R

A JOURNAL OF HIGHWAY RESEARCH

UNITED STATES DEPARTMENT OF AGRICULTURE BUREAU OF PUBLC ROADS

ROADSIDE STATION FOR DETERMINING WEIGHTS AND DIMENSIONS OF TRUCKS

PUBLIC ROADS $\cdots u$ Highway Research

Issued by the

UNITED STATES DEPARTMENT OF AGRICULTURE
BUREAU OF PUBLIC ROADS
Volume 16, No. 3
May 1935

The reports of research published in this magazine are necessarily qualified by the conditions of the tests from which the data are obtained. Whenever it is deemed possible to do so, generalizations are drawn from the results of the tests; and, unless this is done, the conclusions formulated must be considered as specifically pertinent only to described conditions.

In This Issue

A Study of the Weights and Dimensions of Trucks Page

-

THE BUREAU OF PUBLIC ROADS - - - Willard Building, Washington, D.C. REGIONAL HEADQUARTERS Mark Sheldon Building, San Francisco, Calif.

DISTRICT OFFICES

DISTRICT No. 1. Oregon, Washington, and Montana.
Post Office Building, Portland, Oreg
DISTRICT No. 2. California, Arizona, and Nevada.
Mark Sheldon Building, 461 Market St., San Francisco, Calif.
DISTRICT No. 3. Colorado, New Mexico, and Wyoming.
237 Customhouse, Nineteenth and Stout Sts., Denver. Colo.
DISTRICT No. 4. Minnesota, North Dakota, South Dakota, and Wisconsin.
907 Post Office Building, St. Paul, Minn
DISTRICT No. 5. Iowa, Kansas, Missouri, and Nebraska.
Saunders-Kennedy Building, Omaha, Nebr,
DISTRICT No. 6. Arkansas, Louisiana, Oklahoma, and Texas.
Room 502, United States Courthouse, Fort Worth, Tex

DISTRICT No. 7. Illinois, Indiana, Kentucky, and Michigan. South Chicago Post Office Building, Chicago, III.
DISTRICT No. 8. Alabama, Georgia, Florida, Mississippi, South Carolina, and Tennessee.

Post Office Building, Montgomery, Ala.
DISTRICT No. 9. Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, and Vermont.

Federal Building, Troy, N. Y.
DISTRICT No. 10. Delaware, Maryland, North Carolina, Ohic, Pennsylvania, Virginia, and West Virginia.

Willard Building, Washington. D. C.
DISTRICT No. 11. Alaska.
Room 419. Federal and Territorial Building, Juneau, Alaska.
DISTRICT No. 12. Idaho and Utah.
Federal Building, Ogden, Utah.

Because of the necessarily limited edition of this publication it is impossible to distribute it free to any person or institutions other than State and county officials actually engaged in planning or constructing public highways, instructors in highway engineering, and periodicals upon an exchange basis. At the present time additions to the free mailing list can be made only as vacancies occur. Those desiring to obtain Public Roads can do so by sending $\$ 1$ per year (foreign subscription $\$ 1.50$), or 10 cents per single copy, to the Superintendent of Documents, United States Government Printing Office, Washington, D. C.

A STUDY OF THE WEIGHTS AND DIMENSIONS OF TRUCKS

Reported by J. T. THOMPSON, Highway Research Specialist, U. S. Bureau of Public Roads, and Professor of Civil Engineering, the Johns Hopkins University

Determining the Weights and Dimensions of Trucks.

How do the over-all dimensions of loaded motor vehicles vary with manufacturer's rated capacity?
How are the gross loads of motor vehicles distributed to the various axles?
To what extent do operators exceed the manufacturer's recommended loading, and how does prevalency of this "overloading" vary with manufacturer's ratings?
To what extent are tires being similarly overloaded?

THESE ARE typical of the questions which should be answered by those who must consider dimensions and load concentrations in providing clearance and strength in the design of highways and highway bridges, by highway economists who would properly allocate highway costs to the various classes of vehicles, by manufacturers of both vehicles and tires, and by highway administrators and legislators who would intelligently restrict motor vehicle size and weight and legislate fair tax rates to sustain highway programs.

Those who have had to seek the answers to these and similar questions know that hitherto existing data, such as manufacturer's specifications, fail to provide them. So far as the writer knows, there is no way to obtain this information except by establishing roadside "clinics" where vehicles may be studied as they pass.

OBSERVATIONS MADE ON TWO MAIN TRUCK ROUTES

The following data have been obtained from just such clinics. During the summer and fall of 1934 the Bureau of Public Roads of the United States Department
of Agriculture with the cooperation of the Johns Hopkins University, the Maryland State Roads Commission, and the Commissioner of Motor Vehicles of Maryland, operated two stations at which commercial vehicles were weighed and measured. One of these was located on Route U S 40, leading north from Baltimore toward Philadelphia, the other on Route U S 1 leading south from Baltimore toward Washington. These stations were operated alternately for periods of approximately 2 weeks from the middle of June to the middle of November. During the entire period 10,700 vehicles were observed, 7,100 when loaded and 3,600 when empty. It is believed that the data constitute a representative sample of truck traffic on main highways in this area. Further investigation is needed to determine if the data are representative of truck traffic on main highways generally.
The field party of 4 men consisted of a uniformed officer to direct traffic, a notekeeper, and 2 others who shared the duties of weighing and measuring. Aside from the scales no other special equipment was used. A cloth tape and a level-rod with a horizontal arm for calipering heights answered every purpose.

In order to avoid the recurrence of data relating to identical vehicles frequently passing the station, identification cards were issued to all operators and no vehicle was recorded more than once loaded and once empty when proceeding in each direction during any one 2-week period.

The procedure was as follows: All commercial vehicles were stopped. Identification cards, if presented, were examined. If a card were presented indicating that the vehicle, loaded or empty, had already
been recorded when traveling in the same condition and in the same direction during the current 2 -week period, the vehicle was permitted to pass. Otherwise it was run on the scales and weighed first with all wheels on the platform. It was then moved ahead by stages until, first the forward axle, and then each successive axle was off the platform, determining after each movement the weight carried on the axles remaining on the platform. At the same time the over-all length, height, width, and wheel base were determined; the manufacturer's marker and registration data were inspected for make of vehicle and manufacturer's rated capacity; and the license number was noted.

As the field reports came into the office the information contained in and derived from them was tabulated on large ruled master sheets, and these were used in segregating and analyzing the data. Where the data permitted, pay loads were determined by subtracting the measured empty weights of vehicles from their gross weights as measured on loaded trips. The determination was facilitated by preparing, for each vehicle initially observed, a file card, bearing the license number, on which was entered after each observation of the same vehicle a reference to the pertinent field data sheet.

Before proceeding to the remainder of this report, the reader should have in mind the size and weight restrictions of Maryland laws because of their influence upon the data. From the beginning of the study in June until the middle of October no attention was paid to violations of these laws nor were penalties of any kind imposed. This was done intentionally to encourage unrestricted operation. The number of observed weight violations was small-less than one percent. After the middle of October, at the insistence of State authorities, the laws were enforced and nine arrests were made for overweight, 1,500 weighings being recorded during the corresponding period.

The Maryland laws may be briefly summarized as follows:

Maximum dimensions
Width
Length
Height \qquad 96 inches.

Maximum gross weights
On solid tires
On pneumatic tires:
Single unit, 4 wheels, 2 axles_
Single unit, 6 wheels, 3 axles_
Combination of 2 vehicles (tractor
and semitrailer or tractor and full trailer) combined weight \qquad 40,000 pounds. ${ }^{1}$

gross weights not in profortion to rated capacities

Reference will be made in this report to the term "manufacturer's rated capacity" as applied to both vehicles and tires. Applied to single vehicles and tires, the term as used means the carried load which the manufacturer recommends as safe and economical for the vehicle or tire in question. Applied to tractorsemitrailer combinations, it refers to the carried load of the semitrailer only.

[^0]

Figure 1.-Frequency Distribution by Gross Weights of Loaded Single Vehicles.

Figure 1 and table 1 show the frequency distribution by the gross weights of loaded single vehicles, expressed in terms of numbers of vehicles and the percentages of the total number of loaded vehicles of each capacity class having gross weights falling within various class limits, defined to the nearest thousand pounds. In tables 2 and 3 these data are segregated respectively into 4 -wheel and 6 -wheel classes. As stated above, 4 -wheel single vehicles may legally carry 25,000 pounds and 6 -wheelers 40,000 pounds.

It is immediately evident that the gross loads of vehicles of small capacity are much greater in proportion to the rated capacity than are those of large capacity trucks. Comparing the $1 \frac{1}{2}-$ and 5 -ton classes in table 1, for example, the ratio of rated capacities is 3.33. If gross weight were proportional to capacity, 5 -ton trucks would have an average gross weight of 3.33 by 10,500 equals 35,000 pounds; actually they average 21,600 pounds.

Table 1.-Frequency distribution of gross weights of all loaded single vehicles, percentage of total observations in each capacity class

Manufacturer's rated capacity	A ver-agegrossweight	Gross weight, 1,000 pounds														Total observations
		4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27	28-30	31-33	34-36	37-39	40-42	43-45	
1 ton.	Pounds $6,400$	$\begin{array}{\|c} \text { Percent } \\ 70.0 \end{array}$	$\begin{array}{\|c} \text { Percent } \\ 20.0 \end{array}$	$\begin{array}{r} \text { Percent } \\ 6.7 \end{array}$	Percent	$\left\lvert\, \begin{array}{r} \text { Percent } \\ 3.3 \end{array}\right.$	Percent	Number 30								
$11 / 2$ tons	10,500	18.4	26.1	22.6	23.7	6. 9	1.7	0.4	0.1	0.1						2,920
2 tons	14, 400	1.9	14.5	19.3	21.1	23.1	15.4	3.8	. 7	. 2						533
21,5 tons	16, 300	1. 3	7.9	14.6	20.1	26.0	14.6	9.6	4. 2	1.1.		0. 2	0.4			458
3 tons	18, 100	. 2	3.3	11.7	15.0	20.4	26. 2	14.8	5.6	1. 2	0.7	- 2	. 5	0.2		427
$31 / 2$ tons	20,600	2.3		7.6	15. 3	14.5	19.0	17.6	11.4	3. 1	1. 5	5.3	. 8	8	0.8	131
4 tons	21, 600		2.9	8. 6	8.6	22.8	5.6	8.6	22.8	8.6	8.6		2.9			35
5 tons	21, 600	2. ${ }^{4}$		4. 2	6. 9	16.8 11.6	25.6 23.2	25.6 9.3	9.5 9.3	3.1 2.3	1. 5	3. 0	2.3 13.9	1.1		262 43
Over 5 tons	25, 400	2.3		4.7	4.7	11.6	23.2	9.3	9.3	2.3	4.7	4.7	13.9	9.3		43

Table 2.-Frequency distribution of gross weights of loaded 4 -wheel single vehicles, percentage of total observations in each capacity class

Manufacturer's rated capacity		Gross weight, 1,000 pounds														Total observations
		4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27	28-30	31-33	34-36	37-39	40-42	43-45	
1 ton	Pounds 6, 400	$\begin{array}{\|c} \text { Percent } \\ 70.0 \end{array}$	Percent 20.0	$\begin{array}{\|r} \text { Percent } \\ 6.7 \end{array}$	Percent	Number										
$11 / 2$ tons	10, 100	19.8	26.9	23.5	23.5	5. 6	0.4	0.1	0.1	0.1						2,695
2 tons.	14,300	2.0	14.2	20.1	21.7	22.9	14.8	3. 6								511
23.2 tons	16,000	1.4	8.4	15.2	20.5	25.6	14.9	9.8	4. 0	2						429
3 tons.	17,800	. 3	3.3	11.4	15.7	20.4	27.6	15.4	5. 3	. 3	0.3					395
$31 / 2$ tons	18,600	2.8		9.4	17.0	17.9	20.8	18.9	12.3	. 9						106
4 tons	18,800			17.6	5.9	35. 2	5.9	11.8	23.6	9	5					17
Over 5 tons	19, 200	4.3		8.7	8.7	17.4	34.9	48.3	17.4	-	4.3					176 23

Table 3.-Frequency distribution of gross weights of loaded 6 -wheel single vehicles, percentage of total observations in each capacity class

Manufacturer's rated capacity	Aver-agegrossweight	Gross weight, 1,000 pounds														Total observations
		4-6	7-9	10-12	13-15	16-18	19-21	22-24	25-27	28-30	31-33	34-36	37-39	40-42	43-45	
	Pounds	Percent	Number													
$11 / 2$ tons	14, 900	2.2	12.9	12.9	25.7	23.1	17.8	4.9	0.5							225
2 tons.	17, 300		13.7	4. 5	9. 1	27.3	31.8	9. 1		4.5						22
${ }_{3}^{21 / 2}$ tons	21,200 22,100		3. 1	6.9 15.6	13.8 6.3	31.0 18.8	10.3 9.4	6.9 6.3	6.9 9.4	13.8 12.3		3. 5 3.1	6.9 6			29 32
$31 / 2$ tons	29,100				8.0		12.0	12. 0	8. 0	12.0	8.0	28.0	4.0	4. 0	4.0	${ }_{25}^{32}$
4 tons.	24, 300		5.6		11.1	11.1	5. 6	5. 6	22.0	16.7	16.7		5. 6			18
5 tons.	28,500				2. 2	10.9	13.0	13.0	4.3	13.0	6. 6	17.4	13.0	6.6		46
Over 5 tons	32, 500					5.0	10.0	15.0		5.0	5. 0	10.0	30.0	20.0		20

In tables 4, 5, and 6 vehicles of the heavier gross weights are analyzed according to rated capacity. Table 4 is a classification of all single vehicles of gross weights exceeding 21,000 pounds. Table 5 is a similar classification of the 4 -wheel vehicles only, and table 6 deals similarly with 6 -wheel vehicles only.

Table 4 shows that of 4,839 single vehicles observed 427 or 8.9 percent had gross weights in excess of 21,000 pounds. It is a common belief that such gross weights are associated mainly with vehicles of 5 - and over-5ton rated capacity. Actually, as shown by table 4, only 144 or a trifle over one-third of the 427 vehicles of gross weight exceeding 21,000 pounds were of these two largest rated-capacity classes. Over a fourth of the total number- 112 out of 427 -were vehicles of $2 \frac{1}{2}$ tons rated capacity or smaller, and 16 were trucks of $1 \frac{2}{2}$ tons rated capacity, sizes generally well within the common conception of medium vehicles.

Referring again to table 4, it will be seen that only 190 (4.0 percent) of all loaded vehicles were found to have gross weights in excess of 24,000 pounds, and that
the number of these that were of the 5 - and over-5-ton capacity classes was only 73 (38.4 percent). Again vehicles rated at $2 \frac{1}{2}$ tons capacity and less were found to constitute a very considerable percentage (18.4 percent) of the total, and still a few $11 / 2$-ton trucks were included.

As shown by table 1, it is not until gross weight rises in excess of 30,000 pounds that the last of the $11 / 2$ - and 2-ton trucks disappear; but the 61 trucks, shown by table 4 to be in excess of that weight, include representatives of all rated-capacity classes from $2 \frac{1}{2}$ tons upward. In fact, not far from half of the number were rated at less than 5 tons capacity.

The final columns of table 4 show that 10 or about 0.2 percent of all observed loaded single vehicles weighed above 40,000 pounds. All of these were rated at 3 -ton capacity or more and 7 of the 10 were of the 5 - and over-5-ton classes. By comparison with table 6 it will be seen that all of these trucks were 6 -wheel vehicles, and all were violators of the Maryland law which sets the limit for such trucks at 40,000 pounds;

Table 4.-Classification of all heavy-loaded single vehicles according to manufacturer's rated capacity and gross weight

Manufacturer's rated capacity	Total all loaded vehicles	Loaded vehicles having gross weights exceeding-							
		$\begin{aligned} & 21,000 \\ & \text { pounds } \end{aligned}$		$\begin{aligned} & 24,000 \\ & \text { pounds } \end{aligned}$		$30,000$pounds		$40,000$ pounds	
1 ton	No. 30	No.	Fct.	No.	Pct.	No.	Pct.	No.	Pct.
$11 / 2$ tons 2 tons	2,920	16	3.8	3	1.6				
2 tons...	533	25	5.9	5	2.6	3	4.9		
21/2 tons	458	71	16.6	37	14.2	7	11.5	1	10.0
$31 / 2$ tons	131	54	12. 6	31	16.3	12	19.7	2	20.0
4 tons.	35	18	4.2	15	7.9	4	6. 6		
5 tons.	262	121	28.3	54	28.4	21	34.4	3	30.0
Over 5 tons	43	23	5.4	19	10.0	14	22.9	4	40.0
Total	4,839	427	100.0	190	100.0	61	100.0	10	100.0
Percentage of total loaded vehicles.	100	8.9		4. 0		1. 2		0.2	

Table 5.-Classifisation of heavy-loaded 4-wheel single vehicles according to manufacturer's rated capacity and gross weight

Manufacturer's rated capacity	Total all loaded 4-wheel vehicles	Loaded 4 -wheel vehicles having gross weights ex-ceeding-					
		21,000 pounds		24,000 pounds		30,000 pounds	
1 ton	Number 30	Number	Percent	Number	Percent	Number	Percent
$11 / 2$ tons	2,695	4	1.3	5	2. 1		
2 tons.	511	22	7.3	4	4. 2	--..-	--
$21 / 2$ tons	429	60	19.8	18	18.7		
3 tons.	395	84	27.7	23	23.9	1	33.3
$31 / 2$ tons	106	34	11.2	14	14.6		
4 tons.	17	6	2. 0	4	4. 2		
5 tons.-	216	87	28.8	26	27.1	1	33.3
Over 5 tons.	23	6	2.0	5	5. 2	1	33.4
Total	4,422	303	100.0	96	100.0	3	100.0
Percentage of total loaded 4wheel vehicles_	100	6.9		2.2		0.1	

Table 6.-Classification of heavy-loaded 6-wheel single vehicles according to manufacturer's rated capacity and gross weight

Manufacturer's rated capacity	$\begin{gathered} \text { Total } \\ \text { all } \\ \text { loaded } \\ 6 \text { 6-wheel } \\ \text { vehicles } \end{gathered}$	Loaded 6 -wheel vehicles having gross weights exceeding -							
		$\begin{aligned} & 21,000 \\ & \text { pounds } \end{aligned}$		$\begin{aligned} & 24,000 \\ & \text { pounds } \end{aligned}$		$\begin{gathered} \text { 30,000 } \\ \text { pound } \end{gathered}$		$\begin{aligned} & 40,000 \\ & \text { pounds } \end{aligned}$	
	No.	No.	Pct.	No.	Pct.	No.	Pct.	No.	Pct.
$11 / 2$ tons	22.	12	9.7	1	1.0				
${ }_{2}^{2 / 2}$ tons. tons.	29	11	2.4 8.9	${ }_{9}$	${ }_{9.6}^{1.1}$		5.2		
3 tons .	32	15	12.1	13	13.8	6	10.3	1	10.0
31/2 tons.	25	20	16. 1	17	18.1	12	20.7	2	20.0
4 tons.	18	12	9.7	11	11.7	4	6.9		
5 tons.	${ }^{46}$	34	27.4	28	29.8	20	34.5	3	30.0
Over 5 tons.	20	17	13.7	14	14.9	13	22.4	4	40.0
Total	417	124	100.0	94	100.0	58	100.0	10	100.0
c-wheel hicles-.------	100	29.8		22.6		13.9		2.4	

yet in view of the fact that their heavier loads were carried on six wheels, many of these vehicles unquestionably made less demand upon the strength of the road than the heavier 4 -wheel vehicles of gross weights between 21,000 and 24,000 pounds.
By comparing tables 4,5 , and 6 , it will be seen that 58 of the 61 vehicles observed to have gross loads over 30,000 pounds were 6 -wheelers. The three 4 -wheel vehicles all weighed less than 40,000 pounds, and, as shown by table 5 , represented the 3 -, 5 -, and over- 5 -ton rated-capacity classes.

In the larger groups of vehicles of gross weights exceeding 24,000 and 21,000 pounds the numbers of 4 -wheel vehicles are relatively higher, made so by the preponderance of the lighter gross loads carried on 4 wheels.

VEHICLES OF ALL RATED CAPACITIES FOUND TO CARRY

Table 7 and figure 2 show the gross-weight-frequency distribution for tractor-semitrailer combinations. The tendency to heavier loading of the smaller units in relation to capacity is again evident. If gross weights were proportional to semitrailer capacities, the 5 -ton class would average 3.33 by 20,800 equals 69,200 pounds, whereas it actually averages 27,100 pounds.

Figure 2.-Frequency Distribution by Gross ${ }^{\text {T}}$ Weights of Loaded Tractor-Semitrailer Combinations.

Three cases of overloading, producing gross weights of over 42,000 pounds, are chargeable to the over- 5 -ton class. The group of gross weights between 40,000 and 42,000 pounds, which with the tolerance permitted by the State roads commission includes only legally loaded vehicles, shows a rated-capacity range of from 2 to over 5 tons.
In table 8 the heavier tractor-semitrailer combinations are shown in groups exceeding each of several gross-weight limits corresponding to those shown for single vehicles in tables 4,5 , and 6 . These data show that the numbers of combinations exceeding the limits shown constitute a much larger percentage of the total number of such vehicles than in the case of either 4or 6 -wheel single vehicles. Nearly two-thirds of all semitrailer combinations observed exceed 21,000 pounds gross weight, and almost half weigh more than 24,000 pounds gross. While about one-fifth of the total number exceed 30,000 pounds, only 2.7 percent weigh more than 40,000 pounds. Here again it is apparent that the heavier gross loads are not by any means carried exclusively on vehicles of the larger ratedcapacity classes. On the contrary the smaller rated-

TABLE 7.-Frequency distribution of gross weights of loaded tractor-semitrailer combinations, percentage of total observations in each capacity class

Manufacturer's rated capacity	Average gross weight	Gross weight, 1,000 pounds															Total observations
		7-9	10-12	13-15	16-18	19-21	22-24	25-27	28-30	31-33	34-36	37-39	40-42	43-45	46-48	49-51	
	Pounds	Percent	Number														
$11 / 2$ tons	20,800	1.8	7.0	10.5	19.3	8.7	19.3	26.3	5.3	1.8							N7
2 tons.	23, 200	2.1	4. 3	2. 1	8.5	17.0	25. 6	23.4	8.5	4.3	2.1		2.1				47
3 tons	22,900		2. 3	6. 9.7	11.1	20.2	25. 14	15.6	10. 1	6.5	1.3	1. 3					307
5 tons.	27, 100		6. 29	9.7 3.9	8.1 3.9	17.7 9.8	14.5	16.2 10.8	6.4	8. 1	4. 8	8. 1	3.2				62
Over 5 tons.	28, 200		2.2	4.5	6.2	12.4	11.2	11.2	15.7 8.9	11.8	5.9 11.8	13.7 12.4	3.9 5	0.6	0.6	0.6	102 178

capacity classes are represented by significant numbers of vehicles in each group up to the 30,000 -pound limit.

Table 8.-Classification of all heavy-loaded tractor-semitrailer vehicle combinations according to manufacturer's rated capacity and gross weight

Manufacturer's rated capacity	$\begin{array}{\|c} \text { Total } \\ \text { all } \\ \text { loaded } \\ \text { vehi-- } \\ \text { cles } \end{array}$	Loaded vehicles having gross weights exceeding-							
		$\begin{gathered} 21,000 \\ \text { pounds } \end{gathered}$		$\begin{aligned} & 24,000 \\ & \text { pounds } \end{aligned}$		$\begin{aligned} & 30,000 \\ & \text { pounds } \end{aligned}$		$\begin{aligned} & 40,000 \\ & \text { pounds } \end{aligned}$	
$11 / 2$ tons	${ }^{\text {No. }}$	No. 30	Pct.	No. 19	Pct. 5.4	No,	Pct.	No.	Pct.
2 tons.	47	31	6.3	19	5.4		2.5	1	5.0
3 tons	307	184	37.3	107	30.6	28	17.4		
4 tons.	62	38	7.7	29	8.3	15	9.3	2	10.0
5 tons	102	77	15.6	63	18.0	36	22.4	4	20.0
Over 5 tons	178	133	27.0	113	32.3	77	47.8	13	65.0
Total	753	493	100.0	350	100.0	161	100.0	20	100.0
Percentage of total loaded vehicles.	100	65.5		46.5		21.4		2.7	

Table 9 shows the gross-weight-frequency distribution of all loaded vehicles. Four- and six-wheel single vehicles and semitrailer combinations of all rated capacities are here classified according to gross weight irrespective of type or rated capacity. The most significant indication of this tabulation is the large percentage of all loaded vehicles that exceed 21,000 pounds gross weight. It is shown that 16.5 percent of all loaded vehicles had gross weights in excess of the amount commonly assumed to correspond to a rated capacity of 5 tons.

LIGHT TRUCKS CARRY GREATEST OVERLOADS

It was possible by the methods employed to determine the weight of the load carried by 1,429 single vehicles and 219 semitrailer combinations. Table 10 shows the frequency distribution on the basis of the ratio of load carried to manufacturer's rated capacity for the single vehicles. As previously indicated in the
analysis of gross weight, it is here definitely shown that loading in excess of rated capacity is far more prevalent in the case of small trucks than of large ones. On the average, the $1 \frac{1}{2}$-ton trucks were found to carry one and two-thirds as much as the recommended load, while the 5 -ton trucks averaged just about their rated-capacity load. In extremes, the smaller truck is loaded to 4,5 , and even 6 times its rated capacity; the larger one is seldom loaded more than twice its capacity.

Table 9.-Frequency distribution of gross weights of loaded vehicles of all classes, percentage of total observations
[Total number of vehicles observed, 5,592]

Gross weight	Percentage of total number of vehicles	Gross weight	Percent. age of total number of vehicles
4,000-6,000 pounds	10.4	28,000-30,000 pounds	1.8
7,000-9,000 pounds	16.0	31,000-33,000 pounds	1.3
10,000-12,000 pounds	16.8	$34,000-36,000$ pounds	1. 0
13,000-15,000 pounds	18.7	37,000-39,000 pounds	1.1
16,000-18,000 pounds	12.1	40,000-42,000 pounds	. 5
19,000-21,000 pounds	9.5	43,000-51,000 pounds	. 1
22,000-24,000 pounds	6.8		
25,000-27,000 pounds	3.9	Total	100.0

In figure 3 is shown a comparison of the numbers of loads of various weights carried by $1 \frac{1}{2}$ - and 5 -ton trucks respectively, on the basis of the total number of each class occurring in the gross weight analysis. It is significant that the $1 \frac{1}{2}$-ton truck appears in this graph as the carrier of loads between 6 and 10 tons more numerously than the 5 -ton truck.
Table 11 shows an analysis of the loading of semitrailer combinations. Sufficient data could be obtained for only four capacity classes, but the evidence parallels that shown for single vehicles in table 10. Semitrailers of large rated capacity were found in practice to carry loads which, in the average, about equal the recom-

Table 10.-Frequency distribution of capacity use of loaded single vehicles, percentage of total observations in each capacity class

Figure 3.-Trucks of $1 \frac{1}{2}$-Ton and 5 -Ton Rated Capacity Classed According to Loads Carried.
mended load; the $1 \frac{1}{2}$-ton trailers were loaded even more heavily in excess of the rated capacity than the single vehicles of the same rating.

AXLE DISTRIBUTION OF GROSS WEIGHTS OF LOADED VEHICLES DISCUSSED

Tables 12,13 , and 14 show the frequency distribution of the percentage of gross weight of loaded vehicles carried by the rear axles of single trucks, tractors, and semitrailers. From them it may be concluded that, in the case of single vehicles, the weight carried on the rear axle averages approximately three-fourths of the gross load. Vehicles having gross loads less than 10,000 pounds carried an average of only 68 percent on the rear axle. The gross weight groups above 10,000 pounds all had an average of close to 75 percent for weight on the rear axle. Included among these vehicles were many partially loaded trucks, and the low average percentage of load on the rear axle is doubtless due to greater proportionate effect of the engine and the tendency to carry partial loading in the forward part of the truck body. There is a striking spread in the percentages for all gross-weight classes ranging from about 45 to 95 percent.

In the case of tractor-semitrailer combinations, it may be seen that about 45 percent of the entire gross weight of the combination is carried on the rear ends of both tractor and semitrailer, leaving about 10 percent for the front wheels of the tractor.

Table 11.-Frequency distribution of capacity use of loaded tractor-semitrailer combinations, percentage of total observations in each capacity class

Manufacturer's rated capacity	Average ratio	Ratio of carried load to capacity																										Total obser-vations
		$\begin{gathered} 0- \\ 0.25 \end{gathered}$	$\begin{gathered} 0.25- \\ 0.50 \end{gathered}$	$\begin{aligned} & 0.50 \\ & 0.75 \end{aligned}$	$\begin{aligned} & 0.75- \\ & 1.00 \end{aligned}$	$\begin{aligned} & 1.00- \\ & 1.25 \end{aligned}$	$\begin{aligned} & 1.25- \\ & 1.50 \end{aligned}$	$\begin{aligned} & 1.50- \\ & 1.75 \end{aligned}$	$\begin{aligned} & 1.75- \\ & 2.00 \end{aligned}$	$\begin{aligned} & 2.00- \\ & 2.25 \end{aligned}$	$\begin{aligned} & 2.25- \\ & 2.50 \end{aligned}$	$\begin{aligned} & 2.50- \\ & 2.75 \end{aligned}$	$\begin{aligned} & 2.75- \\ & 2.30 \end{aligned}$	$\begin{aligned} & 3.00- \\ & 3.25 \end{aligned}$	$\begin{aligned} & 3.25- \\ & 3.50 \end{aligned}$	$\begin{aligned} & 3.50- \\ & 3.75 \end{aligned}$	$\begin{aligned} & 3.75- \\ & 4.00 \end{aligned}$	$\begin{aligned} & 4.00- \\ & 4.25 \end{aligned}$	$\begin{aligned} & 4.25- \\ & 4.50 \end{aligned}$	$\begin{gathered} 4.50- \\ 4.75 \end{gathered}$	$\begin{aligned} & 4.75- \\ & 5.00 \end{aligned}$	$\begin{aligned} & 5.00- \\ & 5.25 \end{aligned}$	$\begin{gathered} 5.25- \\ 5.50 \end{gathered}$	$\begin{aligned} & 5.50 \\ & 5.75 \end{aligned}$	$\begin{gathered} 5.75- \\ 6.00 \end{gathered}$	$\begin{gathered} 6.00- \\ 6.25 \end{gathered}$	$\begin{aligned} & 6.25- \\ & 6.50 \end{aligned}$	
$11 / 2$ tons	$\begin{gathered} P c t . \\ 3.96 \end{gathered}$	Pct.			$\begin{array}{r} P c t . \\ 5.6 \end{array}$	$\begin{array}{r} \text { Pct. } \\ 5.6 \end{array}$	$\begin{gathered} \text { Pct. } \\ 10.9 \end{gathered}$	$\begin{array}{r} \text { Pct. } \\ 5.6 \end{array}$	Pct.	$\begin{aligned} & \text { Pct. } \\ & 16.3 \end{aligned}$	Pct.	$\begin{array}{r} \text { Pct. } \\ 5.6 \end{array}$	Pct.	$\begin{array}{r} \text { Num- } \\ \text { ber } \\ 18 \end{array}$														
3 tons	1. 94	3.1	5. 5	4. 7	2.4	9. 5	11.8	4.7	7. 1	11. 0	8. 7	11.8	7.1	0.8	6. 3	3.1	0.8	1. 6										127
5 tons Over 5 tons	1.36 .98	4. 8	14.2 17.0	4.8 11.3	15. 1	23.8 18.9	9.5 18.9	9.5 5.6	23.8 3.8		4. 8	4.8	1.9															21 53

Table 12.-Frequency distribution of percentage of gross weight ${ }^{1}$ of loaded single vehicles carried on rear axle, percentage of total observations in each gross-weight class

Gross weight	Average	Percentage carried on rear axle-												Total observations
		40	45	50	55	60	65	70	75	80	85	90	95	
	Percent	$\underset{\text { Ner }}{\text { Num- }}$												
	68. 0	0.2	0.2	0.7	4.5	15.3	26.7	28.0	16. 2	7.3	1.4	0.3	0.2	1,737
10, under 20...................................... do...-	75.3	. 1	. 1	. 5	. 7	4.3	9.8	16.4	21.4	32.4	12.5	1. 6	. 2	2,816
	74.2		1. 2	4	. 4	2. 7	8.1	25. 1	35. 6	18. 8	7.0	1.5	. 2	669
30, under 40..................................... do.	76. 7	1. 3	1. 3					11.5	35.9	38.4	10.3	1.3		78

${ }^{1}$ In the case of 3 -axle, 6 -wheel trucks the "gross weight carried on rear axle" is actually carried on 2 axles and 4 wheels.
Table 13.-Frequency distribution of percentage of gross weight of loaded tractor-semitrailer combinations carried on tractor rear axles, percentage of total observations in each gross-weight class

Gross weight	Average	Percentage carried on rear axle-											Total observations
		25	30	35	40	45	50	55	60	65	70	75	
	Percent	Perent	Percent	Percent	Number								
	44.2 44.3	0.1	1.0 .9	5. 0 7.4	25.8 24.9	40.0 44.8	18.9	6. 2	1. 7	0.7		0.1	403
30 , under $40 \ldots . .$.	44.5	. 3	. 5	3.8	25. 1	48.9	17.1	3. 8	. 5				398
Over 40................... do.	43.6			9.3	25.6	51.2	11.	2.3					43

Table 14.-Frequency distribution of percentage of gross weight of loaded tractor-semitrailer combinations carried on semitrailer rear axle , ${ }^{1}$ percentage of total observations in each gross-weight class

Gross weight	$\begin{aligned} & \text { Are:- } \\ & \text { age } \end{aligned}$	Percentage carried on rear axle-											Total ohservations
		20	25	30	35	40	45	50	55	(6)	6.5	70	
	Percent	Number											
10, under 20, under 30...... 1,000 pounds..	39.7							10.2					419
30, under 40-.-.............d. do..--	42.5		1.8	1.8	7.8	39.9	36.8	11.1	1.8			0.1	
	43.2				7.3	39.0	41.5	7.3	4.9				41

${ }^{1}$ In the case of samitrailers with 2 rear axles, 4 wheels, the "parcentage of gross weight carried on rear axle" is actually carried on 2 axles and 4 wheels.
Table 15.-Frequency distribution of rear-wheel loads of loaded single vehicles, percentage of total observations in each capacity class

Manufacturer's rated capacity	Average whee! load	Rear wheel load, 1.000 pounds															Total observations
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
	Pounds	Percent	Percent.	Percent	Percent	Percent	Percent	Percent	Percent	Numbst							
1 ton	2,220	14.6	63.5	12.2	7.3		2.4									--------	41
11/2 tons	3,760	5.3	22.0	21.0	17.5	15. 8	14.7	3. 2	0.3	0.1	0.1						2,841
2 tons.	5, 230	. 8	7.2	12. 6	17.1	16. 9	18.8	12.6	10.7	2.7	. 6						515
23.2 tons	5, 760		3. 9	10.6	15.9	16. 5	17.4	15.0	9.1	8.5	2.0	0.9	0. 2				460
3 tons.	6,310	. 2	1.5	7.9	11.2	13. 9	15.4	20.4	16.4	8. 7	3.7	. 5			0.2		403
$31 / 2$ tons	6,550	. 8		7.7	10.0	12. 4	17.8	16.3	16.3	11.6	4.7	1. 6	. 8				129
4 tons	6,050		2. 7	10.8	5. 4	16.2	29.8	13.5	8.1	10.8		2. 7					37
5 tons.	6,910		. 8	4.1	7.8	9.0	16.1	20.6	19.4	17.3	3.7	1. 2					243
Over 5 tons	6,050		5. 6	8.3	11.1	8.3	27.8	5.5	27.8	2.8	2.8						36

Table 16.-Frequency distribution of the rear-wheel loads of loaded tractors, percentage of total observations in each capacity class

${ }^{1}$ Refers to capacity of the semitrailer.
Table 17.-Frequency distribution of rear-wheel loads of loaded semitrailers, percentage of total observations in each capacity class

Manufacturer's rated capacity	Average wheel load	Rear wheel load, 1,000 pounds													Total observations
		1	2	3	4	5	6	7	8	9	10	11	12	13	
	Pounds	Percent	Number												
$11 / 2$ tons.	4,680		14.6	10.9	18.2	23.6	20.0	7.3	3.6	1.8					55
2 tons.	5,130	2. 2	4.5	6.7	22.2	24.4	17.8	15.5	4.5	1.1	1.1				45
3 tons.	5,010	. 3	5. 3	9.6	20.9	24.2	24.8	10.9	3.7	. 3			-------		302
4 tons.	5,460		6.5	6. 5	16. 1	17.7	24.2	17.7	9.7	1. 6					62
5 tons	5, 570	9	10.0	7.3	10.0	15. 4	22.7	16. 4	10.0	6. 4	9				110
Over 5 tons.-	5,960		4.2	11.3	14.3	13.7	13.1	17.2	14.9	8. 3	1.8	0.6		0.6	168

Similar distribution data were also prepared for single vehicles and combinations without segregation into gross weight classes. These are not presented here as they have the same general characteristics as the data given in tables 12, 13, and 14. They show the following averages: For single trucks 72.8 percent; for tractors 44.6 percent; and for semitrailers 42.5 percent.

DATA ON WHEEL LOADS ANALYZED

Tables 15, 16, and 17, and figures 4,5 , and 6 , show frequency distributions of rear-wheel loads of single vehicles, tractors, and semitrailers of various rated capacities. Average rear-wheel loads of single vehicles
are shown to range from a minimum of 2,220 pounds for trucks of 1 -ton rated capacity to a maximum of 6,910 pounds for 5 -ton trucks. Again it is found that the loads of the larger vehicles are not as great in relation to those of smaller vehicles as differences in rated capacity would suggest. The average of 6,910 pounds for 5 -ton trucks, for example, is only 1.84 times the 3,760 -pound average for $1 \frac{112}{2}$-ton trucks instead of 3.33 times as it would be if wheel loads were proportional to rated capacity. It is also apparent, particularly in relation to single vehicles (table 15), that the greatest wheel loads are not always found on vehicles of the largest capacity.

Figure "4.-Frequency Distribution of Rear-Wheel Loads for Loaded Single Vehicles.

TABLE" 18.-Classification of all loaded single vehicles with heavy wheel loads according to manufacturer's rated capacity and rearwheel loads

Mranufacturer's rated capacity	Total all lonated vehicles	Rear-wheel loads exceeding-							
		$\begin{aligned} & 7,000 \\ & \text { Founds } \end{aligned}$		$\begin{gathered} 8,000 \\ \text { pounds } \end{gathered}$		$\begin{aligned} & 9.000 \\ & \text { pounds } \end{aligned}$		$\begin{aligned} & 10,000 \\ & \text { pounds } \end{aligned}$	
1 ton	No. 41	No.	Pct.	No.	Pct.	No.	Pit.	No	It.
$11 / 2$ tons	2.841	13	2.8	4	1.9	2	3.3		
2 tons	515	72	15. 5	17	8.0	3	5. 0		
$2^{1}{ }_{2}$ tons	440	95	20.4	53	25.0	14	23.3	5	33.3
3 tons	403	119	25.6	53	25.0	18	30.0	3	20.0
$31 / 2$ tous	129	45	9.7	24	11.3	9	15. 0	3	20.0
4 tons.	37	8	1.7	5	2.4	1	1.7	1	6. 7
5 tons	24.3	101	21. 7	54	25.5	12	20.0	is	20.0
Over 5 tons	36	12	2. 6	2	. 9	1	1.7		
Total.	4. 705	465	100. 0	212	160.0	c.0	100.0	15	160.0
Percentage of total loaded vehicles	100.0	9.9		4.5		1.3		(1.3	

In table 18 rear-wheel loads exceeding certain limits are classified according to the rated capacity of the vehicles on which they were observed. The limits chosen were $7,000,8,000,9,000$, and 10,000 pounds. It is shown that of 4,705 loaded vehicles observed, only 465-less than 10 percent-had rear-wheel loads in excess of 7,000 pounds. Of these 465 vehicles only 113 or less than 25 percent were of 5 tons rated capac-

Figure 5.-Frequency Distribution of Rear-Wheel Loads of Loaded Tractors.
ity or larger, and 180 or nearly 39 percent were of $2 \frac{1}{2}$ tons capacity or smaller.

Vehicles with wheel loads exceeding 8,000 pounds numbered only 212 or 4.5 percent of the total of 4,705 vehicles observed and again the number of vehicles rated at 5 tons or more was less than the number of $2 \frac{1 / 2-}{2}$ ton and smaller vehicles. Sixty or 1.3 percent of the total number of vehicles had wheel loads exceeding 9,000 pounds, and only 15 or about 0.3 percent had wheel loads greater than 10,000 pounds. In these two groups, as in the larger groups with wheel loads above 7,000 and 8,000 pounds, vehicles of the larger capacities were not the most numerous but were, on the contrary, exceeded in number by vehicles of $2 \frac{1}{2}$-tons capacity and smaller.

Figilie 6.-Frequency Distribution of Rear-Wheel Loads OF LOADED SEMITRAILERS.

Table 19.--Classification of all loaded tractors with heavy wheel loads according to manufacturer's rated capacity and rear-wheel loads

Manufacturer's rated capacity	Total all loaded vehicles	Rear-wheel loads exceeding-							
		$\begin{gathered} 7,000 \\ \text { pounds } \end{gathered}$		$\begin{aligned} & 8,000 \\ & \text { pounds } \end{aligned}$		$\begin{gathered} 9,000 \\ \text { pounds } \end{gathered}$		$\begin{aligned} & 10,000 \\ & \text { pounds } \end{aligned}$	
11/2 tons	No. 726	No. 11	$\begin{array}{r} \text { Pct. } \\ 4.8 \end{array}$	No.	Pct.	No.	Pct.	No.	Pct.
2 tons.	287	27	11.8	4	4.2	1	5.0		
21/2 tons	209	64	27.9	30	31.3	3	15. 0	1	25.0
3 tons	116	43	18.8	20	20.8	4	20.0		--.--
$31 / 2$ tons	51	24	10.5	10	10.4	1	5. 0		
4 tons.	18	8	3.5	3	3.1	2	10.0		
5 tons.	76	45	19.6	22	22.9	6	30.0		
Over 5 tons.	8	7	3.1	6	6.3	3	15.0	3	75.0
Total	1,491	229	100.0	96	100.0	20	100.0	4	100.0
Percentage of total loaded vehicles	100.0	15.4		6. 4		1.3		0.3	

In tables 19 and 20, the numbers of loaded tractors and semitrailers, respectively, with rear-wheel loads exceeding the several limits are shown to be approximately as numerous in relation to the totals of such vehicles as were the single vehicles similarly loaded. The tables show, however, that the heavier wheel loads on tractors and semitrailers are more frequently found on combinations of the larger capacities.

TIRE CAPACITY NOT EXCEEDED TO SAME EXTENT AS VEHICLE CAPACITY

In table 21 is shown the frequency distribution of the ratio of actual tire loads to the manufacturer's rated carrying capacity of the tires. Again the tendency for the smaller vehicles to carry loads out of proportion to their capacity is evident in the more frequent overloading of the smaller sizes of tires commonly found on such vehicles. It is to be remarked, however, that the tires are not as greatly overloaded as the vehicles, a fact that is doubtless due to the use of oversized tires on many of the smaller vehicles. Whereas, in extreme

TABLe 20.-Classification of all loaded semitrailers with heavy wheel loads according to manufacturer's rated capacity and rearwheel load

cases, $1 \frac{1}{2}$-ton trucks were found to carry loads up to six times their rated capacity and more, the extreme overloading of the smallest class of tires did not exceed 2.75 times the rated load of the tires. In the case of the largest tires-those rated at more than 4,000 pounds - the extreme overload observed was only 1.5 times rated capacity, and the number of loads in excess of rated capacity was only about 6 percent of the total.

The data presented in table 21 relate to both highpressure and low-pressure tires indiscriminately. Similar distributions were made for the two classes separately, but as they were very similar to the distribution of the combined groups they are not included in this report.

value of c in gross-weight formula discussed

For the purpose of limiting the gross weight of vehicles and combinations of vehicles the American Association of State Highway Officials has recommended use of the formula, $W=C(L+40)$, in which W is the gross weight, C a coefficient, and L the length in feet between the centers of the extreme forward and rear axles of the vehicle or combination. The association recommended a value of 700 as the lowest value of C to be adopted as a limit in any State.
It has been definitely determined that limitation of gross weight is not needed as a measure of pavement or road surface protection. Tests have shown that the stress in rigid pavements caused by vehicular loads is a function of the wheel load rather than the gross load. If axles are spaced no closer than 3 feet between centers, it has been determined that the maximum stress caused by the combined wheel loads does not exceed that caused by each wheel load separately. As spacing closer than 3 feet is impracticable, the maximum wheel load of vehicles is the critical factor in design of pavements; and it is wheel load rather than gross load that must be limited for pavement protection.
On bridges the effects of loading are different. All wheel loads of a vehicle or combination of vehicies that can come upon the structure at one time are effective in producing stress, and the stress produced increases with the sum of the loads applied within a given length. For bridge protection, therefore, limitation of wheel load is not sufficient; limitation of gross load is also required. But the form of limitation to be adopted should give proper recognition to the length over which the load is applied. The formula recommended by the American Association of State Highway Officials is of that character; and the value of $C=700$, recommended as the

Table 21.-Frequency distribution of capacity use of tires on loaded vehicles, percentage of total observations in each capacity class
[High-pressure and low-pressure tires combined]

Manufacturer's rated capacity of tires	Average ratio	Ratio of total load on tire to tire capacity											Total observa. tions
		0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25	2.50	2.75	
	Percent	Number											
1-2......--.....-1,000 pounds.	1.09	0.4	10.3	20. 4	23.4	22.8	15.2	4. 4	2.2	0.7	0.1	0.1	2,023
2-3--.....---..-- - do	1.07	1. 0	10.1	17.6 23.9	25.2 38.2	26.5 20.0	16.8 2.7	2. 1	. 1	. 1	. 1		4,169
	. 81	3. 6	19.0	35.6	35.6	4.4	1.8						825 225

lowest limit to be adopted, has been found to give, for vehicles and combinations commonly employed, values of the gross load, W, that do not unduly overstress bridges designed for the association's standard $I I-15$ loading.
Heretofore, determinations of the value of C corresponding to various types and combinations of vehicles have been based upon assumptions of probable or maximum permissible wheel loads. In this study values of C have been determined for vehicles of various types and sizes, as actually loaded, and frequency distributions of these values for single vehicles and for tractorsemitrailer combinations are given in table 22.

To understand the significance of the values of C in table 22 , it is necessary to keep in mind that the grossload limit derived from the formula is an upper limit normally associated with fully loaded or overloaded vehicles of the high-capacity classes. The large percentage of small values of C shown in the table is due to the inclusion of low-capacity vehicles and vehicles partly loaded, and these would rarely be affected by a gross-load limitation. Also, it is intended that the gross-load limit given by the formula be used in conjunction with an axle-load or wheel-load limit. In nearly all cases of 4 -wheel trucks, the limit on axle or wheel load, not the gross-load formula, will control the gross load.
Table 22.-Frequency distribution of values of C in the gross-load formula, percentage of total observations
[Loaded vehicles only]

(iroup	Total obserrations	Value of C							
		Un.	100	200	300	400	500	600	
		der	to	to	to	t.o	to	to	Over
		100	200	300	100	500	600	700	
	Number	Pct.							
Single vehicles...	4,956	5.9	33.6	36.1	17.1	5.5	1.1	0.5	0.2
Tractor - semitrailer combinations.	1,551	1	5.2	23.1	35.4	23.6	11.4	1.1	. 1

In view of these circumstances it is interesting to observe that only 0.2 percent of all observed single vehicles and 0.1 percent of all semitrailer combinations had gross weights corresponding to values of C above 700. For single vehicles the highest value was 770 ; but, discarding the 50 highest values (1 percent of the total observed number) the maximum is reduced to 550. For semitrailer combinations the highest observed value was 750 , a maximum that would be lowered to 560 by elimination of the highest 1 percent of observed values.

Of the 4,956 single vehicles observed only 10 had gross weights and wheel-base lengths corresponding to values of C in excess of 700 , the value recommended by the American Association of State Highway Officials as the lowest to be adopted as a limit in any State. Of these

10 trucks, 8 were definitely allocable to manufacturer's rated capacity classes, 2 to the 5 -ton class, and 6 to the over-5-ton class. All of these vehicles were 6 -wheel vehicles and were the property of a single owner. For trucks of large rated capacity, they had very short wheel bases, ranging from 14 to 15 feet. All were used in the local delivery of crushed stone from a nearby quarry. As they were all 6 -wheel vehicles and their wheel loads did not in any case exceed 9,000 pounds they would not have been excluded by wheel-load limitations such as have been recommended by the American Association of State Highway Officials.

Twenty-five of the single vehicles had gross weights and lengths of wheel base resulting in values of C over 600 and not more than 700. Of these, 17 could be definitely allocated to rated-capacity classes, as follows: $2 \frac{132}{2}$-ton capacity, $2 ; 3$-ton capacity, $1 ; 31 / 2$-ton capacity, 3 ; 4 -ton capacity, 1 ; 5 -ton capacity, 7 ; over 5 -ton capacity, 3.

Of the 1,551 tractor-semitrailer combinations observed only one had gross weight and length resulting in a value of C over 700 . This was the heaviest combination observed during the study. Its gross weight was 51,500 pounds and the distance, L, between its foremost and rearmost axles was 28.9 feet.

Values of C between 600 and 700 were found to correspond to 17 semitrailer combinations of which only 5 were classifiable by capacity, one in the 5 -ton and the other 4 in the over-5-ton group.

WEIGHTS OF EMPTY VEHICLES AND RATED CAPACITY COMPARED

It is sometimes necessary to know average and extreme weights of empty vehicles of the several capacity classes. It is difficult to obtain this information from manufacturer's records because the weight of the assembled empty vehicle depends upon the type of body used. The manufacturer of the vehicle generally lists the chassis weights only. It has been a common assumption that there is an approximate equality between the weight of single empty vehicles and their rated carrying capacity. The average and distributed weights of empty vehicles of the several classes as observed in this investigation, given in table 23, will show how far from correct this assumption is. Similar data for semitrailer combinations are given in table 24.

capacity of truck no indication of over-all width

In the absence of precise information the assertion has been made that motor trucks of the larger capacity classes are commonly wider than those of smaller capacity and consequently require a greator width of pavement for their accommodation. Factors other than the width of the vehicles themselves bear upon the question of pavement width required, including the speed of the vehicles and the driving habits of their operators.

TABLE 23.--Frequency distribution of the weights of empty single vehicles, percentage of total observations in each capacity class

Manufacturer's rated capacity	$\begin{gathered} \text { Aver- } \\ \text { age } \\ \text { empty } \\ \text { weight } \end{gathered}$	Weight empty, 1,000 pounds													Total observations
		2	4	6	8	10	12	14	16	18	20	22	24	26	
	Pounds	Percent	Pcrcent	Number											
2 tons.	7,690		. 6	34.1	48.7	14.0	2.3		0.3						
$21 / 2$ tons	10,010			8.2	27.3	36.9	17. 1	6. 2	1.9	1.6	0.8				25.7
3 tons...	10,720			2.6	19.8	39.4	25. 5	5. 7	4.4	2. 2	. 4				228
$31 / 2$ tons_	12,060			3.0	4. 5	17.9	46. 2	19.4	7.5	1.5					67
5 tons..	14, 150			1.0	3.8	7.7	33.6	21.1	11.5	10.6	5.8	2.9	1.0	1.0	104

Table 24.-Frequency distribution of the weights of empty tractor-semitrailer combinations, percentage of total obserrations in each capacity class

Manufacturer's rated capacity	A verage empty weight	Weight empty, 1,000 pounds											Total ohservations
		6	8	10	12	14	16	18	20	22	24	26	
	Pounds	Percent	Number										
3 tons	10,890	0.8	25.4	37.3	31.4	4.0	5.5	4.0		1.6			12h
5 tons.	13, 270		15. 1	39.4	9.1	3.0	9.1	9.1	6. 1	3.0		6. 1	33
Over 5 tons	14,320		2.6	15.8	19.7	17.1	22.4	14.5	7.9				76

TABLE 25.-Frequency distribution of the over-all widths of loaded single vehicles, percentage of total observations in each capacity class

Manufacturer's rated capacity	$\begin{aligned} & \text { Aver- } \\ & \text { age } \\ & \text { width } \end{aligned}$	Over-all width in feet																					Total obser-rations
		5.0	5.2	5.4	5.6	5.8	6.0	6.2	6.4	6.6	6.8	7.0	7.2	7.4	7.6	7.8	8.0	8.2	8.4	8.6	8.8	9.0	
	Feet	Pct.	Pet.	Pct.	$\begin{gathered} \text { Num- } \\ \text { ber } \end{gathered}$																		
11/2 tons.	7. 0	0.1	0.3	0.7	2.2	2.6	2.7	3.6	4.4	7.6	12.6	12.1	12.5	17.0	10.8	5.7	3.6	0.7	0.4	0.3	0.1		2,992
2 tons.	7. 4				. 8		. 8	1.1	. 9	3.0	6.9	11.4	15.4	12.0	20.6	14.4	8. 3	2.4	. 6	. 6	. 6	0.2	533
$21 / 2$ tons	7.5				. 2	. 2	. 4	. 6	1. 1	2. 1	4. 3	7.9	14.1	12.9	15.8	16.9	15.6	4.5	2.1	. 9	. 4		468
3 tons	7.7							. 2	. 2	. 5	. 7	2.9	4.3	11.2	24.5	21.4	23.0	7.7	1. 5	1.2	. 5	2	413
$31 / 2$ tons	7.7								. 7		1.5	1. 5	5. 2	12.0	20.9	20. 1	25. 4	9.0	3. 7				134
5 tons	7.9							4			. 4	. 4	2.4	3.2	12.1	23.0	36.3	10.9	7. 7	1.6	1.2	4	248

Table 26.-Frequency distribution of the over-all widths of loaded tractor-semitrailer combinations, percentage of total observations in each capacity class

Manufacturer's rated capacity	Average width	Over-all width in feet												Total obscryations
		6.4	6.6	6.8	7.0	7.2	7.4	7.6	7.8	8.0	8.2	8.4	8.6	
11/2tons	Feet 7.5	Percent	Percent	$\begin{array}{r} \text { Percent } \\ 1.8 \end{array}$	$\begin{array}{r} \text { Percent } \\ 3.6 \end{array}$	Percent 12.8	Percent 23.7	$\begin{array}{r} \text { Percent } \\ 30.8 \end{array}$	$\begin{array}{r} \text { Percent } \\ 20.0 \end{array}$	$\begin{array}{r} \text { Percent } \\ 7.3 \end{array}$	Percent	Perceail	Perefnt	Number
2 tons.	7.7					4. 7	c0.9	27.9	25. 6	16.3	2.3	2.3		4.3
3 tons	7.7	0.3	0.6	1. 6	2. 9	4. 2	16.1	31.4	19.7	14.2	6. 8	1.9	0.3	310
4 tons	7.7				4.8	6.5	11.3	27.4	14.5	21.0	12.9	1. f		12
5 tons	7.8			1.0	1.0	1. 0	7.8	18.4	26.2	34.9	7. x	1.8		103
Over 5 tons.	7.9	. 6		. 6	. 6	2. 2	5.1	11.8	21.3	45.4	10.7	1. 1	fi	178

To the extent that width of the vehicle and its load influence the decision, some light is thrown upon the question by the classifications of over-all widths of observed single vehicles and combinations given in tables 25 and 26, respectively. Figures 7 and 8 are presented to sharpen the comparison between the $1 \frac{1}{2}$-ton and 5 -ton classes. In the former it will be seen that the $11 / 2$-ton trucks were more numerous than the 5 -ton rehicles in each width class up to and including the legal limit, 8 feet. Among the law-violating single vehicles the 5 -ton trucks are slightly more numerous, and a single 5 -ton truck 9 feet wide exceeds the 8.8 -foot width of the widest $1 \frac{1}{2}$-ton truck.

Among semitrailers there is greater difference between the widths of vehicles of the two capacity classes, as shown in figure 7. No $1 \frac{1}{2}$-ton semitrailer combination was observed with over-all width in excess of 8 feet; and the widest 5 -ton combination observed was only 8.4 feet wide.

Tables 27 and 28 show for single vehicles and semitrailer combinations, respectively, the number of units observed in excess of certain widths. Table 27 shows that 64.5 percent of all single vehicles observed had over-all widths in excess of 7 feet and nearly 50 percent of the wider vehicles were $1 \frac{1}{2}$-ton trucks. Only 4.6 percent of the total number of vehicles were over 8 feet in width and nearly a fourth of this group were of 5 -ton capacity, but a greater number were of the $1 \frac{1}{2}-$ and 2 -ton capacities. Less than 1 percent of all the vehicles were more than $8 \frac{1}{2}$ feet in width and among them all capacity classes were represented with little difference in number, those of the $1 \frac{1}{2}$-ton class still exceeding the 5 -ton trucks.

Table 28, similarly reviewing the width data for semitrailer combinations, shows that 96.3 pereent of all combinations were more than 7 feet wide; 9.5 percent were more than 8 feet; and only 0.3 percent were wider than $8 \frac{1}{2}$ feet. Among these wide rehicles the $1 \frac{1}{2}$-ton

Figure 7.-Comparison of Numbers of Loaded $11 / 2$-Ton and 5-Ton Trucks (Rated Capacity) of Various Over-All Widths.

Figure 8.-Comparison of Numbers of Loaded $11 / 2$-Ton and 5-Ton Tractor-Semitrailer Combinations (Rated Capacity of Semitrailer) of Various Over-All Widths.
size was not so strongly represented as among the single rehicles, but the several classes from 3-tons to over 5 tons capacity were represented with little distinction.

DATA ON HEIGHTS OF LOADED VEHICLES DISCUSSED

Tables 29, 30, 31, and 32 show the distribution of loaded vehicles according to over-all height in a manner corresponding to the previous analysis of width. The arerage height of the 1%-ton class is shown to be about one foot less than the average height of all trucks of other capacity classes. This is due to the presence in the smaller capacity group of large numbers of low trucks and not to the absence in that group of high whicles. As shown by table 31 , over 56 percent of all single trucks higher than 11 feet were of $1 \frac{1}{2}$-tons capac-

Table 27.-Classification of all wide single vehicles according to manufacturer's rated capacity and over-all width

Manufacturer's rated capacity	$\begin{array}{\|c} \text { Total } \\ \text { all } \\ \text { loaded } \\ \text { vehicles } \end{array}$	Loaded vehicles having over-all widths exceeding-					
		7 feet		8 feet		81/2 feet	
$\begin{aligned} & 11 / 2 \text { tons. } \\ & 2 \text { tons.-. } \\ & 21 / 2 \text { tons } \\ & 3 \text { tons... } \\ & 31 / 2 \text { tons. } \\ & 5 \text { tons.-. } \end{aligned}$	Number	Number	Percent	Number	Percent	Number	Percent
	2,992	1,528	49.5	44	19.9	11	27.5
	533	400	13.0	23	10.4	7	17.5
	468	389	12.6	37	16.8	6	15.0
	413	394	12.8	46	20.8	8	20.0
	134	129	4.2	17	7.7		
	248	245	7.9	54	24.4	8	20.0
'Total Percentage of total loaded vehicles.	4,788	3,085	100.0	221	100.0	40	100.0
	100.0	64.5		4.6		0.8	

Table 28.-Classification of all wide tractor-semitrailer vehicle combinations according to manufacturer's rated capacity and over-all width

Manufacturer's rated capacity	Total all Ioaded vehicles	Loaded vehicles having over-all widths exceeding -					
		7 feet		8 feet		$81 / 2$ feet	
	Number	Number	Percent	Number	Percent	Number	Percent
	43	43	5.9	2	2.8		
	310	293	40.5	28	39.4	1	50.0
	62	59	8.2	9	12.7		
	103	101	14.0	10	14.1		
	178	175	24.2	22	31.0	1	50.0
Total Percentage of total loaded rehicles	751	723	100.0	71	100.0	2	100.0
	100.0	96.3		9.5		0.3	

ity and so likewise were 63 percent of all trucks over 12 feet in height. The observations included only 3 trucks over $12 \frac{1}{2}$ feet high and 2 of these were of $11 / 2$-tons capacity.
Comparison of tables 31 and 32 shows that the number of semitrailer combinations of the greater heights was a larger proportion of the total than in the case of single vehicles; and again, as in the matter of width, the small-capacity semitrailer is less numerously represented than the small-capacity truck among the extremely high vehicles.

Figures 9 and 10 show graphically the composition by capacity classes of the numbers of trucks and semitrailer combinations of several of the greater-height groups.

OVER-ALL LENGTHS OF VEHICLES REPORTED
Tables 33, 34, 35, and 36 contain analyses of the over-all lengths of single vehicles and semitrailer combinations similar to those previously presented with regard to other characteristics of the vehicles.

The largest single vehicle observed, the capacity of which could be definitely determined, was 35 feet long. Four larger vehicles were measured, the largest 38 feet long, but these were of indeterminate rated capacity. Of the single vehicles of determinable capacity only 8 exceeded 33 feet in over-all length and 121, or 2.6 percent of the total number observed, exceeded 30 feet. In this connection it is desirable to emphasize that the length recorded was the over-all length of vehicle and load. It included the bumpers and projections of the load if any existed.
The longest semitrailer combination of determinable capacity was 52 feet long. Three that could not be classified by capacity were longer, the longest being 59 feet in length. Only 1 of the 728 semitrailer combi-

Table 29.--Frequency distribution of the over-all heights of loaded single vehicles, percentage of total observations in each capacity class

Manufacturer's rated capacity	A verage height	Over-all height in feet-															Total observations
		6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5	10.0	10.5	11.0	11.5	12.0	12.5	13.0	
	Fect	Percent	Pcrcent	Number													
$11 / 2$ tons	8.4 4 4	2. 2	9.8	13.0	10.6		12. 4	14. 7	11.0	6.6		2. $\frac{1}{2}$	1. 5	1.0	0.5	U. 1	2. 48.5
2 tons.-	9.0		1.7	12.4	5. 4	9. 5	7.8	12.4	16. 8	16.5	8.7	4.3	1.7	1.7	. 4		38
$21 / 2$ tons 3 tons	9.3		1.9 1.0	5. 4 4.1	4. 9	12.9 8	8. 1	9.2	17.2	20.0	14.8	3. 2	-9 ${ }^{9}$	2. 1	4		tifi,
3 tons $31 / 2$ tons	9.4		1.0	4. 1.5	9.7	8.7	${ }^{6} 1.8$	10.2	13.1	17.4	18. 8	4.8	2. 9	1. 0	1.0	2	412
5 tons..	9. 4	4		. 8	3. 2	13.4	16.9	8.3	9.7	23.2	15.4	7.1	1.6	1.5	.		2-i

Table 30.-Frequency distribution of the over-all heights of loaded tractor-semitrailer combinations, percentage of total observations in each capacity class

Manufacturer's rated capacity	Aver. age height	Over-all height in feet-															Total observations
		6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5	10.0	10.5	11.0	11.5	12.0	12.5	13.0	
$11 / 2$ tons	Feet 9.6	Percent 10.9	Percent	Percent	Percent	Percent	Number										
2 tons	10.2	2.6		2. 6		2. 6			15.4	28.1	17.9	17.9	2. 6	5.1	2.6	2.6	39
3 tons.	10.2	. 3		3.0	3.4	4.4	2.0	5.8	9.9	17.3	18.7	13.9	12.2	5.8	3.0	. 3	245
4 tons	10.7						1.5	4.5	13.4	13.4	13.4	23.9	16.4	10.5.	1.5	1.5	6
5 tons.	10.6			1.0		1.0		3.9	1. 0	22.6	29.4	25.6	12.7	2.95			102
Over 5 tons	10.6			. 6	1.1	. 6	3.4	1.7	2.8	12.4	30.8	31.4	11.8	2.8	. 6		178

Table 31.-Classification of all high, single vehicles according to manufacturer's rated capacity and over-all height

Manufacturer's rated capacity	Total ed vehicles	Loaded vehicles having over-all heights exceeding-					
		11 feet		12 feet		121/2 feet	
```\(11 / 2\) tons \\ 2 tons \\ \(21 / 2\) tons. \\ 3 tons. \\ \(31 / 2\) tons \\ 5 tons.```	Number	Number	Percent	Number	Percent	Number	Percent
	2,985	91 20	56.5 12.4	17 2	63.0	2	66.7
	539	20		2	7.4		
	466	16	9.9	2	7.4		
	412	21	13.1	5	18.5	1	33.3
	129	${ }_{4}^{9}$	5.6 2.5		3.7		
Total.   Percentage of totalloaded vehicles.	4,785	161	100.0	27	100.0	3	100.0
	100.0	3.4		0.6		0.1	

Table 32.-Classification of all high loaded tractor-semitrailer vehicle combinations according to manufacturer's rated capacity and over-all height

Manufacturer's rated capacity	Total all loadhicles	Loaded vehicles having over-all heights exceeding--					
		11 feet		12 feet		121/2 feet	
	Number	Number	Percent	Number	Percent	Number	Percent
$11 / 2$ tons 2 tons	55 39	7	3.6	2	12.5	1	33.3
3 tons	295	63	45.6	10	62.5	1	33.3
4 tons	67	20	14.5	2	12.5	1	33.4
5 tons.	102	16	11.6				
Over 5 tons	178	27	19.6	1	6.3		
Total	736	138	100.0	16	100.0	3	100.0
Percentage of							
	100.0	18.8		2.2		0.4	

Table 33.-Frequency distribution of the over-all lengths of loaded single vehicles, percentage of total observations in each capacity class

Manufacturer's rated capacity	$\begin{gathered} \text { Aver- } \\ \text { age } \\ \text { length } \end{gathered}$	Over-all length in feet																					Total obsertions
		15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	
	Feet		Pct.		Pct.	$\begin{aligned} & \text { Num- } \\ & \text { ber } \end{aligned}$																	
$11 / 2$ tons	20.8	2.0	2.7	5.6	7.9	4. 6	11.0	36.4	13. 6	5.3	3.5	2.8	1.9	1.0	0.4	0.5	0.3	0. 2	0.3				2,953
2 tons	23.5		2	1.5	1.9	2.1	3.7	11.6	14.4	14.4	19.4	13.1	6.5	3.6	3.0	1. 9	1.3	7	7				536
$21 / 2$ tons	24.0	. 2	4	. 6	2.4	4.3	5.4	7.3	12.3	12.1	14.4	10.6	10.8	5. 2	5. 4	3. 2	2.8	9	1.7				463
3 tons.	25.8		. 2	. 2	1.2	1.7	2.0	2.5	4. 9	6. 6	11.8	14.2	15. 2	12.6	9. 6	4. 7	3. 2	4. 2	2. 5	2.5	0.2		407
$31 / 2$ tons	26.3			8	3.1	2.4	4.7	1.6	4.7	4.7	9.4	10.3	11.8	8.8	9.4	4.7	6. 3	5. 5	6.3	3.1		2.4	127
5 tons	25.6			1.2	. 4	1.6	3.6	3.1	2.0	12.6	18.6	14.3	7.1	9.5	4.3	7.9	3.5	5.1	2.4	1.2	1.6		253

Table 34.-Frequency distribution of the over-all lengths of loaded tractor-semitrailer combinations, percentage of total observations in each capacity class

Manufacturer's rated capacity	$\begin{gathered} \text { Aver- } \\ \text { age } \\ \text { length } \end{gathered}$	Over-all length in feet														Total obser-vations
		26	28	30	32	34	36	38	40	42	44	46	48	50	52	
	Feet	Percent:	Percent	Number												
11/2 tons	33.2	1.6	8.1	16.1	30.6	17.8	8.1	12.9	1.6	1. 6	1.6					
2 tous	33.5	2. 3	13.6	20.5	20.4	11.4	6. 8	9.1	4. 5	6.   1. 4	4. 5.2					291
3 tons.	33.0	3.4	10.0	21. 0	21. 6	13.8 7	11.0	7.5 19.1	2.7 6.3	1.4 11.1	5. 2   3.2   .2	2. 13	0.3			
4 tons	36.7 33.7		16. 8	12.7 8.2	12.7 9.3	7.9 15.5	14.3	19.1 10.3	$\begin{array}{r}6.3 \\ \text { - } 3.1 \\ \hline\end{array}$	11.1	3.2 2.1	6.3 1.0		1.6	1.0	97
5 tons Over 5 tons	33.7 34.3	7.2 .6	16.5 4.1	8. 2 8.8	9.3	15.5 33.9	23. 7 15.2	10.3 6.4	3.1 4.1	2. 1.2	2. 3	1.0	1. 2		1.0	171



Figure 9.-Loaded Trucks in Height Classification from $91 / 2$ to 13 Feet Grouped According to Rated Capacity.
nations that could be classified by capacity was more than 50 feet in length. Eighteen, or 2.5 percent of the total, were over 45 feet long; and 63 , or 8.7 percent, were over 40 feet in length. More than one-third- 253 of the 728 loaded semitrailer combinations classifiable by capacity-were more than 35 feet long over-all.


Figure 10--Loaded Tractor-Semitrailer Combinations in Height Classifications from $91 / 2$ to 13 Feet Grotped According to Rated Capacity.

Table 35.-Classification of all long, loaded, single vehicles according to manufacturer's rated capacity and over-all length

Manufacturer's rated capacity		Loaded vehicles having over-all lengths exceeding-					
		25 feet		30 feet		33 feet	
$\begin{aligned} & 11 / 2 \text { tons } \\ & 2 \text { tons... } \\ & 21 / 2 \text { tons. } \\ & 3 \text { tons... } \\ & 31 / 2 \text { tons. } \\ & 5 \text { tons.. } \end{aligned}$	No.	No.	Pct.	No.	Pct.	No.	Pct.
	2, 953	135	17. 4	15	12.4		
	536	95	12.3	8	6.6		
	463	139	18.0	12	9.9		
	407	222	28.7	38	31.4	1	12.5
	127	74	9.6	22	18.2	3	37.5
	253	108	14.0	26	21.5	4	50.0
Total   Percentage of total loaded vehicles	4, 739	773	100.0	121	100.0	8	100.0
	100.0	16.3		2.6		0.2	

Table 36.-Classification of all long, loaded, tractor-semitrailer vehicle combinations according to manufacturer's rated capacity and over-ail length

Manufacturer's rated capacity	Total all loaded vehicles	Loaded rehicles having over-all lengths exceeding-									
		30 feet		35 feet		40 feet		45 feet		50 feet	
	No.$\begin{array}{r} 62 \\ 44 \\ 291 \\ 63 \\ 97 \\ 171 \end{array}$	$\begin{gathered} \mathrm{NO} \\ 46 \\ 28 \\ 191 \\ 52 \\ 66 \\ 148 \end{gathered}$	$\left\lvert\, \begin{array}{r} P c t . \\ 8.7 \\ 5.3 \\ 36.0 \\ 9.8 \\ 92.4 \\ 27.8 \end{array}\right.$	$\begin{aligned} & \text { No. } \\ & 16 \\ & 14 \\ & 88 \\ & 39 \\ & 42 \\ & 54 \end{aligned}$	$\begin{array}{r} P c t . \\ 6.3 \\ 5.5 \\ 34.8 \\ 15.4 \\ 16.6 \\ 21.4 \end{array}$	$\begin{gathered} \mathrm{No} \\ 2 \\ 5 \\ 26 \\ 14 \\ 6 \\ 10 \end{gathered}$	$\begin{array}{r} \text { Pct. } \\ 3.2 \\ 7.9 \\ 41.3 \\ 22.2 \\ 9.5 \\ 15.9 \end{array}$	No.	Pct.	No.	Pct.
								7	38.9		
								5	27.8		
								2	11.1	1	100.0
								4	22.2		
Total	728	531	100.0	253	100.0	63	100.0	18	100.0	1	100.0
vehicles.....	100.0	72.9		34.8		8.7		2.5			

As shown by tables 33 and 34 , the longest vehicles and combinations were of large and intermediate capacity classes. The largest single vehicles of the $1 \frac{112}{2}, 2-$, and $2 \frac{1}{2}$-ton classes were 32 feet long; the longest $1 \frac{1}{2}-$ and 2 -ton semitrailer combinations were 44 feet long.


Figure 11.-Loaded Single Vehicles Grouped According to Over-All Length and Within Groups According to Rated Capacity.


Figure 12.-Loaded Tractor-Semitrailer Combinations Grouped According to Over-All Length and Within Groups According to Rated Capacity.

Table 37.-Weights and dimensions of combinations that included full trailers

${ }^{1}$ The number designates the number of wheels on each unit. The letter indicates arrangement of tires on wheels carried by rear axle. $D$ indicates dual tires and $S$ indi cates single tires. On full trailers DD mans that wheels on both front and rear axles carry dual tires.

Figures 11 and 12 show graphically the relative numbers of single vehicles and semitrailer combinations of the sereral capacity classes in each of the larger length groups. It will be observed that single vehicles of low rated capacity were an important part of each length group up to 32 feet the greatest length observed for such vehicles. In the case of semitrailer combinations, those of the lower rated capacities are an unimportant part of the total above the length of 38 feet.

## WEIGHTS AND DIMENSIONS OF FULL-TRAILER COMBINATIONS GIVEN

Only 10 combinations having full trailers were observed during the course of the survey. The weights,
dimensions, and other characteristics of these vehicles are given in table 37. In general their characteristics are similar to those of the tractor-semitrailer combinations which have been discussed in detail, but one should be noted particularly as the longest and heaviest combination observed during the period. This combination, with a gross load of 77,000 pounds and a length of 58.7 feet, had a value of $C$ in the gross-load formula recommended by the American Association of State Highway Officials of 860 . This is the largest value noted in the period of observation and exceeds the next largest value observed by nearly 100 . This combination consisted of a tank truck and a tank trailer and was used to transport gasoline.

## REPORT ON TAXATION OF MOTOR VEHICLES IN 1932 AVAILABLE

The full report on the study of motor vehicle taxation in 1932 by the United States Bureau of Public Roads is now available. The survey was begun in 1933 and completed in 1934 and is the broadest in scope yet attempted. The report includes not only State taxes but also Federal excise taxes, county and municipal taxes, personal-property taxes on motor vehicles imposed by State, county, and municipal jurisdictions,
and public bridge tolls. The data are analyzed so that the numbers and contributions of various classes of vehicles may be determined.

A digest of the report was published in Public Roads, October 1934. The full report, entitled "The Taxation of Motor Vehicles in 1932 ", consists of 270 pages and is for sale by the Superintendent of Documents, Government Printing Office, Washington, D. C., for 35 cents. There is no supply for general free distribution. Orders should be sent direct to the Superintendent of Documents at the above address.
CURRENT STATUS OF UNITED STATES PUBLIC WORKS ROAD CONSTRUCTION

CLASS 1．－PROJECTS ON THE FEDERAL－AID HIGHWAY SYSTEM OUTSIDE OF MUNICIPALITIES
AS OF APRIL 30， 1935

													気雚 ำกำํ ํ					䟢	发
			む								范			$\begin{aligned} & { }_{8}^{8} 8 \\ & 80 \\ & 80 \end{aligned}$	$\begin{array}{cc} \text { 喜 } \\ \stackrel{e}{5} \\ \stackrel{n}{n} \end{array}$			\％	\％
	$\frac{\ddot{y y}}{\underline{y y}}$		¢	$\stackrel{9}{\text { mix }}$	$\stackrel{\sim}{n}$	－\％	－			－ัก	우부̇	สัก	－3ぎき	～～0	ヘั่	～ํํํ	¢～00		－
			$\begin{aligned} & 80 \\ & \text { 8N } \\ & \text { 訁í } \end{aligned}$														쓰굴 －		
				$\begin{aligned} & \frac{\pi}{0} \\ & \dot{f} \end{aligned}$	$\stackrel{\text { cos }}{\substack{0.0\\}}$		$\begin{aligned} & \text { 管感 } \end{aligned}$		$\begin{aligned} & \text { 畣 } \\ & \stackrel{y}{*} \end{aligned}$				$\begin{aligned} & \text { \%igu } \\ & \text { ig in } \end{aligned}$			$\begin{aligned} & \text { 篤 } \\ & \text { Mu } \end{aligned}$			㥶
z	苑	－\％oo	ジキが	－	¢¢ ${ }_{\text {¢ }}^{\text {¢ }}$				售がぁ	우우ํํํํ	－¢ ¢ ¢	Mrat	\％ำ．	－	กัม	＊＊＊		$\dot{¢}$	$\stackrel{\square}{\text { N }}$
																	퉁 우웅		¢
									$\begin{aligned} & \text { Biz } \\ & \text { Bis } \\ & \text { Big } \end{aligned}$	중N웅 ＂							$\begin{aligned} & \text { Sien } \\ & \text { Bjow } \end{aligned}$	$\begin{aligned} & \text { た్N } \\ & \text { Nin } \\ & \end{aligned}$	\％
							吉素吉 ํoํ			\＆式罰志					だષ్ర䦽留品			（	告
		－			－	号が，	＊		－－－	－			moz	完㐭萼				$\stackrel{\circ}{\circ}$	－
										$\begin{aligned} & 88_{0}^{\circ} \\ & \text { í } \end{aligned}$		$\begin{aligned} & \text { Mob } \\ & \text { sinin } \end{aligned}$							－
																		ฝั	
	$\begin{aligned} & \stackrel{\rightharpoonup}{5} \\ & \stackrel{\rightharpoonup}{5} \\ & \stackrel{\rightharpoonup}{6} \end{aligned}$											5\％						$\left.\begin{array}{\|c\|c\|} \mathbf{8} \\ \dot{\Xi} \end{array} \right\rvert\,$	¢
APPortionments							产高骨 థ్లిำ			※足   洜號								＊	\％
																			（
	$\stackrel{\text { ex }}{\stackrel{y}{5}}$					竬													$\xrightarrow{\text { n }}$




								$\begin{aligned} & \text { wion } \\ & \text { Hin } \\ & \text { Hingin } \end{aligned}$		  คั～～		№̛울   ～oin	$\begin{aligned} & \text { 笑等 } \\ & \text { 三iv } \end{aligned}$					$\begin{aligned} & \circ \\ & \stackrel{0}{=} \\ & = \end{aligned}$	－
					$\begin{gathered} \text { 용on } \\ \text { Mnion } \\ \text { mini } \end{gathered}$	ธํํㄴํ				$\begin{aligned} & \text { mox } \\ & \text {-ín } \\ & \text { now } \end{aligned}$		None   抎べま			$\begin{aligned} & 8=0 \\ & 8=0 \\ & 9=2 \end{aligned}$				\％
兑		ำ．ำ	$\stackrel{\substack{0}}{\substack{3}}$	$\stackrel{\text { a }}{\sim}$	Mio mis	－¢＋¢	ギN゙	のッ－	－¢	$\vec{\sim}$	$\cdots$	$\stackrel{M}{n} \underset{\sim}{2} \dot{m}$	NNT	$\stackrel{0}{0} \mathrm{i}$	－iva	ベ®0 N	$\stackrel{\sim}{\sim}$		$\stackrel{7}{ \pm}$
$\begin{aligned} & \text { a } \\ & \stackrel{y}{4} \\ & \vdots \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & \text { 急 } \\ & \text { N } \\ & \text { 玉 } \\ & \text { N } \end{aligned}$		$\begin{aligned} & \text { Nof } \\ & \text { Nof } \\ & \text { Sing } \\ & \text { NTo } \end{aligned}$	N． ลั ัี			$\begin{aligned} & \text { Now } \\ & \text { Now } \\ & \text { Nutu } \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{y}{\alpha} \end{aligned}$									$\cdots$
$\begin{aligned} & \text { 㤟 } \\ & 0 \\ & 0 \\ & \frac{\alpha}{4} \\ & \hline \end{aligned}$				$\begin{aligned} & \stackrel{\otimes}{\infty} \\ & \stackrel{\sim}{心} \end{aligned}$	$\begin{aligned} & \text { §ow } \\ & \text { in } \end{aligned}$	$\begin{array}{ll} 8 & 8 \\ 0 & 8 \\ -\quad \\ \hline \end{array}$	ぞ吅 ぶ ๗゚				$\underset{m}{7}$				$\underset{\sim}{\mathscr{N}}$		$\begin{aligned} & \pm \\ & \underset{\sim}{N} \end{aligned}$		con
				$\because \underset{\sim}{0}$	のัッウ		$\underset{\sim}{0}$			$\begin{aligned} & \text { tá } \\ & \text { onf } \end{aligned}$		＊へへ	Tom	－	$\underset{i}{M u s)}$	－¢ ¢ ¢	－	ฯ	N
				$\begin{aligned} & \text { opo } \\ & \text { Now } \\ & \text { cinin } \end{aligned}$			$\begin{aligned} & \text { Bin } \\ & \text { Non } \\ & \text { nin } \end{aligned}$									気ます  			N
			$\begin{aligned} & \circ \\ & \stackrel{\circ}{0} \end{aligned}$	$\begin{aligned} & \text { K} \\ & \stackrel{0}{\infty} \end{aligned}$				$\begin{aligned} & \text { Non } \\ & \text { Non } \\ & 007 \\ & 007 \end{aligned}$		$\begin{aligned} & \text { or } \\ & \underset{\sim}{i} \end{aligned}$		$\begin{aligned} & \text { Noso } \\ & \text { Noin } \\ & \text { Foño } \end{aligned}$							N \＃̃ \％ Ñ
														$\begin{aligned} & 8=06 \\ & \text { 第 } \\ & j=0 \end{aligned}$		$\begin{aligned} & \text { GN N } \\ & \text { =in } \\ & \text { సion } \end{aligned}$			
$\begin{aligned} & \text { 曷 } \\ & \text { 畨 } \\ & \sum_{0}^{2} \\ & 0 \end{aligned}$			$\begin{aligned} & \text { mom } \\ & \stackrel{y}{9} \dot{\sin } \end{aligned}$		Fung	$\begin{aligned} & \text { Qin m } \\ & \text { ín } \end{aligned}$	－ivio		H゙き	$\stackrel{y}{0}=\stackrel{0}{m}$	声mg		$\begin{aligned} & \text { Maz } \\ & \cline { 1 - 2 } \text { Nin } \end{aligned}$	$\stackrel{*}{*} \times$			Nin	$\stackrel{\sim}{6}$	－
				$\begin{aligned} & \text { No. } \\ & \alpha_{0} \\ & \text { = } \end{aligned}$	急。		$\begin{gathered} \text { og } \\ \text { 寺 } \end{gathered}$		$\begin{aligned} & \text { た } \\ & \underset{\sim}{\sim} \end{aligned}$			$\begin{array}{ll} \infty 0 & n \\ 0 & 0 \\ \stackrel{\sim}{\oplus} & =1 \end{array}$		\％			$\begin{aligned} & \text { Mn } \\ & \text { ñ } \\ & \text { min } \end{aligned}$	$\begin{aligned} & \stackrel{(1}{\overleftarrow{N}} \\ & \stackrel{\sim}{1} \end{aligned}$	铝
									$\begin{gathered} 800 \\ \text { No } \\ \text { Non } \\ \text { Not } \\ \text { Nitu } \end{gathered}$										－
	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{1}{5} \\ & \stackrel{\rightharpoonup}{6} \end{aligned}$							뿐웅風定 nimi		～～o ํํํํ $\qquad$		矛果路 웅웅 ベデテ						$\begin{aligned} & \mathrm{E} \\ & \underset{N}{N} \end{aligned}$	
			$\begin{aligned} & \text { so8 } \\ & \text { Nob } \\ & \text { aig io } \end{aligned}$		$\begin{aligned} & \text { Non } \\ & \text { in } \\ & \text { in } \\ & \text { Nin } \\ & \text { Nin } \end{aligned}$		辂告   妻宗孚			훙눈  				웅윽   風堅兌					\％
																		$\begin{aligned} & \text { 等 } \\ & \text { 等 } \end{aligned}$	
	$\begin{aligned} & \text { 宸 } \\ & \text { E } \end{aligned}$																		\％

CURRENT STATUS OF UNITED STATES PUBLIC WORKS ROAD CONSTRUCTION

CLASS 3．－PROJECTS ON SECONDARY OR FEEDER ROADS
AS OF APRIL 30． 1935

					$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\stackrel{\rightharpoonup}{\alpha}}$	\％									คisim				
		会舍	$\stackrel{8}{\square}$		$\begin{array}{cc} \tilde{\sim} \\ \underset{\sim}{0} \\ \underset{\sim}{n} & 0 \end{array}$	$\underset{\sim}{2}$	$\begin{gathered} \bar{o} \\ \stackrel{\sim}{\sim} \\ \stackrel{n}{\sim} \\ \sim \end{gathered}$				$\frac{1}{7}$			néeie			$\begin{aligned} & \text { ay } \\ & \text { - } \\ & \text { in } \end{aligned}$		－
			－	－	－ֹ¢	－¢	－	ベ¢	çom	$\stackrel{m}{m}$	ごぎき		Fợ	¢¢	¢ิ－	$\xrightarrow[\sim]{\sim}$	未丷天	$\pm$	$\stackrel{7}{\underset{\sim}{\sim}}$
			$\begin{aligned} & \text { Qơn y } \\ & \text { jon } \end{aligned}$										ㄲํ무 ప్ల゙が					$\stackrel{\circ}{2}$	N
			$\stackrel{ \pm}{ \pm}$		器	$\stackrel{\tilde{\sim}}{\stackrel{\sim}{\sim}}$	$$		$\ddot{\sim}$			$\begin{aligned} & \stackrel{\circ}{\alpha} \\ & \text { む్ } \end{aligned}$		$\begin{aligned} & \text { הूou } \\ & \text { sion } \end{aligned}$	$\stackrel{0}{i}$	$\begin{aligned} & \stackrel{\rightharpoonup}{ \pm} \\ & \stackrel{\sim}{6} \end{aligned}$	商		※
				¢o．	甪ぎき					¢゙った	官華			べّ	$\begin{aligned} & \text { nioo } \\ & \dot{\sim i n g m o n} \end{aligned}$		ำ	$\stackrel{\sim}{n}$	
		요ํํㅜㅁ กiビion					ตัo ヘ่ํㅜㅇ․												篤
					$\begin{aligned} & \text { ⿷匚⿳ } \\ & \text { en } \\ & \text { 管 } \end{aligned}$			$\begin{aligned} & \text { 叙 } \\ & \text { 袁 } \end{aligned}$		$8$	$\begin{gathered} \overrightarrow{2} 8 \\ \text { in } \\ \text { nin } \end{gathered}$			$\begin{gathered} \text { 碓 } \\ \text { iod } \end{gathered}$		$\begin{aligned} & \text { KO } \\ & \text { =it } \end{aligned}$			
				$\begin{aligned} & \text { 置気 } \\ & \text { neme } \end{aligned}$															
$\begin{array}{\|l\|l\|} \hline \text { an } \\ \text { 号 } \end{array}$		¢	ma゙					$\begin{aligned} & \text { Nar } \\ & \text { Mision } \end{aligned}$			$\underset{\sim}{\sim \sim}$			miviv	¢¢m－	～－${ }_{\text {¢ }}^{\text {¢ }}$	守家宊	－${ }_{\text {－}}$	管
	nigu gig ed	$\begin{aligned} & \text { of } \\ & \text { í } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { 羍 } \\ & \text { 保 } \end{aligned}$		$\begin{aligned} & \overrightarrow{0} \\ & \text { in } \end{aligned}$								$\begin{gathered} \text { Nax } \\ \text { Nig } \\ \text { in } \end{gathered}$	$\stackrel{\rightharpoonup}{g}$	$\begin{aligned} & \text { noie } \\ & \text { 䀎 } \end{aligned}$			$\begin{aligned} & \text { 壱 } \\ & \dot{\theta} \end{aligned}$	\％
								き送签 が刃 ํo											\％
							$\begin{aligned} & \text { giog } \\ & \text { and } \\ & \text { Bity } \end{aligned}$												\％
		Qa:  	ようごす																H
																	年		高
			$\begin{aligned} & \text { geve } \\ & y^{\circ} \\ & 0 \\ & 0 \end{aligned}$												蒾产	$5$			－

## PUBLICATIONS of the BUREAU OF PUBLIC ROADS

Any of the following publications may be purchased from the Superintendent of Documents, Government Printing Office, Washington, D. C. As his office is not connected with the Department and as the Department does not sell publications, please send no remittance to the United States Department of Agriculture.

## ANNUAL REPORTS

Report of the Chief of the Bureau of Public Roads, 1924. 5 cents.
Report of the Chief of the Bureau of Public Roads, 1927. 5 cents.
Report of the Chief of the Bureau of Public Roads, 1928. 5 cents.
Report of the Chief of the Bureau of Public Roads, 1929. 10 cents.
Report of the Chief of the Bureau of Public Roads, 1931. 10 cents.
Report of the Chief of the Bureau of Public Roads, 1932. 10 cents.
Report of the Chief of the Bureau of Public Roads, 1933.
Report of the Chief of the Bureau of Public Roads, 1934.

## DEPARTMENT BULLETINS

No. 136D . . Highway Bonds. 20 cents.
No. 347D . . Methods for the Determination of the Physical Properties of Road-Building Rock. 10 cents.
No. 583D . . Reports on Experimental Convict Road Camp, Fulton County, Ga. 25 cents.
No. 1279D . . Rural Highway Mileage, Income, and Expenditures, 1921 and 1922.

## TECHNICAL BULLETINS

No. 55 T . . Highway Bridge Surveys. 20 cents.
No. 265 T . . Electrical Equipment on Movable Bridges. 35 cents.

## MISCELLANEOUS CIRCULARS

No. 62MC . . Standards Governing Plans, Specifications, Contract Forms, and Estimates for FederalAid Highway Projects. 5 cents.

## MISCELLANEOUS PUBLICATIONS

No. 76MP . . The results of Physical Tests of Road-Building Rock. 25 cents.
Federal Legislation and Regulations Relating to Highway Construction. 10 cents.
Supplement No. 1 to Federal Legislation and Regulations Relating to Highway Construction.
No. 191 . . Roadside Improvement. 10 cents.
The Taxation of Motor Vehicles in 1932. 35 cents.

## REPRINT FROM PUBLIC ROADS

Reports on Subgrade Soil Studies. 40 cents.

Single copies of the following publications may be obtained from the Bureau of Public Roads upon request. They cannot be purchased from the Superintendent of Documents.

## SEPARATE REPRINT FROM THE YEARBOOK

No. 1036Y . . Road Work on Farm Outlets Needs Skill and Right Equipment.

## TRANSPORTATION SURVEY REPORTS

Report of a Survey of Transportation on the State Highway System of Ohio (1927).
Report of a Survey of Transportation on the State Highways of Vermont (1927).
Report of a Survey of Transportation on the State Highways of New Hampshire (1927).
Report of a Plan of Highway Improvement in the Regional Area of Cleveland, Ohio (1928).
Report of a Survey of Transportation on the State Highways of Pennsylvania (1928).
Report of a Survey of Traffic on the Federal-Aid Highway Systems of Eleven Western States (1930).

A complete list of the publications of the Bureau of Public Roads, classified according to subject and including the more important articles in PUBLIC ROADS, may be obtained upon request addressed to the U. S. Bureau of Public Roads, Willard Building, Washington, D. C.



[^0]:    ${ }^{1}$ There is nothing in the Maryland law to prevent adding to these combinations of 2 vehicles an indefinite number of units weighing as much as 40,000 pounds each.

