}$ Stahilizing Sand and Gravel Surfaces, by R. C. Schappler, an unpublished paper presented at the Kansas Highway Conference, Manhattan, Kans., Feb. 5, 1934.

[^9]: 13 See The Soil Profile and the Subgrade Survey by W. I. Watkins and Henry Aaron, Purlic Roads, vol. 12, no. 7, September 1931.

