A JOURNAL OF HIGHWAY RESEARCH
UNITED STATES DEPARTMENT OF AGRICULTURE bureau of puble roads

DETERMINING DEPTH TO ROCK BY MEASURING EARTH RESISTIVITY

PUBLIC ROADS
 \rightarrow A Journal of Highway Research

Issued by the

UNITED STATES DEPARTMENT OF AGRICULTURE BUREAU OF PUBLIC ROADS

Volume 16, No. 4
June 1935
The reports of research published in this magazine are necessarily qualified by the conditions of the tests from which the data are obtained. Whenever it is deemed possible to do so, generalizations are drawn from the results of the tests; and, unless this is done, the conclusions formulated must be considered as specifically pertinent only to described conditions.

In This Issue

> Subsurface Exploration by Earth Resistivity and Seismic Methods Page

Extracts from Report on Florida Traffic Survey 68

THE BUREAU OF PUBLIC ROADS Willard Building, Washington, D. C. REGIONAL HEADQUARTERS Mark Sheldon Building, San Francisco, Calif.

DISTRICT OFFICES

DISTRICT No. 1. Oregon, Washington, and Montana.
Post Office Building, Portland, Oreg
DISTRICT No. 2. California, Arizona, and Nevada.
Mark Sheldon Building, 461 Market St., San Francisco, Calif
DISTRICT No. 3. Colorado, New Mexico, and Wyoming.
237 Custom House, Nineteenth and Stout Sts.. Denver, Colo.
DISTRICT No. 4. Minnesota, North Dakota, South Dakota, and Wisconsin.
907 Post Office Building, St. Paul, Minn.
DISTRICT No. 5. Iowa, Kansas, Missouri, and Nebraska.
Saunders-Kennedy Building, Omaha, Nebr.
DISTRICT No. 6. Arkansas, Louisiana, Oklahoma, and Texas.
Room 502, United States Courthouse, Fort Worth, Tex.

DISTRICT No. 7. Illinois, Indiana, Kentucky, and Michigan.
South Chicago Post Office Building. Chicago, III.
DISTRICT No. 8. Alabama, Georgia, Florida, Mississippi, South Carolina, and Tennessee.

Post Office Building, Montgomery, Ala.
DISTRICT No. 9. Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, and Vermont.

505 Post Office Building, Albany, N. Y.
DISTRICT No. 10. Delaware, Maryland, North Carolina, Ohio, Pennsylvania, Virginia, and West Virginia.

Willard Building, Washington, D. C.
DISTRICT No. 11. Alaska.
Room 419, Federal and Territorial Building, Juneau, Alaska.
DISTRICT No. 12. Idaho and Utah.

Federal Building, Ogden, Utah.

Because of the necessarily limited edition of this publication it is impossible to distribute it free to any person or institutions other than State and county officials actually engaged in planning or constructing public highways, instructors in highway engineering, and periodicals upon an exchange basis. At the present time additions to the free mailing list can be made only as vacancies occur. Those desiring to obtain Public Roads can do so by sending $\$ 1$ per year (foreign subscription $\$ 1.50$), or 10 cents per single copy, to the Superintendent of Documents, United States Government Printing Office, Washington, D. C.

SUBSURFACE EXPLORATION BY EARTH RESISTIVITY AND SEISMIC METHODS

BY THE DIVISION OF TESTS, U. S. BUREAU OF PUBLIC ROADS

Reported by E. R. SHEPARD, Research Engineer

DURING the past 2 years the Bureau of Public Roads has experimented with two geophysical methods of subsurface exploration, with the expectation that they will prove of value in foundation exploration, in the location of gravel deposits and other surfacing material, and even as an aid to classifying excavation in highway construction.

One of these methods of test-the electrical resistivity method-has been used for some years with varying degrees of success by several State highway organizations in connection with grading operations, fills through swamps, and for determining the location and extent of gravel deposits and quarry material.

The other method, known as the "seismic method", although used extensively for locating salt domes and other oil-bearing structures and in certain types of mining operations, has not heretofore been applied to shallow determinations. However, tests by the bureau over a period of several months on known formations around Washington indicate that, for determining the presence and location of consolidated rock, this method is more reliable and accurate and in other ways superior to the resistivity method.

These and other scientific methods of subsurface exploration are not new to the geophysicist. For many years the magnetometer has been used in the location of mineral deposits. The Eötvös torsion balance, a gravimetric instrument, was introduced into this country from Germany about 1922, and through its use many salt domes rich in oil and sulphur were discovered in the Gulf Coast region.

More recently the seismic method of exploration has come into use and is now the most popular and widely used of all geophysical methods for deep exploration work. Various electrical methods of exploration are also in use; of these the resistivity method is finding much favor where relatively shallow determinations are involved.

UNDERGROUND CONDITIONS INDICATED BY ELECTRICAL RESISTIVITY

In using the resistivity method of exploration the most common procedure is to introduce an electric current of known strength into the earth through suitably placed electrodes and by means of intermediate electrodes to measure the average resistivity of a volume of earth comparable in dimensions to the electrode spacing. By progressively increasing the electrode spacing and repeating the measurements a curve is established which shows the relation of resistivity to depth.

Calculated values of resistivity are plotted as ordinates and corresponding values of electrode spacing as abscissas. An upward trend of the curve indicates increasing resistivity with depth and suggests the presence of rock, gravel, or some other high-resistance material, while a flat or descending curve is indicative of soil or clay. An abrupt change in curvature indicates a change in material at a depth approximately equal to the electrode spacing at which the change occurs.

Studies of this kind have been reported by the Bureau of Mines ($4,5,6,9$), ${ }^{1}$ by Schappler and Farnham (8) of the Missouri State Highway Commission, by Kurtenacher $(2,3)$ of the Wisconsin Highway Commission, by Wilcox (12) of the Minnesota Department of Highways, and by numerous other investigators. Schappler and Farnham were successful in preclassifying excavation materials on highway projects but had difficulty in interpreting bridge sounding data due to the fact that coarse sand and gravel overlying the bedrock possessed a resistivity not markedly different from that of the solid rock. Kurtenacher reported success in the determination of the thickness of stripping in quarries, the location of buried gravel deposits, and the determination of depths to solid bottom in marshes and swamps. Wilcox has confined his work largely to locating shallow deposits of sand and gravel for road surfacing.

The following quotation from the report of Schappler and Farnham shows that in 1931, without the aid of resistivity measurements, an error of nearly 13 percent was made in estimating the amount of solid-rock excavation on a number of highway jobs, while in 1932, on a like number of similar jobs where estimates were based on resistivity tests, the error was about 1 percent. This comparison suggests the possibility of greatly improving the accuracy of estimates of grading costs on highway projects through the use of this or other methods of preliminary exploration.

Up to date final estimates have been filed on 25 projects completed in 1932, on which geologists had made reports and preclassified the excavation. The projects were matched as nearly as possible with projects completed in 1931. On the basis of this comparison it was found that the present scheme of preclassifying predicted that 8.32 percent of all the excavation quantities would be solid rock, whereas final estimates consider 9.36 percent of the excavation as solid rock-an overrun of 1.04 percent. In 1931 preliminary classification predicted 21.79 percent solid rock whereas final classification gave 8.87 percent or an underrun of 12.92 percent. Limiting this comparison to 15 projects typical of the more difficult area-the Ozark regionin 1932 final classification overran the predictions 3.13 percent, while in 1931 there occurred an underrun of 24.44 percent. Although this analysis is far from complete, it does express the general results of this method of preclassifying excavation materials. Predictions are more nearly accurate than formerly and instead of the tendency to greatly overclassify the solid rock the present trend is toward slightly underclassifying.

PRINCIPLES INVOLVED IN RESISTIVITY MEASUREMENTS DISCUSSED

The principle involved in making earth-resistivity measurements is illustrated in figure 1. An electric current, I, is caused to flow through the earth between two electrodes, C_{1} and C_{2}. Measurement is then made of the potential drop, E, between two intermediate electrodes, P_{1} and P_{2}, placed in line with C_{1} and C_{2} and dividing the distance $\mathrm{C}_{1} \mathrm{C}_{2}$ into 3 equal parts, A, termed the electrode spacing.
In 1915 Wenner (11) showed that with this 4 -electrode arrangement the specific resistivity of a homogeneous medium is given by the equation,

[^0]
where A is expressed in centimeters. The specific resistivity, ρ, is expressed in ohm-centimeters and denotes the resistance in ohms between parallel faces of a centimeter cube of the material. Where A is measured in feet we may write,
\[

$$
\begin{equation*}
\rho=191 A \frac{E}{I} \tag{2}
\end{equation*}
$$

\]

If the medium is not homogeneous the indicated resistivity, ρ, represents an average specific resistivity of the material bounded by the equipotential surfaces $P_{1} N_{1}$ and $P_{2} N_{2}$ but its value is determined largely by the properties of the material near the surface and only slightly by the material at a relatively great depth. The experience of numerous investigators is rather consistent in showing that for practical depth determinations the materials within a depth equal to the electrode spacing, A, largely determine the value of ρ, and that materials at a depth greater than A have a negligible influence on the value of ρ.

Let us assume in figure 2 that a homogeneous soil of resistivity ρ_{1} exists to a depth H and that below the horizon H a material of greater resistivity ρ_{2} exists. If, under this condition, earth resistivity measurements are made with different values of electrode spacing, A, as indicated in figure 1 , and a curve is plotted showing the relation of ρ to A, as in figure 2 , we find that for values of A less than H the curve $a b$ is approximately flat, but when A begins to exceed H the influence of the deeper material begins to affect the value ρ and the curve assumes an upward trend as at b. Rather abrupt changes of this kind are often obtained in practice and afford a means of roughly determining the depth to a change in material. This is a simple empirical rule, but one for which there is no theoretical basis.

Tagg (10) and others have shown that from theoretical considerations the curve in figure 2 should assume some such form as a'bed with no sharp breaks or inflections. In practice, however, and especially on shallow work, rather sharp inflections are frequently obtained where materials of different resistivities are concerned, and these inflections afford a simple and satisfactory means of ascertaining the approximate depth where the change in material occurs.

Perhaps a more common occurrence is a U-shaped curve in which the electrode spacing at the low point

is taken as the depth to a change in material. The descending branch of the curve is characteristic of many soils in which a decreasing resistivity occurs with increase in depth. Under such conditions an underlying strata of rock or gravel is indicated quite accurately by the low point of the curve.

VARIOUS TYPES OF INSTRUMENTS USED FOR RESISTIVITY MEASUREMENTS

Three types of instruments are being used for earth resistivity measurements, and each has its advantages and disadvantages. As the men who are often called upon to do this class of work are more likely to have had technical training in geology or civil engineering than in electrical science, it will be appropriate to discuss the several methods and instruments currently employed, in order that the most suitable arrangement of apparatus may be selected to meet any particular set of requirements. Before discussing the instruments themselves, it will be well to consider certain inherent difficulties that are encountered in earth-resistivity measurements.

The measurements indicated in figure 1 are not as simple as they are here made to appear. Several sources of stray currents and potentials are likely to exist and must either be eliminated or compensated for if an accurate determination of E, the potential drop in the earth between P_{1} and P_{2}, resulting from the current I, is to be obtained. These sources are, (1) self potentials originating in local mineral deposits; (2) natural earth currents of large scope but not often of troublesome magnitude; (3) local stray currents originating from street-railway systems, grounded power circuits, or mine railways. These are usually variable in character and are especially troublesome near large city-railway systems or interurban electric lines. Other sources are, (4) galvanic and polarization potentials between electrodes P_{1} and $\mathrm{P}_{2} ;(5)$ galvanic potentials originating from cinders, coke, or filled ground containing bits of metal or other foreign materials.

In addition to overcoming these stray-current effects, it is necessary to avoid taking any current from the electrodes P_{1} and P_{2} while making a measurement of E, as a flow of current through these electrodes will distort or upset the true potential difference between them
resulting from the flow of the current I. This latter condition is usually met by employing a potentiometer, which draws no current from the potential source being measured, or a voltmeter or galvanometer of extremely high resistance that draws a negligible current from the electrodes. To overcome the stray-current effects it is customary to use alternating current or its equiva-lent-a periodically reversed current-as stray-current effects are essentially unidirectional and are not recorded on the instruments that measure the alternating or periodic current.

In his original paper, Wenner proposed the use of alternating current supplied from a transformer. A vibration galvanometer was so placed in the circuit as to detect a balance between the voltage at the electrodes P_{1} and P_{2} and that on a measured length of slide wire supplied from the secondary side of the transformer. A balance was indicated when no current flowed through the galvanometer. Such apparatus is obviously not suited to rapid field measurements.

The first practical application of the four-electrode method of measuring earth resistivity was made by McCollum (7) of the Bureau of Standards in a study of stray-current electrolysis on underground pipes and cable systems. The McCollum earth-current meter embodies a dry battery, a milliameter, a double commutator, and a voltmeter having a resistance of $1,000,-$ 000 ohms per volt. Current, after passing from the battery through the milliameter, is commutated at a frequency of about 30 cycles per second and then conducted to the two current electrodes. This periodic current establishes a potential difference of the same frequency between two potential electrodes. Leads from the potential electrodes are carried to a second commutator mounted on the same shaft with the current commutator and in phase with it. The effect of this second commutator is to rectify the periodic potential, after which it is measured on the direct-current, high-resistance voltmeter. It will readily be seen that any direct stray current which may exist in the earth should not affect the direct-current voltmeter because of having first passed through the potential commutator.

A set of four electrodes mounted on a frame as a unit, with a 3 -inch interval, is commonly used with the earthcurrent meter in the study of stray-current electrolysis. Although this instrument is extensively used on electrolysis work, it apparently has not found application in geophysical exploration. There is no reason, however, why it should not be used for this purpose and it might prove particularly suited to shallow determinations.

Gish (1) of the Department of Terrestrial Magnetism and Atmospheric Electricity of the Carnegie Institute modified the McCollum earth-current meter and measured the resistivity of large volumes of earth. His instrument embodied a larger and more accurate commutator than that employed by McCollum and he substituted a potentiometer for the high-resistance voltmeter. He also introduced a condenser into the potential circuit to block the passage of galvanic and stray direct currents from the ground to the potentiometer, and reduced leakage between the current and the potential circuits by the addition of a guard ring. This type of apparatus has been used quite extensively for geophysical explorations during recent years.

Another instrument, known commercially as the "megger" (4), was designed primarily to measure the resistance of driven and buried grounds for power sta-

Figure 3.-Circuit Diagram for Earth Resistivity Measurements.
tions and electric circuits, but is also used successfully under certain favorable conditions for subsurface exploration. It embodies a hand-driven, direct-current generator, a double commutator on the same shaft with the generator, and a single indicating instrument known as an "ohmmeter." By a special arrangement of the coils and magnetic circuit this meter is made to regist e the ratio $\frac{E}{I}$ and thus indicates ohms directly. The fact that this instrument must, of necessity, draw current from the potential electrodes is distinctly a disadvantage. The error is not serious in determinations involving moderate depths if the contact resistance of the potential electrodes is kept reasonably low. Sometimes it is necessary to use water and rather long potential stakes. If accurate values of resistivity are desired, it is necessary to measure the resistance of each potential stake to ground and to compute certain correction factors based on these measured resistances.

Eve, Keys, and Lee (4) of the Bureau of Mines have shown that comparative values of resistivity as obtained with the megger are often subject to the same interpretations as are similar data obtained by more precise methods. An improved megger, designed especially for geophysical work, and embodying a potentiometer, is said to be available now.

METHOD DEVISED FOR MAKING RESISTIVITY DETERMINATIONS

 RAPIDLYAmong the several methods of test used by the Bureau of Mines (9) is that embodying a simple directcurrent circuit with a reversing switch instead of a commutator. Nonpolarizable potential electrodes are also substituted for the conventional iron stakes. Lee (5) also introduced a center potential electrode with which it is possible to determine underground slopes by making independent measurements on either side of the center. This type of apparatus is the one adopted and used by the Bureau of Public Roads.

Its essential features are shown in figures 3 and 4. Special potential electrodes are used to minimize polarization and galvanic potentials. They consist of a copper electrode submerged in a concentrated solution of copper sulphate in an unglazed porous cup. Cups 10 centimeters high and 5.2 centimeters in diameter

Figure 4.-Arrangement of Apparatus for Measuring Electrical Resistivity.
are used. When not in use they are kept in an earthen jar containing a solution of copper sulphate. They should not be brought in contact with metals. Iron stakes $1 \frac{1}{4}$ inches in diameter and about 2 feet long are used for current electrodes.

A milliammeter having ranges of 10,50 , and 250 milliamperes and a potentiometer are mounted on a 12 - by 21-inch oak board, together with the switching arrangements shown in figure 4. The milliammeter is elevated to the same level as the face of the potentiometer and the switches are installed on the vertical front of its support. Leads of no. 18 lamp cord are used. These are wound on 4 brass spools which are mounted on a 9 - by 12 -inch board. This unit is provided with a flat bayonet attachment by which it is mounted on the back of the instrument unit when in operation. Another unit containing batteries, and two folding camp stools completes the equipment. The battery box provides for 9 "B" batteries of $22 \frac{1}{2}$ volts each, with additional space for tapelines, connecting leads, and porous cups. Two leads connect the battery to the instrument, and a dial switch on the top of the battery box enables any number of the units to be connected in circuit. Plugs and jacks are used to connect the lead terminals and the battery to the instrument, and small battery clips are used to connect the leads to the ground electrodes.

To eliminate the effect of any stray ground current of a constant and unvarying character, readings are taken with the test current flowing through the ground, first in one direction and then in the other. The reversing switch, S_{1}, is used to reverse current direction. Potential drop readings are taken between P_{3} and P_{1} and between P_{3} and P_{2} for both directions of current flow. Four values of current and four values of potential drop are thus obtained for each electrode setting, and from these data four values of R are computed with the formula $R=\frac{E}{I}$. Resistivities are computed by substituting in equation 2 after adding the two values of R obtained on either side of the center. If the two
values of R are averaged, then a constant of 382 instead of 191 must be used in equation 2. By repeating these measurements for a series of electrode spacings, it is possible to construct two resistivity curves as shown in B, C, D, and E, figure 5 , which apply along the line of test on either side of the center electrode.

A fairly rapid technic has been developed which enables 2 engineers and 2 helpers to make from 10 to 20 shallow tests per day. By shallow tests is meant those involving such depths as are encountered in highway grading through rough country and requiring from 6 to 20 measurements at each test location. An electrode spacing of 3 feet, or multiples thereof, has been adopted as standard and both current and potential stake locations are marked on the plain side of two 100 -foot linen tape lines to conform to a 3 -foot interval. Potential electrode locations are marked by consecutive numbers in red while every third position is marked consecutively in black to indicate current stake positions. The end links of the two tapelines are brought together at the center point of the test and a surveyor's iron pin stuck through them and into the ground. The tapelines are then run out to their full length in either direction and pinned to the ground in a taut position. With 1 man to read the instruments, 1 to record the data and compute the resistivities with a slide rule, and 2 helpers to move the electrodes progressively from point to point, it is possible to run a 60 -foot depth test in from 30 to 40 minutes.

EQUIPMENT LOW IN COST AND GIVES ACCURATE RESULTS

The curves are plotted before moving and any irregularities are checked on both paper and ground before leaving the set-up. Sometimes it is desirable to obtain additional points on the curves in order to definitely establish the points of inflection. By this procedure it is usually possible to obtain fairly smooth and consistent curves. No sharp inflections have been found except at shallow depths. The jagged and pointed curves reported by some investigators for depths of

Figure 5.-Results of Earth Resistivity Measurements.
several hundred feet cannot be reconciled with either theory or careful practice.

Some trouble from stray current from electric railways has been encountered in and near Washington when attempting depth measurements in excess of about 50 feet. This difficulty can usually be met by using sufficiently large test currents to mask the effects of the variations in the stray currents and by taking the average of several readings for each electrode interval. It seems probable, however, that active stray currents will preclude the use of this method of measurement for depths in excess of 100 to 200 feet. To compensate for this disadvantage there are a number of advantages that make this so-called "porous-cup" method of test preferable to all others. These include low cost of equipment and high accuracy under a wide range of depths and resistivities.

When working in soils of unusually high resistivity, especially during dry periods, it is sometimes difficult to get enough current through the potential electrodes to operate the megger and other commutator devices. Even though a potentiometer is used in the potential circuit, the small amount of current required to charge the leads is sometimes sufficient to upset the normal potential relations. The only effect of such a condition when using the porous-cup method is a reduced sensitivity of the potentiometer galvanometer caused by the high resistance of the circuit. However, as no current is actually drawn from the potential electrodes, a satisfactory balance is always obtained. The porous cups are placed directly on the ground surface. Leaves, grass, and trash are usually removed. Unless the soil is dust-dry, no difficulty is encountered in obtaining satisfactory readings. With other types of apparatus it is often necessary to water the electrodes or drive them to a considerable depth. One case is reported where potential stakes 12 feet in length were used in connection with megger tests.

The paper and slide-rule work involved in the porouscup method is somewhat greater than with other meth-
ods of test because of the necessity of making four sets of observations for each electrode interval. With the Gish-Rooney apparatus only two sets of readings are necessary, while with the megger no division operations are required as the instruments indicate ohms directly. It is necessary, however, to multiply the megger readings by a constant and by the electrode spacing to obtain actual resistivity values.

As to weight and portability, the megger and the earth-current meter are about on a par, and both are considerably lighter than either the Gish-Rooney or the porous-cup apparatus. None of the instruments require very accurate leveling. The Gish-Rooney apparatus is scientifically more accurate than any of the others and will perhaps yield satisfactory data for a greater variety of conditions than the others. For the relatively shallow depths encountered in highway construction, as well as for deeper determinations where stray-current disturbances are absent, the porous-cup apparatus appears to be entirely satisfactory and is favored because of its low cost and its simplicity of construction and operation.

field tests made with resistivity apparatus

Resistivity measurements carried out by the Bureau of Public Roads have been confined largely to experimental studies of known formations for the purpose of developing suitable apparatus and methods of test and to determine the conditions under which this method of exploration may be of value in planning highway and bridge construction. Army engineers have made many borings in and about Washington in connection with the planning of bridges and other structures and these data afforded an excellent opportunity to check resistivity tests against the logs of these borings.

A period of several weeks was spent along the projected route of the Skyline Drive in the Shenandoah National Park, on both graded and ungraded sections. Preliminary measurements were made opposite cuts
along graded sections prior to working along sections where grading was soon to begin. Part of the route on which measurements were made was examined after the grading had been completed and comparisons made between the field notes and the exposed cuts. Figure 5 shows a few of the many resistivity curves obtained. The curves in group A, figure 5, were all made along graded sections of the Skyline Drive, while curves B, C, D, and E were obtained near Washington. In group A only one of the two curves obtained at each location is shown.

Perhaps the most significant features brought out by these studies are the wide range in resistivities of both soil and rock encountered within a comparatively limited area, and the lack of uniformity and regularity in the upper layers of the earth's crust. Soil resistivities often vary enormously from hill to hill, and adjacent mountains may exhibit distinctly different characteristics with respect to soil and rock. Igneous intrusion, sedimentation, erosion, faulting, weathering, folding, and other geologic forces have contributed to make the earth's surface so erratic and irregular in its composition that no systematic continuity of materials is to be found, especially in rough or mountainous areas. Because of these conditions, the interpretation of resistivity measurements is often indefinite or uncertain and frequent correlations with known conditions should be made wherever possible.

Figure 5 shows the enormous range in resistivities encountered within the space of a few miles along the Skyline Drive. In spite of this wide range in resistivity the shape of the curve can usually be depended upon to indicate the character of the underlying material. Flat or drooping curves such as $1,2,5,10$, and 31 , usually indicate earth or loose rock, while ascending curves such as $6,3,13$, and 4 , indicate the presence of rock. Near Front Royal, Va., some 20 miles north of Panorama, resistivity values for both soil and rock are much lower than those shown in figure 5. Earth resistivity as low as $6,000 \mathrm{ohm}$-centimeters was found at an elevation of 1,000 feet, as against values of 100,000 to 400,000 ohm-centimeters near Panorama at an elevation of more than 2,000 feet.

Rock resistivity was also found to vary over wide limits, and in one location was so low as to fail to give indication of its presence. Although not all of the 10 miles of right-of-way explored has been examined subsequent to grading, enough has been checked to prove that such tests should provide highly valuable information to bidders and contractors.

Precise classification cannot be expected but it should be possible to identify 2 and possibly 3 kinds of material, such as earth, broken or loose rock, and consolidated rock. After all, the contractor is primarily interested in knowing if he can handle the material with his shovel or whether he will need to resort to blasting. The resistivity test can give him the answer in the great majority of cases.

Curves $\mathrm{B}, \mathrm{C}, \mathrm{D}$, and E , in figure 5, were made in an area near Washington where rock depths had been determined by a large number of test pits and borings. Curves B and D are typical of most of the area where good checks were obtained by taking the electrode spacing at the lowest point on the curve as the depth to rock. However, in a few instances curves like those shown in C were obtained. In such locations the relative resistivities of the different strata are such as to obscure the location of the rock.

Curve E was obtained at the south abutment of the Arlington Memorial Bridge where the bed rock is known to be about 35 feet from the surface. Although there is undoubtedly a great difference between the resistivity of the overlying muck and that of the rock, the sharp inflection in these curves is somewhat surprising and in strong contrast with other measurements along the Potomac River where positive identification of the rock at depths of from 40 to 70 feet has not been possible. As the changes in curvature occur in the curves representing conditions east and west of the reference point, they cannot logically be attributed to local surface conditions near the current stakes.

RESISTIVITY ABOUT A SINGLE ELECTRODE DISCUSSED

The single-electrode method of measuring earth resistivity, that has found favor with some investigators, is illustrated in figure 6. If a currrent, I, is made to flow through the earth between electrodes C_{1} and C_{2}, we may assume that the flow of current from C_{1} into a homogeneous soil will be radial if C_{2} is at a comparatively great distance from C_{1}. With a radial flow of current from C_{1} we can express the resistivity of the medium by the equation

$$
\begin{equation*}
\rho=191 \frac{E}{I} \frac{r_{1} r_{2}}{r_{2}-r_{1}} \tag{3}
\end{equation*}
$$

where E is the potential drop between the two equipotential, hemispherical shells $\mathrm{P}_{1} \mathrm{P}_{3}$ and $\mathrm{P}_{2} \mathrm{P}_{4}$, and r_{1} and r_{2} are expressed in feet. The material for which ρ is obtained is that enveloped between the two concentric shells and designated by shading in figure 6. By progressively increasing r_{1} and r_{2} and measuring the potential drop, $\mathrm{P}_{1} \mathrm{P}_{2}$ or $\mathrm{P}_{3} \mathrm{P}_{4}$, a curve is obtained showing the relation of ρ to r_{2}. This curve will be similar to that obtained by the 4 -electrode method and is supposed to indicate changes in material in the same manner, since the material included in the test has a depth equal to r_{2}.

As r_{1} and r_{2} are increased, the equipotential shells deviate more and more from a true hemisphere because the current stake C_{2} is not at an infinite distance from C_{1}. The error introduced by the dissymmetry of the electric field about C_{1} is shown by the curves of figure 7 and is seen to be greater in the direction toward C_{2} than away from it. For this reason it is preferable to make potential difference measurements at $\mathrm{P}_{3} \mathrm{P}_{4}$ rather than at $\mathrm{P}_{1} \mathrm{P}_{2}$.

One advantage that has been claimed for this method of test is that the current stakes remain fixed during any depth test and therefore the results are not subject to the influence of local surface variations near the current stakes, as may occur with the 4 -electrode method. In the work described here, this method was not investigated to any great extent but in the few comparative tests which have been made between the two methods, the 4 -electrode method was found to give the smoother and more consistent curves.

SEISMIC METHOD baSED ON Differences in Speed of sound WAVES THROUGH SOIL AND ROCK
In using the seismic method of exploration advantage is taken of the wide difference in the acoustic properties of plastic and granular matter on the one hand and rigid or consolidated matter on the other. Nonrigid matter such as sand, clay, or gravel transmits wave disturbances, commonly called sound waves, at velocities of 1,000 to 6,000 feet per second, while rigid materials like

Figure 6.-Resistivity About a Single Electrode.
rock or crystalline matter transmit such disturbances at 16,000 to 20,000 feet per second. Here, then, we have a means of measuring directly that property of subsurface materials with which the engineer is concerned, namely, rigidity, while the resistivity method is used in attempts to measure this property indirectly or through its somewhat questionable relation to electrical resistivity. The seismic method is, therefore, more definite in the identification of solid rock than is the resistivity method but cannot readily be used to distinguish between clay and coarse sand or gravel, as can often be done with the resistivity method.

In view of the success with which the seismic method of exploration has been applied to oil prospecting, and in view of the fact that it is distinctly the most favored of all geophysical methods, it is somewhat surprising that it has not heretofore been adapted to relatively shallow determinations. Perhaps the reason for this is to be found in the array of apparatus and equipment ordinarily required and the cost of such operations as commonly carried out. The Oil and Gas Journal, referring to recently developed seismic reflection equipment for geophysical prospecting, says: "It consists mainly of two separate units, the recording truck and the firing car. The recording truck contains the seismometers or pick-ups (ordinarily 6), the amplifiers, and batteries, wire reels, the camera, as well as field telephone, and various other accessories. The firing car contains explosives, firing box, double reel, and telephone for cross communication with the recording truck. A drilling truck and water car are ordinarily added."

Anyone contemplating this array of cars and equipment might well question the practicability of the method as a substitute for the soil auger or other relatively simple methods of exploring shallow depths. Such equipment may be justified where the discovery of a new oil field may mean large profits to the operator but can it be applied efficiently in making less-important discoveries?

SEISMIC APPARATUS GREATLY SIMPLIFIED FOR USE IN SHALLOW WORK

It was believed that a large part of the equipment required for deep prospecting could be eliminated or greatly simplified in an apparatus designed primarily for relatively shallow work, and that a so-called "vestpocket" model of the more extensive apparatus could be constructed to meet these requirements. The most important difference between deep and shallow exploration is the relatively short shooting distances involved in the latter and this has made the simplification of apparatus possible. Telephonic communication between shot point and recorder is not needed and most of the cumbersome wire and reels are eliminated.

Figure 7.-Error in Single-Electrode Method.
Only small charges of explosives are required and these can be placed in a $1 \frac{1}{4}$-inch soil-auger hole, thus eliminating the heavy drilling equipment required in deep work. The short shooting distances also permit the use of less sensitive instruments and amplifying equipment is not needed.

With these modifications in mind apparatus was assembled, consisting of a 3-element oscillograph with camera for photographic recording, 3 microphonic detectors or pick-ups and two $6 \frac{1}{2}$-inch spools of wire. Accessories consist of 2 camp stools, one 4 -foot soil auger, 4 no. 6 dry cells or a small storage battery, 1 developing tank with developing and fixing solutions, and 1 changing bag. The whole outfit, together with a crew of 3 men, can be carried in a small car and can be set up for operation in about 10 minutes.

The laborious calculations in the application of involved formulas often necessary in deeper determinations can be dispensed with where shallow structures are concerned, and in their place a simple equation substituted, requiring only a mental calculation or, at most, a slide-rule operation for its solution.

The essential units of the apparatus used are shown in figures 8 and 9 . The detectors seen at the right in figure 8 are of the microphonic type and consist of four microphone buttons connected in parallel and mounted with axes vertical. The mica diaphragms have been replaced with dental rubber diaphragms that carry polished carbon disks. These lower elements of the buttons are carried on a ring that is integral with a floating inertia weight in which gravity is balanced by a helical spring about 3 inches long mounted in the vertical neck of the detector. Lateral alinement is maintained by a thin steel spider diaphragm and stops limit the vertical movement of the inertia weight to less than one-sixteenth inch. The upper element of the button consists of a conical carbon chamber with polished surfaces and containing carbon granules.

The resistance of this assembly changes enormously with the slightest disturbance, thus making it a detector of exceptionally high sensitivity. While it is subject to some of the inherent defects of the carbon microphone, it is perhaps the only type of detector that can be used in the field successfully without amplifiers. This feature makes it particularly suited to shallow exploration work where simplicity and portability are of first importance.

When in operation each detector carries a current of from 5 to 10 milliampers supplied from dry cells or a small storage battery. This current passes through the primary coil of a transformer; the secondary coil is in series with a galvanometer of the oscillograph type.

The galvanometer, therefore, responds only to a change of current in the detector.

The galvanometers are of the coil type having a directcurrent sensitivity of about 4 milliamperes per inch of deflection at 10 inches and an undamped frequency of 1,200 cycles per second. The elements, carrying small reflecting mirrors, are damped in oil. An optical system directs light from a 2.5 ampere, 4 -volt, straightfilament lamp to the galvanometer mirror, from where it is reflected and brought to a point focus in the plane of a moving photographic film.

Time lines on the film are obtained from "peep slits" carried on the tines of an electrically driven tuning fork
customary to cut the film after every third or fourth shot.

Standard, supersensitive, motion-picture film is used as it was found that less-sensitive film did not give sufficiently dense traces. Records are developed in a dark room when convenient, or in a Leitz developing tank in the field. A changing bag is needed in transferring the exposed film from the camera to the developing tank.
This equipment, with the exception of the detectors, was built in the shop of the bureau, after purchasing such items as galvanometers, tuning fork, lenses, and minor electrical supplies.

Figure 8.-Electrical Seismograph Set Up for Field Use.
that vibrates at a normal frequency of 100 cycles per second. The slits are one-half inch long and 0.01 inch wide and coincide in the neutral position of the fork and therefore give two lines for each complete cycle of the fork. The timing requires an independent lamp and optical system with the exception of the cylindrical lens (mounted immediately in front of the film) which is common to both light systems.

The camera used for moving the film is an adaptation of a Sept camera, an obsolete, amateur motionpicture camera of French manufacture, which carries a 35 -millimeter film. A direct drive was substituted for the intermittent motion and other necessary changes were made. A spring motor drives the film at approximately 2 feet per second. The film attains its maximum speed almost instantly upon starting the motor and permits a record to be obtained with a film consumption of about 18 inches. A numbering lamp and two dials of perforated numbers were installed in the camera and make it possible to number films photographically from 0 to 99. This feature enables definite identification of records after development. A film cutter operated by a trigger is provided to cut the film whenever desired. As the developing tank accommodates 6 feet of film it is

DETERMINATIONS BASED ON ELEMENTARY PRINCIPLES

Two methods of seismic exploration that are in common use are known respectively as reflection shooting and refraction shooting. These terms have the same significance in geophysics that they do in optics, as the mathematical theory of transmission of soundwaves through solids and liquids is based largely on the well-known laws of optics. In reflection shooting the interpretations are based on waves that are reflected directly from different strata under investigation, while in refraction shooting it is the refracted waves that are studied. As reflection shooting is not well adapted to shallow explorations, no further space will be given to description of that technique.
The principles involved in refraction shooting are illustrated in figures 9 and 10. A blasting cap or small charge of dynamite is exploded at or under the surface of the ground at some point, S, which becomes the center of a wave disturbance that moves outward on a spherical or near-spherical front in all directions. Detectors $\mathrm{D}_{1}, \mathrm{D}_{2}$, and D_{3}, placed on a line passing through S , pick up this disturbance successively and carry the impulses to three galvanometers that record them as light traces on a moving photographic film.

TYPICAL PHOTOGRAPHIC TIME RECORD ON MOIION PICTURE FILM

Figure 9.-Sketch Showing Fundamental Principles of Seismographie Method.

Figure 10.-Wave Propagation in Seismic Exploration.
A small wire is wound around the blasting cap and arranged so that when it is broken by the explosion an initial kick or impulse is given to the three galvanometers and the time of the explosion is thereby indicated on all three traces. As the wave front moves outward from S, its time of arrival at each of the three detectors is indicated on the moving film by disturbances in the traces as shown in figures 12,13 , and 14 . By counting the number of time units between the initial kick and the arrival of the wave at each detector, it is possible to calculate the average velocity of wave propogation from shot point to each detector. From data of this kind it is usually possible to determine with a fair degree of accuracy the depth to the first strata of rigid or consolidated rock and to obtain other information of value regarding the character of the subsurface material.

Referring to figure 10 , the path of the first wave to reach any detector will depend upon the ratio of the shooting distance, L, to the depth to rock, H, and also upon the relative velocities of wave propagation in the two media. If the shooting distance is relatively short, such as L_{1}, the path of the first disturbance to reach D_{1} will be directly through the soil as indicated. The velocity of the wave through the earth can then be calculated from the equation,

$$
\begin{equation*}
V_{e}=\frac{L_{1}}{T_{1}} \tag{4}
\end{equation*}
$$

DETERMINATION OF DEPTH:TO SOLID ROCK $=\boldsymbol{H}$
$V_{e}=\frac{L_{0}}{T_{0}}=$ VELOCITY OF SOUND WAVES IN SOLL. EQUATION (1)
$T_{3}=\frac{H}{V_{\mathrm{e}}}+\frac{L_{3}}{V_{r}}+\frac{H}{V_{e}}=\frac{2 H}{V_{\mathrm{e}}}+\frac{L_{3}}{V_{r}} \quad$ EQUATION (2)
$T_{2}=\frac{H}{V_{\mathrm{e}}}+\frac{L_{2}}{V_{\mathrm{r}}}+\frac{H}{V_{\mathrm{e}}}=\frac{2 H}{V_{\mathrm{e}}}+\frac{L_{2}}{V_{\mathrm{r}}}$
[quation (3)
THEREFORE $\quad T_{3}-T_{2}=\frac{L_{3}}{V_{r}}-\frac{L_{2}}{V_{r}} \quad$ OR
$V_{\mathrm{r}}=\frac{L_{3}-L_{2}}{T_{3}-T_{2}}=$ VELOCITY OF SOUND WAVES IN ROCK. EQUATION (4)
AND $H=\frac{V_{e} T_{3}}{2}-\frac{V_{e} L_{3}}{2 V_{r}} \quad$ FROM EQUATION (e)

Figure 11.-Relation Between Velocity of Sound Waves Through Earth as Obtained with the Electpical Seismograph.

As the shooting distance is increased, a point such as D_{2} will be reached where the wave first to arrive will no longer be that going directly through the top soil but that taking the path of the refracted wave $\mathrm{SPP}_{2} \mathrm{D}_{2}$. Subsequent disturbances will reach detector D_{2} by various paths but as only the first arrival can be definitely identified on the film record it is necessary to base interpretations solely on so-called "first events". Likewise the first wave to reach D_{3} will be by the path $\mathrm{SPP}_{3} \mathrm{D}_{3}$. By measuring the time difference ${T_{3}}_{3}-T_{2}$ and the distance $L_{3}-L_{2}$ we are able to calculate the velocity of wave propagration through the rock from the equation,

$$
\begin{equation*}
V_{T}=\frac{L_{3}-L_{2}}{T_{3}-T_{2}} \tag{5}
\end{equation*}
$$

This relation is obvious from the fact that the time difference $T_{3}-T_{2}$ is taken up by the travel of the wave through the rock from P_{2} to P_{3}, since that part of the path SPP_{2} is common to both circuits.

We are now able to write the equation by which H, the depth to rock, can be calculated from known quantities. This is based on the fact that T_{3}, the total time of travel of the wave from S to D_{3}, is the sum of the combined times of wave travel over the path $\mathrm{SPP}_{3} \mathrm{D}_{3}$. Although refraction of the wave at the point P is supposed to take place at the angle of total internal refraction, we may assume with negligible error under practical conditions that this angle is 90° and that the distance PP_{3} is equal to L_{3}. With this assumption we may write,

$$
\begin{gather*}
T_{3}=\frac{H}{V_{e}}+\frac{L_{3}}{V_{r}}+\frac{H}{V_{e}}=\frac{2 H}{V_{e}}+\frac{L_{3}}{V_{r}} \tag{6}\\
\text { or } H=\frac{V_{e} T_{3}}{2}-\frac{V_{e} L_{3}}{2 V_{r}} \tag{7}
\end{gather*}
$$

When the distance L_{3} is of such value that the direct wave through the earth reaches detector D_{3} at the same time as the refracted wave, it is said to be the critical distance and we may write,

$$
\begin{gather*}
T_{3}=\frac{L_{3}}{V_{e}}=\frac{2 H}{V_{e}}+\frac{L_{3}}{V_{t}} \text { or } \\
H=\frac{L_{3}}{2}\left(1-\frac{V_{e}}{V_{t}}\right) \text { and } \\
L_{3}=\frac{2 H}{1-\frac{V_{e}}{V_{r}}} \tag{8}
\end{gather*}
$$

For best results, when determining depths to rock, L should not be greatly in excess of the critical distance. As a fairly close approximation we may say that for values of V_{e} and V_{T} usually found, $H=0.45 L$, or $L=$ 2.2 H, where L is the critical shooting distance.

Various modifications of the technique just described are sometimes necessary to determine slopes, domes, and other irregularities in underground structures. The depth to rock, H, as given in equation 7, is really the average of the depth at the shot and that at the detector. By shooting near one end of a line of detectors and then near the other end an estimate of the slope can be obtained. "Circle shooting" is another means of studying subsurface irregularities. With this method two or more detectors are placed on the arc of a circle having a radius greater than the critical distance and the shot is placed at the center. The order in which the waves reach the detectors will indicate the relative rock depths under them, the shorter time indicating the shallower rock.

Equation 5 cannot always be relied upon to give very accurate values of V_{r}, because of the difficulty of obtaining an accurate measure of the time interval $T_{3}-T_{2}$ from the film record. If the detectors are placed 20 feet apart the time interval representing a velocity of 18,000 feet per second in the underlying rock will be only 0.0011 second, or a distance of about 0.0264 inch on a film moving at a speed of 2 feet per second.

It is obvious that slight differences in the performance of different detectors and errors in picking the exact time of breaks on the traces will make it impossible to*determine velocities in rock by the use of closely placed detectors. Fortunately, the term in equation 7,

CALCULATION OF DEPTH TO ROCK
SHOOTING DISTANCES, $L_{1}=50$ FEET, $L_{2}=100$ FEET, $L_{3}=150$ FEET.
TIME OF WAVE TRAVEL. FROM SHOT TO DETECTORS, $\mathrm{T}_{1}=0355$ SECOND, $\mathrm{T}_{2}=.071$ SECOND. $\mathrm{T}_{2}=.074$ SECON
$V_{0}=V E L O C I T Y$ OF WAVE IN EARTH $=\frac{L_{1}}{T_{1}}=\frac{50}{.0355}=1,400$ FEET PER SECOND.
$V_{r}=$ VELOCITY OF WAVE IN ROCK $=\frac{L_{3}-L_{2}}{T_{3}-T_{2}}=\frac{50}{.003}=16,700$ FEET PER SECOND.
.,$=$ DEPTH TO ROCK $=\frac{V_{\mathrm{e}} T}{2}-\frac{\mathrm{L} \cdot \mathrm{V}_{\mathrm{e}}}{2 V_{\mathrm{T}}}=\frac{1.400 \times .074}{2}-\frac{150}{2} \times \frac{1.400}{16,700}=45.5$ FEET.
Figure 12.-Seismic Record and Calculations Based on Record.
in which V_{r} appears, is of minor importance, provided the shooting distance is not greatly in excess of the critical distance. For this reason an average or normal value of V_{r}, such as 18,000 feet per second may be assumed without fear of carrying through an error of consequence into the final value of H. Equation 7 may be used only when the shooting distance exceeds the critical distance, and this condition can usually be determined from a measure of the time intervals between detectors, even though such intervals may not give highly accurate values of velocities in rock.

FIELD TESTS GIVE SATISFACTORY RESULTS

The accuracy with which H can be determined from equation 7 will depend largely upon the value of V_{e} selected. In most soils the value of V_{e} increases with depth and the value to be substituted in the equation must therefore be intermediate between the velocity in the topsoil and that in the deeper strata. Figure 11 shows several velocity-distance curves from which values of V_{e} were selected in determining rock depths at the locations given. All of the curves show a distinct upward trend after the critical shooting distance is reached or, in other words, when the path of the fastest wave is through rock. At the Boundary Channel Bridge the rock is overlain with about 75 feet of spongy muck or silt and this condition is indicated by the rather flat portion of the curves within the critical distance. The same condition exists at the Bryan statue triangle and at the Memorial Bridge, in both locations the critical distance being approximately 100 feet. From the flat portion of such curves closely accurate values of V_{e} can be selected and equally accurate values of H obtained.

Figure 12 shows a single record from which the depth of rock at the Memorial Bridge has been calculated. The 3 detectors were spaced respectively 50, 100, and 150 feet from the shot. In this case the critical distance appears to be almost exactly 100 feet. This follows from the fact that calculations based on traces 1 and 2 result in the same velocity, thus indicating that the wave reaching P_{2} could have traveled directly through the earth. However, the difference in time intervals T_{3} and T_{2} is such as to give a velocity of 16,700 feet per second between P_{2} and P_{3}, which is very close to

CALCULATIN OF DEPTH TO ROCK
FROM FILM $132, L=110$ FEET, $T=.085$ SECOND. $V_{\mathrm{e}}=\frac{L}{T}=1,300$ FEET PER SECOND.
FROM FILM 137, $\mathrm{L}_{2}=330$ FEET, $\mathrm{L}_{3}=360$ FEET, $\mathrm{T}_{2}=.135$ SECOND, $\mathrm{T}_{3}=0.1385$ SECOND.
FOR $L=360$ FEET, DEPTH TO ROCK $=H=\frac{V_{e} T}{2}-\frac{L V_{e}}{2 V_{s}}$

$$
=\frac{1.300}{2} \times .1385-\frac{360 \times 1.300}{2 \times 16,700}=90-14.0=76.0 \text { FEET. }
$$

Figure 13.-Seismic Record and Calculations Based on Record.
velocity in rock. It is evident, therefore, that the time of travel to the middle detector is the same by either the direct path or the path of the refracted wave through the rock, a condition that determines the critical distance.

Figure 13 shows records from which the depth to rock at the Boundary Channel Bridge was calculated as 76 feet, a figure that checks closely with the bridge engineer's data.

DIFFICULTY SOMETIMES ENCOUNTERED IN MAKING DETERMINATIONS

Frequently the velocity curve will take the form of the curve in figure 11 that is based on tests at the Arlington experiment station. Here the critical distance is not so evident. The method by which a value of V_{e} was selected and the depth to rock calculated in this location will be given in detail as a typical example of a practical problem. Figure 14 shows some of the records from which depth calculations were made and table 1 is summary of all data obtained. An examination of this table shows that high velocities existed for that portion of wave travel in excess of 50 feet. Because of the very short time intervals involved and the difficulty in picking the exact breaking points on the traces and also as a result of slightly different sensitivities and characteristics in detectors, it is not always possible to obtain accurate velocities for increments in distance from which velocities in rock can be derived. It is possible, however, as in this case, to determine from the velocities if the movement is through rock and also to approximate the critical distance.

The high velocities for that portion of the travel through increments in distance at more than 50 feet from the shot enables us to select 50 feet tentatively as the critical distance. By averaging all of the over-all velocities for distances of 50 feet and less, a value of 1,834 feet per second is obtained. This is so close to the value of

CALCULATION OF DEPTH TO ROCK
FROM FILM 101, $\mathrm{L}_{1}=\mathrm{L}_{2}=\mathrm{L}_{3}=30$ FEET, $\mathrm{T}=0.0165$ SECOND, $\mathrm{V}_{\mathrm{e}}=\frac{\mathrm{L}}{\mathrm{L}}=1.820$ FEET PER SECOND.
FROM FILM 109, $\mathrm{L}_{1}=120$ FEET, $\mathrm{L}_{2}=150 \mathrm{FEET}, \mathrm{L}_{3}=180 \mathrm{FEET}, \mathrm{T}_{1}=0.0255$ SECOND, $\mathrm{T}_{2}=0.029$ SECOND. $\mathrm{T}_{3}=0.0325 \mathrm{SECOND}$, FOR $L=150 \mathrm{FEET}$.

DEPTH TO ROCK $=H=\frac{V_{e} T}{2}-\frac{L V_{e}}{2 V_{r}}=\frac{1.820}{2} \times 0.029-75 \times \frac{1.820}{16.700}=17.2$ FEET
Figure 14.-Seismic Record and Calculations Based on Record.

Table 1.-Results of tests at the Arlington experiment station

Record no.	Shooting distance, L	Time of wave travel, T	Overall velocity, V	Velocities for increments in distance, equation 5	Depth to rock H, from equation 7
97.	$\text { Feet }{ }_{10}$	Seconds 0.0065	Feet per second 1,540	FeetFeet per second 10 to $20=$ 1,540,$~$	Feet
99.	20	. 013	1,540	20 to $30=2,860$	
101	30	. 0165	1,820	30 to $40=2,860$	
104	40	. 02	2,n00	40 to $50=5,000$	
106	50	. 022	2, 270	50 to $60=20,000$	
107	60	. 0225	2, 670	60 to $100=8,900$	17.2
100	100	. 027	3, 700	100 to $120=$ Infinite	19.2
109.	120	. 0255	4,700	100 to $150=25,000$	16.7
109	150	. 029	5, 000	100 to $180=10,700$	18.2
109	180	. 0325	5,450	60 to $180=12.000$	19.8
Average.					18. 22

1,820 feet per second derived directly from record no. 101 for a 30 -foot distance that the latter was selected for V_{e}. Since the values of velocities corresponding to increments in distance shown in table 1 are not sufficiently consistent to justify a selection of V_{τ} from them, a value of 16,700 is taken as fairly representative of velocity in rock. As pointed out previously, this value enters into only a minor term in the depth equation and therefore great accuracy is not so necessary in its determination as in that of V_{e}. With these values of V_{e} and V_{T} the value of H was computed for all distances in excess of 50 feet. The results appear in the last column of table 1, the average of which is 18.22 feet. The actual depth to rock as determined with a soil auger is 19.8 feet.

Sometimes it is necessary to make a first approximation of the depth to rock, after which a more accurate value of V_{e} can be selected from the velocity curve. In any event, no great error will be made in selecting a value of V_{e}, which is an average of all values obtained under the critical distance.
(Continued on p. 74)

EXTRACTS FROM REPORT ON FLORIDA TRAFFIC SURVEY

CHARACTERISTICS OF TOURIST TRAFFIC AND TRANSPORTATION OF CITRUS FRUIT DISCUSSED

Reported by L. E. PEABODY, Senior Highway Economist, Division of Highway Transport

ASURVEY OF TRAFFIC on Florida State highways was conducted by the Florida State Road Department and the Bureau of Public Roads, from September 1933 to September 1934. Data were collected at 157 points in the State.

The traffic on Florida highways was found to have characteristics distinct from the traffic in most States. The month of largest traffic volume is January, and September is the month of least motor travel. Seasonal variation is of small amplitude in comparison with that in many States. There is an absence of large volumes of industrial traffic; truck capacities are generally low; and tourist traffic is an important component of total motor traffic.
Seven percent of the mileage of the State highway system carries a traffic volume in excess of 1,500 motor vehicles per day; 41 percent carries a volume of from 500 to 1,499 vehicles per day: and more than half of the State highway mileage carries less than 500 vehicles per day

Seventy-eight and two-tenths percent of the observed vehicles were passenger cars; 21.0 percent were trucks; and 0.8 percent were busses. Local vehicles, which constituted 80.3 percent of the total traffic, were distributed as follows: Passenger cars, 76.1 percent; trucks, 22.9 percent; and busses, 1.0 percent. Trucks with trailers were 5.4 percent of all trucks, four-tenths of 1 percent being foreign and the remainder were local.

Distances are long and population is concentrated within a few areas. Traffic volumes are relatively high close to the population centers and are fairly uniform between population centers. Major routes may be easily identified on the traffic-flow maps. Figure 1 shows total traffic and figure 2 shows foreign traffic. The main routes are: U S 92 from Daytona Beach to the intersection with U S 17 and from Haines City to Tampa, and Florida 64 from Tampa to St. Petersburg; US 1 and Florida 4-A from the Georgia State line to Florida City; U S 17 from the Georgia State line to Punta Gorda; U S 90 from the Alabama State line to Jacksonville; and U S 19 from Brooksville to St. Petersburg. The routes carrying the most foreign traffic are US 1 from the Georgia State line to Miami, Florida 64 from Tampa to St. Petersburg, U S 41 together with Florida 5 and U S 541 from the Georgia State line to Naples, and US 92 from Daytona Beach to Tampa.

Florida's traffic history since 1925, as shown by traffic counts at 22 stations since that year, is very different from that of any other State for which data are available. This statement may be illustrated most briefly by two examples. Between 1922 and 1933 motor vehicle registration increased 140 percent in Florida and 147 percent in New Jersey; yet between 1922 and 1926 the corresponding increases were 246 percent in Florida and 90 percent in New Jersey. And again, gasoline consumption increased 228 percent in

[^1]Connecticut between 1922 and 1933, as compared with 220 percent in Florida during the same period. However, gasoline consumption increases in Connecticut and Florida between 1922 and 1926 were 83 and 350 percent respectively. In view of the above it is remarkable that Florida traffic in 1932 had declined but 28 percent from its all-time peak in 1926. The first indication of a possible reversal of the downward trend in motor-vehicle registration since 1927 is given in 1934, when registration increased 20 percent over the previous year. Gasoline consumption in 1934 was more than 14 percent greater than in 1933.

TOURIST TRAFFIC ORIGINATES IN MANY STATES

Tourist traffic is smallest in May, but even in that month amounts to 70 percent of the monthly average. The common impression that tourist traffic is confined to the period of winter is incorrect; although, of course, the volume is much heavier during that period.

Nearly a quarter of the tourist traffic, excluding the traffic of tourists who spend less than 1 day in Florida, comes from that portion of the United States east of the Mississippi and north of the Potomac and Ohio Rivers. The origin of tourist traffic is shown in figure 3 in which the volume of tourist traffic originating in the areas indicated is proportional to the area of the circle shown in each area. The average travel of this group of tourists to and from their homes is in excess of 2,000 miles. More than one-half of all tourists in Florida are from Georgia and Alabama, again excluding those who spend less than 1 day within the State. More than 10 percent come from the States of Michigan, Wisconsin, Illinois, Indiana, and Ohio. The remaining tourists, approximately 20 percent, have origins scattered throughout the remainder of the country.
They stay in Florida about 1 month on the average, although there is high variation in the length of stay. Tourists who own homes in Florida make an average visit of 106 days, while those who stay with friends or relatives remain about 2 weeks. Those who rent apartments or cottages stay about 88 days; visitors who stop at hotels stay an average of 20 days; while those who occupy camps average 34 days per visit.

About 11 percent of the tourists stated that they would visit areas throughout the whole State, their answers reading typically: "Throughout the State", "everywhere in the State", "all over Florida", etc. The southeast section of Florida was the greatest attraction, nearly one-quarter of all tourists planning to visit that area.
The general routes of travel to Florida are indicated by bands of varying width in figure 3 , the width representing the volume of traffic. These bands do not follow the exact location of any single route, and the traffic on two or more closely parallel routes may be shown by a single band. The increments of traffic received from each area of origin are indicated by the

KEY WEST
Figure 1.-Average Daily Motor Vehicle Traffic on Florida Highways, 1934.

Figure 2.-Average Daily Traffic by Foreign Vehicles on Florida Highways, 1934.

Figure 3.-Origin of Motor Tourist Traffic to Florida and Lines of Travel. Size of Circle Indicates Relative Number of Tourists From Each Area, and Width of Band Indicates the Relative Volume of Traffic Using Each Line of Travel.
increase in width of a band as it passes through that area. The traffic from area I is omitted because the volume is so large and the routes of travel are so short that an adequate graphical comparison with other areas is impossible. The preponderance of travel on the eastern coastal routes is apparent by the relative width of band 1. The principal routes included within this band are U S routes 1,15 , and 17 . By far the greatest part of the traffic traveling these routes originates in New York, New Jersey, and Pennsylvania, with considerable increments from New England and from area II.

A less-popular line of travel from these same areas is indicated by band 2 , which represents principally the traffic on eastern inland routes, United States routes 11, 19, 21, 29, and 41. Most of the traffic following this line originates in area II, but there is a considerable amount from area III, and an appreciable increment from area IV.
The most popular lines of travel from area III are indicated by bands 3 and 4 , band 3 joining band 4 at the Georgia State line. Band 3 represents United States routes 25 and 27 ; and band 4 represents United States routes 31 and 41. Bands 5 and 6 indicate the lines of travel from the States west of the Mississippi River.
Contrary to what is probably the popular impression, those who gave "business" as their reason for
visiting Florida constituted the largest group classified. Many people combined their business with a fishing trip, visited friends or relatives in Florida, attended sporting events, or were en route to other States.

A classification of tourist parties br type of accommodation shows that the greatest number used hotels. In this class were 162,590 parties, or 38.9 percent of the 417,960 parties staying one day or more in Florida. The next largest group, 21.0 percent, stayed with friends or relatives, 9.9 percent stopped at tourist homes, and 10.9 percent used more than one type of accommodation. These four major groups comprise four-fifths of the total. The 97,040 parties staying less than one day comprise 18.8 percent of the grand total of 515,000 parties per year.

LARGE EXPENDITURES MADE BY TOURISTS

Data with regard to the expenditures of tourists were obtained by a special investigator. Tourists were questioned as to the daily expenditure per party at times and places where they could be approached conveniently and with ample time for the investigator to satisfy liimself with regard to the accuracy of the replies. The information was voluntarily given and was subject to critical questioning at the time by the investigator. Expenditures were tabulated under the general heads of "car expenses" and "other expenses." Separated under "car expenses" were the costs of
gasoline, oil, garaging, and repairs incurred only during the visit. Overhead items, such as depreciation and insurance, that were not likely to be a direct expenditure in Florida, were not considered. Under "other expenses" were tabulated the items of food, lodging, and miscellaneous expenditures.

From the data obtained in this manner it was possible to compute the average party expenditures per day according to type of accommodation as presented in table 1. With the exceptions noted, these are the averages of expense items as given by a large number of separate parties, and considerable effort was made both in collecting the data and in the analysis to eliminate error and exaggeration. The replies by persons staying with friends and relatives and those using a combination of accommodations were so few in number as to throw doubt upon the correctness of average expenditures based upon them. Therefore, the expenditures tabulated for these groups were obtained by areraging appropriate items in other groups that were considered similar in characteristics. Expenditures by those staying one day were estimated in like manner as no replies were received from persons in this class.

Table 1.-Itemized expenditures per party per day according to type of accommodation

Item	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 10 \end{aligned}$			会	$\begin{aligned} & \text { 』 } \\ & \text { ○ } \\ & \text { a } \\ & \text { a } \\ & 0 \end{aligned}$			
Persons per party	2. 28	2. 95	2. 83	3. 28	2. 84	3.09	2.87	2. 60
Average daily mileage per car.	24	22	19	22	22			
Gasoline	\$0. 36	\$0. 32	\$0. 26	\$0.32	\$0. 36			
Oil.	. 04	. 03	. 03	. 03	. 04			
Garaging	. 23	. 02	. 02					
Repairs	. 01	. 02	. 01	. 01	. 02			
Total	. 64	. 40	. 32	. 36	. 42	1 \$0. 54	1 \$0.54	$1 \$ 0.54$
Other expenditures per party per day:								
Lodging	3. 66	1. 39	1. 12	. 35	3. 75			
Food	3.18	1. 90	2. 46	1. 22	2. 39	22.15		12.23
Miscellaneous	1.33	. 97	. 56	. 70	1. 61	11.03		11.03
Total	8. 17	4. 25	4. 14	2. 27	7.75	3.18	5. 32	3. 26
Total expenditures per party per day	8. 81	4.65	4. 46	2. 63	8.17	3. 72	5.86	3.80

${ }_{2}$ A rerage of other types.
2 Average of food costs for those using "rented apartments" and "own home."
The daily lodging cost to parties staying at their own homes, as shown in table 1, is the estimated daily rental value of such homes. The figure, $\$ 3.75$, is based upon an average value of $\$ 6,000$ per home as given by the questionnaires and annual operating costs and carrying charges are assumed to equal 10 percent of value, or $\$ 600$ annually. This sum is charged against a season of 160 days, or $\$ 3.75$ per day.

On the basis of total daily expenditures, the two most important groups are those using hotels and home owners. Parties in these groups expended $\$ 8.81$ and $\$ 8.17$ per day, respectively. The parties spending the least amounts were those staying with friends and relatives, $\$ 3.72$ per party per day, and the campers with an average expenditure of only $\$ 2.63$ per party per day.

The information concerning type of accommodation, volume of traffic of each type, length of stay, and daily expenditures has been combined to estimate the total
yearly expenditures within the State. The estimate is presented in table 2. The number of parties per year and the average length of stay for each group are shown in columns 2 and 3. The daily average party costs are repeated from table 1 in column 4. The estimate of the total yearly expenditures by each group of tourists is given in the last column. The total by all groups is $\$ 90,458,000$; thus tourists are an impressive source of income to the State.

Table 2.-Estimate of tourist expenditures by type of accommodation

Tourists using hotels and those staying at their own homes are estimated to spend the largest amounts. The expenditures of each of these groups are nearly $\$ 28,000,000$ per year, and between them they account for 62 percent, or nearly two-thirds, of the total sum spent by all tourists, and yet the number of tourists using their own homes is only 7.7 percent of all tourists. In contrast, those staying with friends are 21 percent of the total number, but their expenditures represent only 5.8 percent of the total expenditures. The contrast is even more striking in the case of trips of less than 1 day. Although 18.8 percent of the total number, they account for less than one-half of 1 percent of the total expenditure.

Table 3 gives an estimate of the direct income to the State government from tourist traffic in the form of gasoline taxes. On the average, each tourist car travels about 1,000 miles in Florida during the visit, or $515,000,000$ miles for the total traffic. At 14 miles per gallon, $36,786,000$ gallons of gasoline are consumed, yielding $\$ 2,575,000$ at the current tax rate of 7 cents per gallon, and equivalent to approximately 16 percent of all State gasoline taxes.
Table 3.-Estimate of total yearly mileage of tourist cars in Florida and payments of gasoline tax

Average miles per car per day -.-.-.-.-.-.-.-.-.--- 22
Average length of stay per car in days------------------ 29.4

Travel in Florida to and from destination, miles.--.- 392
Total mileage per car (round figures).--.--------- $\quad 1,000$

Total yearly mileage 515,000,000

Total gallons of gasoline consumed...-.----.-.---- $36,786,000$

Total tax paid by tourists
\$2,575,000
TRUCK SHIPMENTS OF CITRUS FRUIT NUMEROUS
Citrus fruits, with a net farm value of approximately $\$ 37,000,000$ in 1933-34, originate in an area south of a line from Palatka to Cedar Keys, largely from the sections surrounding Orlando and Leesburg, and from Sebring to Lakeland. During the season of 1933-34 the interstate truck shipments aggregated 31,590 truck

Figure 4.-Distribution of Florida Citrus Fruits by States; Annual Truck Shipments on Large-Scale Map and Rail Shipments Shown on Small-Scale Map.

Figure 5.-Seasonal Movement of All Outgoing Trucks ó the Pričcipal Commercial Interstate Routes U S 1 , US S 17, aNo US 41
loads. These truck shipments were destined mainly to Georgia, South Carolina, Alabama, North Carolina, Tennessee, the District of Columbia, and Virginia (see fig. 4), with the number of trucks in the above order. The States enumerated took about 88 percent of the total interstate truck shipments. In the total movement, all States east of the Mississippi River except the New England group and Delaware were represented, while west of the Mississippi only the States of Missouri, Arkansas, Texas, and Louisiana received truck loads of citrus fruits from Florida. Georgia and South Carolina accounted for more than half the total interstate citrus fruitshipments by truck.

The peak of the truck movement of citrus fruits is in mid-December, with a secondary peak near the middle of March. After the bulk of the fruit had been moved, many of the truckers shifted to the transportation of garden produce-beans, tomatoes, asparagus, etc.

Fifteen percent of the 215,600 outgoing trucks crossing the Florida State line during the year carried citrus fruits; 8 percent carried garden produce; 40 percent carried miscellaneous commodities; and 37 percent were empty. Figure 5 indicates the seasonal movement of these trucks and the shifting from citrus fruit hauling to the transportation of garden produce

US $1, \mathrm{U}$ S 17 , and U S 41 were the major gateways through which these commodities moved, these three routes together carrying 82 percent of all citrus fruit shipped to other States by truck and 82 percent of the interstate garden-produce shipments.

More than 80 percent of all trucks crossing the State border and carrying citrus fruit was registered in States other than Florida. Seventy-one percent of trucks carrying garden produce in interstate commerce was also registered in other States.

Fifty-two percent of all trucks used in the carrying of citrus fruit had capacities of 2 to 4 tons; 40.5 percent were in excess of 4 tons; while 7.5 percent had capacities up to and including $1 \frac{1}{2}$ tons. The use of trailers was negligible, since less than 2 percent of all trucks hauled trailers

The internal movement of citrus fruit was largely to packing plants and canneries at Tampa and Jacksonville.
(Continued from p. 67)
The velocity curve obtained at Williamsburg, Va., figure 11, applies to a marl and shell conglomerate overlain by a few feet of clay. The velocities found are relatively high for a location where there is no rock near the surface and are the result of the highly compacted shell conglomerate which appears to have about the same acoustical properties as a deep clay or shale.

A few tests have been made at quarry sites and at other locations where solid rock is found within a few feet of the ground surface and all indicate that the depth of such overburdens can be determined quickly, definitely, and accurately by the seismic method. For such work a single no. 8 blasting cap gives ample energy, thus reducing the cost of explosives to a negligible amount.

While the work of the bureau with the seismograph has been largely experimental and limited to one locality, the results to date have been so promising that they leave little doubt as to the ultimate value of this tool in the study of subsurface formations.

LITERATURE CITED

(1) Gish, O. H.
1926. IMPROVED ECUIPMENT FOR MEASURING EARTHCURRENT POTENTIALS AND EARTH RESISTIVITY. National Research Council Bulletin, Vol. 11, No. 56.
(2) Kurtenacher, K. S.
1934. SOME PRACTICAL APPLICATIONS OF RESISTIVITY measurements to highway problems. Transactions, American Institute of Mining and Meteorological Engineering, Vol. 110, No. 49. (Also reported to the Mississippi Valley Conference of Highway Departments.)
(3) Kurtenacher, K. S.
1934. USE OF RESISTIVITY METHODS FOR LOCATING AND EXPLORING DEPOSITS OF STONE AND GRAVEL. Rock Products, July, p. 32.
(4) Lee, F. W.
1928. measuring the variation of ground resistivity with a megger. U. S. Dept. of Commerce, Bureau of Mines, Technical Paper 440.
(5) Lee, F. W., Joyce, J. W., and Boyer, Phil.
1929. SOME EARTH RESISTIVITY MEASUREMENTS. U.S. Dept. of Commerce, Bureau of Mines, Information Circular 6171.
(6) Lee, F. W., and Swartz, J. H.
1930. RESISTIVITY MEASUREMENTS OF OIL-BEARING BEDS. U. S. Dept. of Commerce, Bureau of Mines, Technical Paper 488.
(7) McCollum, Burton.
1921. measurments of earth currents. Electric Railway Journal, Nov. 5.
(8) Schappler, R. C., and Farnham, F. C.
1933. the Earth resistivity method applied to the Prediction of materials in excavation. Paper presented at the Twenty-fifth Mississippi Valley Conference of State Highway Departments at Chicago, February.
(9) Swartz, J. H.
1932. OIL PROSPECTING IN KENTUCKY BY RESISTIVITY methods. U. S. Dept. of Commerce, Bureau of Mines, Technical Paper 521.
(10) Tagg, G. F.
1932. INTERPRETATION OF RESISTIVITY MEASUREMENTS. American Institute of Mining and Meteorological Engineering, Technical Publication 477.
(11) Wenner, Frank.
1915. METHOD OF MEASURING EARTH RESISTIVITY. U.S. Dept. of Commerce, Bureau of Standards, Scientific Paper 258.
(12) Wilcox, Stanley W.
1935. PROSPECTING FOR ROAD MATERIAL BY GEOPHYSICS. Engineering News-Record, Feb. 21, p. 271.

									$\underset{\sim}{N}$	$\begin{gathered} \text { 䯩茼 } \\ \underset{\sim \sim}{\alpha} \end{gathered}$											\％	－
													$$			$\stackrel{\rightharpoonup}{5}$	テิฟ มั่ัด ท			ت	－	
				$\frac{\text { 范 }}{\frac{10}{x}}$	¢	先	$\stackrel{7}{7}$	$\stackrel{\text { ®® }}{\sim}$	$\xrightarrow{\text { bora }}$	－	べべめy	¢0ำ	－ึّ	～	ヘิ－		～＊	へั่	Nัツ．			ก
					$\begin{aligned} & \mathrm{E} \\ & \stackrel{\mathrm{C}}{8} \end{aligned}$		$\begin{aligned} & \text { 器 } \\ & \text { ます } \end{aligned}$		$\begin{aligned} & \text { 上 } \\ & \text { ご } \end{aligned}$			$\begin{aligned} & y_{n}^{n} \\ & \vdots=2 \\ & y= \end{aligned}$				$\begin{gathered} \text { ®ag } \\ \text { in } \\ \text { ing } \end{gathered}$						
									$\begin{array}{\|l} \substack{n \\ \vdots \\ \hline \\ \hline} \end{array}$	$\stackrel{\substack{\mathbf{3} \\ \stackrel{0}{6}}}{ }$	$\begin{aligned} & \text { y } \\ & \text { wa } \\ & \vdots \end{aligned}$	$\begin{aligned} & \stackrel{\hat{E}}{\underset{=}{-}} \end{aligned}$		$\begin{aligned} & \text { \%ig\% } \\ & \text { תixis ix } \end{aligned}$				$\begin{aligned} & \text { 黑 } \\ & \equiv \end{aligned}$			\％	
				$\begin{aligned} & \frac{y y y y}{y} \\ & \frac{y}{3} \end{aligned}$			®ッロ\％	ロット		－${ }_{\sim}^{\text {min }}$							－	¢ ¢ ¢ ¢	กั\％	＊～0	¢	－
						学言兑長等															号	
										ip Mído		2青员 ヘั๋ ํํ		$\begin{aligned} & \text { Nexi } \\ & \text { Mix } \\ & \text { Min } \end{aligned}$			缶敬8 º			$$	域	
																					－	
				$\frac{\stackrel{y y y}{u}}{\frac{0}{2}}$						¢omn	구ㅅㅜㅜ웅	oom	A－		$\begin{aligned} & \text { ond } \\ & \text { sigition } \end{aligned}$		Rififo		9io	No	$\stackrel{\text { \％}}{\text { ¢ }}$	－
											$\begin{aligned} & \text { 咢 } \\ & \text { 合 } \\ & \end{aligned}$		$\begin{aligned} & \text { Rop } \\ & \text { Ron } \\ & \text { in in } \end{aligned}$	$\begin{aligned} & \text { Wisp } \\ & \text { Noin } \\ & \text { Noin } \end{aligned}$							第	
																				$\begin{aligned} & \stackrel{\rightharpoonup}{\tilde{0}} \\ & \stackrel{\leftrightarrow}{M} \end{aligned}$	䓂	
																				$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{a}} \\ & \dot{\mathrm{y}} \end{aligned}$	－	
					팽 쿵 ベーテ																	
																				郪	\％	
			$\stackrel{\leftrightarrow}{6}$																		第	

CURRENT STATUS OF UNITED STATES PUBLIC WORKS ROAD CONSTRUCTION

CLASS 2．－PROJECTS ON EXTENSIONS OF THE FEDERAL－AID HIGHWAY SYSTEM INTO AND THROUGH MUNICIPALITIES

				$\begin{aligned} & \text { Nずす } \\ & \text { O. } \\ & \text { jã } \end{aligned}$				$\begin{aligned} & \text { Fizo } \\ & \text { 2ing } \\ & \text { 2njon } \end{aligned}$							全些花 คำ．				
				そ等ま ヘis		in 态		にあき สักํ	志简会 ธ์	$\begin{aligned} & \text { \#o } \\ & \text { 品 } \end{aligned}$	หูํㅜ웅 ธัロ		$\begin{aligned} & \text { Ning } \\ & \text { inis } \end{aligned}$				$\begin{gathered} n \underset{n}{n} \\ \\ \end{gathered}$		\％ 20 \sim \sim
		\cdots	¢ํ	Moo	－	－으ำ\％	$\stackrel{\sim}{i}$	－¢	80Nํ	m		$\operatorname{ming}_{\underset{\sim}{2}}$		Fio		－8．	－		N
					$\begin{gathered} \text { Ho } \\ \text { No } \\ 0 \\ \text { \%on } \\ \hline \end{gathered}$			$\begin{aligned} & \text { Eoñ } \\ & \text { mion } \\ & \text { mod } \end{aligned}$	$\begin{aligned} & \text { 事足志 } \\ & \text { gno } \end{aligned}$	$\begin{array}{ll} \text { nion } & \text { ñ } \\ & \text { in } \end{array}$									
		Nㅜํํ నัఞ్షై		$\begin{aligned} & \text { ๗o } \\ & \sim \end{aligned}$			ダま ค்				$\begin{aligned} & \text { yir } \\ & =0 \\ & =8 \end{aligned}$			$\begin{gathered} \text { Nod } \\ \text { Boin } \end{gathered}$	$\begin{aligned} & \text { 20 } \\ & \text { = } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\tilde{N}} \\ & \text { ぶ } \end{aligned}$	$\begin{aligned} & 8 \\ & \mathbf{8} \\ & \underset{\sim}{0} \end{aligned}$		
	$\frac{\text { 淢 }}{2}$		onon	0	$\stackrel{\circ}{\mathrm{N}} \underset{\mathrm{w}}{\mathrm{oj}}$	Min			走范		O゚on	ヘัં	ำ゚	NiNo		－¢ ¢゙ず	Ano	\cdots	กั๋
			 กi̊ํㅜㅜ $=$		登落 సĩ	$\begin{aligned} & \text { mid } \\ & \text { cion } \\ & \text { con } \end{aligned}$			$\begin{aligned} & \text { wosid } \\ & =0 \\ & \text { Nin } \end{aligned}$		\dot{m}		뿌우ํ ติํํํ $-$		뀽 ฟ์				N
				$\stackrel{\cong}{0}$					$\begin{aligned} & \text { mod } \\ & \text { mo } \\ & \text { ino } \\ & =0 \end{aligned}$	$$			$\begin{aligned} & \text { inner } \\ & \text { wise } \\ & \text { mion } \end{aligned}$					$\begin{aligned} & \text { 志 } \\ & \text { oin } \end{aligned}$	n
									NNㅇㅇㅇ 安気									$\begin{aligned} & \text { ే } \\ & \stackrel{\rightharpoonup}{\circ} \\ & \text { on } \end{aligned}$	
	晨					舌品品		$\begin{aligned} & \text { Fiog } \\ & \text { mion } \end{aligned}$	$\begin{aligned} & \text { nuan No } \\ & \text { sinin } \end{aligned}$	ayai	A00			$\underset{\sim}{*} \dot{\sim}$	Bion No		Nox	${ }_{0}^{\sim}$	－
				$\begin{aligned} & \text { N0 } \\ & \text { おow } \\ & \text { jow } \end{aligned}$	筬		$\begin{aligned} & \text { 答 } \\ & \text { in } \end{aligned}$			$\begin{aligned} & \overrightarrow{\mathrm{w}} \\ & \stackrel{\rightharpoonup}{\mathbf{w}} \\ & \stackrel{\rightharpoonup}{\mathrm{~N}} \end{aligned}$	$\begin{gathered} \text { Bo열 } \\ \text { and } \end{gathered}$		$\begin{aligned} & \text { Qotion } \\ & \text { Sign } \\ & \text { Lign } \end{aligned}$	\％				$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \text { む్ } \end{aligned}$	
						ix ․ㅜN									ヘิも ずも		ద్ర్థ్ర్ర్ర ᄃ็๐		
	菏 0 gis						Tin				No	№̄ㅇㅜㅑ ベッチン			㒸엿 ภำํ －in			$\underset{\infty}{\stackrel{N}{\aleph}}$	
		 む̊ －	융 8 Nigo ～		$\begin{gathered} 288 \\ \text { mon } \\ \text { mion } \\ \text { Nin } \end{gathered}$						8్రిగ్ర్త ธisin $\stackrel{-1}{-1}$		$\begin{aligned} & \text { wom } \\ & =5 \% \\ & \text { Eis } \end{aligned}$			쿵ํ 空逐		$\begin{aligned} & \overrightarrow{0} \\ & \text { 텡 } \end{aligned}$	0 0 0 0 0 0 0
					웅뭉 －pio		No ํㅜㅇㅜํ											$\begin{aligned} & \text { 等 } \\ & \text { 学 } \end{aligned}$	\％ $\substack{0 \\ 0 \\ 0 \\ 0 \\ 0}$ 0
																			\％

						$\stackrel{\text { n }}{\sim}$		$\begin{aligned} & \text { Wa్ } \\ & \text { Nin } \\ & \text { Sin } \end{aligned}$						$\begin{aligned} & \underset{6}{0} \tilde{o n}_{0} \\ & =50 \end{aligned}$			$\begin{aligned} & \text { 沓 } \hat{\sim} \\ & \text { añ } \end{aligned}$		第
			$\underset{7}{8}$		$\begin{aligned} & \text { N్ol̃ } \\ & \text { Nin } \end{aligned}$	⿹ㅑ울 ヘํ				$\stackrel{\approx}{\approx}$	$\stackrel{\circ}{\square}$	お夏ま लंज．	충	$\begin{aligned} & \text { 券 } \\ & \approx \end{aligned}$	$\begin{aligned} & \text { ब్లై } \\ & \text { సim } \\ & \text { సim } \end{aligned}$	$\stackrel{\sim}{\sim}$	$\begin{aligned} & \text { my } \\ & \text { in } \end{aligned}$		N
		$\underset{\sim}{n} \underset{\sim}{n} \underset{\sim}{n}$	$\underset{\sim}{\infty}$	ONM	$\stackrel{ \pm}{ \pm}$	※゙om	$\underset{\tilde{\sim}}{\text { arn }}$			\cdots	－isioy		$\stackrel{\rightharpoonup}{\mathrm{P}} \cdot \overrightarrow{\mathrm{r}} \mathrm{~m}$	foo	an og	$\stackrel{\circ}{9}$			$\underset{\sim}{7}$
		$\begin{aligned} & \text { MFo } \\ & \text { Nion } \\ & \text { inim } \end{aligned}$								$$		$\begin{aligned} & 898 \\ & \text { 20 } \\ & \text { join } \end{aligned}$				$\begin{aligned} & \circ \\ & \underset{\leftrightarrow}{0} \\ & \stackrel{\sim}{\circ} \end{aligned}$			$\xrightarrow[\sim]{\text { ¢ }}$
			$\underset{\sim}{i}$	ま	䛿		$\begin{aligned} & \tilde{\infty} \\ & \stackrel{\sim}{\sim} \end{aligned}$		$\begin{aligned} & \text { : } \\ & \text { I } \\ & \text { 咅 } \\ & \text { in } \end{aligned}$			$\begin{aligned} & \text { 士⿱士心⿴囗⿰丨丨⿹\zh26灬} \\ & \text { Non } \end{aligned}$		$\begin{aligned} & \text { N } \\ & \text { g } \end{aligned}$	$\begin{aligned} & \text { mo } \\ & \text { Hed } \\ & \text { fon } \end{aligned}$	$\stackrel{\text { 릋 }}{\underset{\sigma}{\circ}}$	E		\％ H0 ¢
		60 in	$\begin{aligned} & \vec{A} \neq 0 \\ & \text { in } \\ & \text { مin } \end{aligned}$	nom 			Co			$\begin{aligned} & \text { nin } \\ & \text { nis } \\ & \hline 10 \end{aligned}$		$\begin{aligned} & \text { Non } \\ & \dot{m} \dot{\sim} \\ & \hline 1 \\ & \hline \end{aligned}$	mang	家茓范			둔	$\stackrel{3}{3}$	0 \vdots \vdots
		웅웅 inำ	ざが口 ป็న్నํ										푱ㅇ がった				గ్ర్డ్ 푸ํ	$\begin{aligned} & \stackrel{\text { N }}{0} \\ & \stackrel{\sim}{m} \end{aligned}$	？
										$\begin{aligned} & 8 \\ & \underset{\sim}{2} \end{aligned}$				$\begin{aligned} & \text { Hat } \\ & \text { Nin } \\ & \text { Non } \end{aligned}$		$\underset{\underset{\sim}{\pi}}{\underset{\sim}{\pi}}$			\％ \sim \sim
															G주Nㅜㅇ 咅夺完 ～			$\begin{aligned} & \stackrel{\sim}{0} \\ & \stackrel{\sim}{\mathrm{n}} \end{aligned}$	® 0 0 0 0 \vdots －n
$\begin{aligned} & \text { 虽 } \\ & \text { 岃 } \\ & \text { 苋 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 总 } \\ & \frac{\ddot{4}}{2} \end{aligned}$		Munu	ginu	BTo					TNom	Cutisio			$\begin{aligned} & \text { Minco } \\ & \text { Mision } \end{aligned}$		$\underset{\sim}{ \pm} \underset{\sim}{\dot{\sim}}$		ソัの	
			$\begin{gathered} \text { Mas } \\ \text { Hain } \\ \text { Hin } \end{gathered}$		$\begin{aligned} & \text { E尸0 } \\ & \substack{0\\ } \end{aligned}$	$\begin{aligned} & 8 \text { No } \\ & \text { Nin } \\ & \text { Nin } \end{aligned}$		$\begin{aligned} & 0.9 \\ & 0.0 \\ & 0{ }^{\circ}{ }^{\circ} \end{aligned}$			$\begin{aligned} & \text { 오야 } \\ & \text { No } \\ & \text { Mis } \end{aligned}$			$\underset{\substack{5 \\ 0}}{\stackrel{\rightharpoonup}{2}}$			$\begin{aligned} & \text { M⿵ } \\ & \text { No } \\ & \end{aligned}$		
						き～ ベット		き尔울家ぎす ヘ～											
						ํㅜํN ฐ్లֹํ ヘ～～			오웅 －i～～						药 7 －i				へิ
													$\begin{aligned} & \text { Now } \\ & \text { Nis } \\ & \text { ji天 } \\ & i=6 \end{aligned}$	옹으움 甜言足 \cdots					응
																		$\begin{gathered} \text { do } \\ \text { Ní } \\ \\ \hline \end{gathered}$	N
	$\underset{\substack{\text { H/ } \\ \hline \\ \hline}}{ }$																	\qquad	n H H

			무쑤N権 ${ }^{\circ}$	ㄲㅜㅀㅜㅄ等第								웅슝․ 				$\begin{aligned} & \text { Jono } \\ & \text { mion } \\ & \text { mion } \end{aligned}$		$\begin{aligned} & \text { きo } \\ & \text { º } \\ & \text { wis } \end{aligned}$	N
			$\begin{aligned} & \text { oूल } \\ & \text { 三- } \end{aligned}$	＂one おぎ	出운울 กั๋์ำ					$\begin{aligned} & \text { nion } \\ & \text { min } \end{aligned}$			ำํํํ ゅ			N⿵冂 －in국		\＃゙	
$\underset{\substack{\mathrm{Z}}}{2}$			$\underset{y}{\text { min }}$	べさ	-i	$\begin{aligned} & \text { ®ioo } \\ & \text { लंம் } \end{aligned}$	Mo me							쿠웅		ジヘ⁄⁄			$\stackrel{\infty}{\text { \％}}$
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$					$\begin{aligned} & \text { sp } \\ & \text { No } \\ & \\ & \text { NN } \end{aligned}$	ฆึ์య 	$\begin{aligned} & \text { Nive } \\ & \text { Sin } \\ & \text { Son } \\ & \text { Sin } \end{aligned}$	\％웅 ミペ゙す	융응웅 がずで			ఝ్ర్ర్ర్ ぎN゙N	$\begin{aligned} & \text { な్రిడ } \\ & \text { Bim } \\ & \text { BiN } \end{aligned}$			$\begin{aligned} & \text { opos on } \\ & \text { ing } \\ & \text { indion } \end{aligned}$			¢
$\begin{aligned} & \text { u} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$			$\stackrel{\stackrel{5}{\mathrm{~m}}}{ }$	뿡쭝 デが		$\begin{aligned} & 8 \text { 808 } \\ & \text { - } 50 . \end{aligned}$		앵ㄲㄲ 	$\begin{aligned} & \text { ㄹ } \\ & \text { 응 } \\ & \text { N్N O} \end{aligned}$	$\begin{aligned} & \text { 芯 } \\ & \end{aligned}$	$\begin{aligned} & \text { 〒i8 } \\ & =0 \end{aligned}$	$\begin{aligned} & \text { N్No } \\ & \text { Ning } \end{aligned}$			$\begin{aligned} & \text { No } \\ & \text { Lion } \end{aligned}$	$\begin{aligned} & \vec{N} \\ & \underset{\sim}{N} \end{aligned}$			䢔
		Big		$\stackrel{\infty}{\infty} \underset{\sim}{\sim}$				Mn			$\underset{\sim}{\text { Min }}$	$\begin{aligned} & \infty 000 \\ & \text {-ninion } \end{aligned}$		$\begin{aligned} & \text { nol } \\ & \text { ल̃ㅜN } \end{aligned}$	ぶ丸o	Fin in	内	$\stackrel{\sim}{\sim} \mathrm{m}$ ¢	m
			シi心 き															$\begin{aligned} & \text { た。 } \\ & \stackrel{\leftrightarrow}{6} \end{aligned}$	
																	※๊OㅋNN がずが		遃
			ㅍun ธั่ ํㅜํ ∞ ผั		ํํำ ペジシ －シั่ ท										※Nㅜㅇ 웅추N ท우ํ		$\begin{aligned} & \text { She } \\ & \text { Not } \\ & \text { Now } \\ & \end{aligned}$		
							$\begin{aligned} & \text { Non } \\ & \text { 咅き } \end{aligned}$	H゙sin			$\begin{aligned} & \text { nag } \\ & \text { nin } \\ & \text { nin } \end{aligned}$		$\begin{aligned} & \text { NuN } \\ & \dot{0} \text { nin } \\ & 0 \end{aligned}$	Si				－${ }_{\text {¢ }}$	¢
				$\begin{aligned} & \text { new } \\ & \text { gion } \\ & \text { jía } \end{aligned}$		$\begin{aligned} & \text { odin } \\ & \text { ond } \\ & \text { ound } \end{aligned}$					eng	르르N きion oi	$\begin{aligned} & \text { Nino } \\ & \text { Ning } \\ & \text { 等侖 } \end{aligned}$		코웅웅品init	$\begin{aligned} & \text { wis } \\ & \text { ono } \\ & \text { on } \end{aligned}$		$\stackrel{\text { 㥐 }}{\stackrel{y y y y}{*}}$	
			추우양 管 －			$\begin{aligned} & \text { N No } \\ & \text { No } \\ & \text { No } \\ & \text { Now } \\ & \text { mion } \end{aligned}$					$\begin{aligned} & \text { wow } \\ & \text { ono } \\ & \text { مit } \\ & \text { jin } \end{aligned}$								
	$\begin{aligned} & \text { 荅 } \\ & \text { 感 } \end{aligned}$		含器志 No웅 ${ }^{-1}$						$\begin{aligned} & \text { Non } \\ & \text { Non } \\ & \text { Conn } \\ & \text { ion } \end{aligned}$			$\begin{aligned} & \text { Man } \\ & \text { oind } \\ & \text { BiN } \\ & \text { oinin } \end{aligned}$							
											శ్రి유주 ทin추	また ま゙べ	으유융 ジธ우 ま゙ゥ	N゙ずす気完 rinm					
		4	志品呈 ペธ～			 เํํํํ が우		$\begin{aligned} & 8 \text { No } \\ & \text { No } \\ & \text { con } \\ & \text { inno } \end{aligned}$							웅률豙ます がき				$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & \text { 年 } \end{aligned}$
	$\stackrel{\text { Es }}{\stackrel{E}{5}}$																		3 3

[^0]: ${ }^{1}$ Italic numbers in parentheses refer to literature cited on p. 74.

[^1]: ${ }^{1}$ The complete report is heing published by the Florida State Road Department, Tallahassee, Fla. Copies are not available from the Bureau of Public Roads.

