组

A JOURNAL OF HIGHWAY RESEARCH

(E) UNITED STATES DEPARTMENT OF AGRICULTURE

VOL. 15, NO. 11
JANUARY 1935

ROAD-MIX CONSTRUCTION IN CALIFORNIA

Highway Research

Issued by the

UNITED STATES DEPARTMENT OF AGRICULTURE

BUREAU OF PUBLIC ROADS

Volume 15, No. 11
January 1935

The reports of research published in this magazine are necessarily qualified by the conditions of the tests from which the data are obtained. Whenever ii is deemed possible to do so, generalizations are drawn from the results of the tests; and, unless this is done, the conclusions formulated must be considered as specifically pertinent only to described conditions

In This Issue
 Experiments with Road-Mixes and Surface Treatments in California - 253

THE BUREAU OF PUBLIC ROADS Willard Building, Washington, D.C. REGIONAL HEADQUARTERS Mark Sheldon Building, San Francisco, Calif.

DISTRICT OFFICES

DISTRICT No. 1. Oregon, Washington, and Montana.
Post Office Building, Portland, Oreg.
DISTRICT No. 2. California, Arizona, and Nevada.
Mark Sheldon Building, 461 Market St., San Francisco, Calif.
DISTRICT No, 3. Colorado, New Mexico, and Wyoming.
237 Customhouse, Nineteenth and Stout Sts., Denver. Colo.
DISTRICT No. 4. Minnesota, North Dakota, South Dakota, and Wisconsin. 907 Post Office Building, St. Paul, Minn.

DISTRICT No. 5. Iowa, Kansas, Missouri, and Nebraska.
Saunders-Kennedy Building, Omaha, Nebr.
DISTRICT No. 6. Arkansas, Louisiana, Oklahoma, and Texas.
Room 502, U. S. Courthouse, Fort Worth, Tex

DISTRICT No. 7. Illinois, Indiana, Kentucky, and Michigan. South Chicago Post Office Building. Chicago. Ill.
DISTRICT No. 8. Alabama, Georgia, Florida, Mississippi, South Carolina, and Tennessee.

Post Office Building, Montgomery, Ala
DISTRICT No. 9. Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, and Vermont. Federal Building. Troy, N. Y.
DISTRICT No. 10. Delaware, Maryland, North Carolina, Ohio, Pennsylvania, Virginia, and West Virginia.

Willard Building, Washington, D.C.
DISTRICT No. 11. Alaska.
Room 419. Federal and Territorial Building, Juneau, Alaska.
DISTRICT No. 12. Idaho and Utah.
Federal Building, Ogden, Utah.

Because of the necessarily limited edition of this publication it is impossible to distribute it free to any person or institutions other than State and county officials actually engaged in planning or constructing public highways, instructors in highway engineering, and periodicals upon an exchange basis. At the present time additions to the free mailing list can be made only as vacancies occur. Those desiring to obtain Public Roads can do so by sending $\$ 1$ per year (foreign subscription $\$ 1.50$), or 10 cents per single copy, to the Superintendent of Documents, United States Government Printing Office, Washington, D. C.

EXPERIMENTS WITH ROAD-MIXES AND SURFACE TREATMENTS IN CALIFORNIA

 of Public Roads

LeQUID asphaltic materials of the slow-curing type have been used extensively in the Western States during the last few years in the construction of the road-mix or mixed-in-place types of surfaces. In general, they have given satisfactory results in the arid and semiarid sections. However, these materials have not been entirely satisfactory in the more humid areas or with certain kinds of aggregates, and a need has been felt for some experimental work to determine the limitations of the materials and to obtain information as to other materials and methods of construction which might be used to better advantage under these special conditions.

The series of experimental sections described in this report included a wide range in the features commonly involved in the construction of the road-mix and surface-treatment types.

The experimental sections were built during 1929 and 1930 by the division of highways, California Department of Public Works, in cooperation with the Bureau of Public Roads. The 21 sections cover a length of 10 miles on U. S. 30 , beginning at the California-Nevada State line and extending southwest toward Truckee.

EXPERIMENTS COVERED A NUMBER OF TYPES OF CONSTRUCTION

The experiments are grouped with respect to the type of construction and materials used as follows:

1. Road-mixes of crushed stone and gravel aggregates with different types and grades of bituminous materials.
2. Surface treatment of road-mixes.
3. Surface treatments on a traffic-bound stone base course.

The location of the different experiments and the details of their construction are given in tables 1 and 7 .

The road on which the experimental sections were built had been graded and drained and surfaced with selected soil containing some granular material. In the summer of 1927, following this construction, an oil-mixed surface from 2 to 3 inches in thickness was built using local aggregate. On the westerly 3 miles a crushed red volcanic ash was used in the surface mix and this surfacing failed extensively. The remaining 7 miles, on which crushed granite had been used, was in better, condition but, in general, failure had developed on the whole project to such an extent that reconstruction of the surface was necessary at the time the experiments were begun. Figure 1 is an illustration of a condition typical of the old surface.

The road is in a section where the climate is severe and the moisture conditions are unfavorable. The average elevation is more than 5,000 feet and the range in temperature is from about $95^{\circ} \mathrm{F}$. above zero to as low as $-30^{\circ} \mathrm{F}$. Considerable snow lies on the road until late in the spring and, as the road is located largely in heavy sidehill cuts, the moisture conditions during winter and spring are particularly bad, due to the heavy flow of water and sliding of earth which occur at this time of year. Figure 2 shows a typical condi-
tion during the spring. Yearly traffic counts over the period from 1929 to 1933 show a daily traffic on week days of 1,300 vehicles and as many as 3,500 vehicles are counted on Sundays.
Subgrade samples were taken at intervals under the edge of the old surface and the results of analyses are given in table 2.

The experimental sections were each approximately one-half mile in length, with the exception of sections 11, 12, and 13, which were one-third mile. Sections were numbered from east to west beginning at the State line and ending with section 21 at the west end of the project. The surface was made 20 feet wide in all cases and the compacted thickness of both the roadmix surfacing and also the traffic-bound stone course for surface treatment was 3 inches.

As a basis for correlation of data obtained on materials, methods of construction, and service behavior, two observation or test points were selected in each section, approximately 700 feet from each end. The locations of these points were marked in the field by 3 - by 3 -inch painted posts and identified by the number of the section and the letter A if near the easterly end, and B if near the westerly end. At these points samples were taken to determine the condition of the old surface and the character of the subgrade soil. Immediately prior to applying the bituminous material the aggregate was sampled to determine the moisture content and the mechanical analysis. Samples of the surface mixture were taken at these locations during compaction and at several intervals thereafter. Results of tests on these samples to determine the bitumen content, grading, and stability are given in table 3. Wherever the right or left portion of the roadway is mentioned in the report the reference is to the right and left of an observer facing in the direction of the stationing and the beginning of the project.
Except for the $3 / 4$ - to $1 / 8$-inch stone, the crushed stone used was produced locally at a roadside crushing plant shown in figure 3. The local material was a highly weathered granite, friable and very light, the crusherrun material weighing only about 2,300 pounds per cubic yard, and the open-graded material weighed 1,970 pounds. The $3 / 4$ - to $1 / 8$-inch stone was the same type of material but of somewhat better quality and was shipped in by rail from Oroville, Calif. The fine material, known locally as muck sand, which was added to the aggregate on several of the sections to increase the percentage passing the no. 200 sieve, was shipped in by rail from Sacramento. Washed gravel, 1 to $1 / 8$ inch in size, and crushed gravel ranging from $9 / 16$-inch to dust, were obtained from Fair Oaks, Calif. Combinations of these sizes were used on the road-mix sections and satisfactory mixing was obtained by depositing the materials on the subgrade in the proportions of 25 percent of the coarser uncrushed gravel to 75 percent of the finer crushed gravel and blading it in windrows.

Table 1.-Materials used on road-mix experimental sections. All sections were surfaced with 3 inches of compacted material placed in 1929 and seal treatments were given to some sections in 1929 and 1950

Table 2.-Results of tests on subgrade soil samples

Section and location	Mechanical analysis ${ }^{1}$						Physical characteristics of material passing no. 40 sieve						Soil group
	Particles larger than 2 millimeters	Particles smaller than 2 millimeters					Liquid limit	$\begin{array}{\|c\|} \text { Plasticity } \\ \text { index } \end{array}$	Shrinkage limit	Shrinkage ratio	Moisture equivalent		
		Coarse sand, 2 to 0.25 millimeters	$\begin{array}{\|c\|} \text { Fine } \\ \text { sand, } 0.25 \\ \text { to } 0.05 \\ \text { milli- } \\ \text { meter } \end{array}$	Silt, 0.05 to 0.005 millimeter	Clay, less than 0.005 millimeter	Colloids, less than 0.001 millimeter					Centrifuge	Field	
	Percent	Percent	Percent	Percent	Percent	Percent							
1, ${ }_{\text {A }}$	44					2	22	5 16	18 19	1.8	15	18	A-2, plastic.
2, A	42	60	23	14	3	2	20	16		1.8	14	19	A-2, nonplastic.
B	42	60	28	10	2		23	5	20	1.7	17	20	A-2, plastic.
3, A.	39	53	29	15	3	2	23	3			17	21	Do.
B	51	41	30	23	6	2	31	11	21	1.7	28	25	A-4.
4, A.	39	62	22	13	3	2	26	6	19	1.7	19	22	A-2, plastic.
B	46	41	33	20	6	2	39	17	19	1.7	33	30	A-7.
$5, \mathrm{~A}$	28	37	27	14	13	6	38	16	18	1.8	35	29	Do.
B	50	54	26	14	6	2	31	10	21	1.7	23	26	A-2, plastic.
6, A	14.	51	26	18	5	1	24	4			16	22	Do.
B	51	45	31	14	10	4	29	5	21	1.7	23	26	Do.
7, A.	26	34	35	24	7	1	29	9	21	1.7	25	25	Do.
B	39	28	38	21	13	5	32	11	22	1.7	24	26	Do.
8, A	40	35	35	22	8	2	27	6	22	1.7	22	24	A-4.
B	41	22	41	25	12	5	36	14	21	1.7	32	30	Do.
9, A	30	38	28	27	7	1	39	19	20	1.7	33	30	A-7.
B	24	47	35	15	3	1	26	6	22	1.7	15	23	A-2, plastic.
10, A	30	51	30	16	3	1	23	4	22	1.7	19	21	Do.
B	29	20	17	33	30	13	52	23	26	1. 6	49	43	A-7.
11, A.	24	38	29	23	10	3	35	15	19	1.7	32	27	A-4.
12...-	45	27	24	34	15	5	46	19	23	1.6	48	39	A-7.
13.	38	23	24	42	11	2	37	12	20	1.7	41	29	A-4.
15, B	43	35	33	20	12	5	19				17	22	A-2, nonplastic.
16, B	39	38	42	13	7	3	22				15	22	Do.
17, B	26	28	36	23	13	5	23	3	22	1.6	26	24	A-4.
	27	27	31	24	18	8	27	8	24	1.6	30	27	
B	37	49	35	11	5	3	27				23	29	A-2, nonplastic.
$19, \mathrm{~A}$	28	25	31	23	21	8	31	7	27	1.6	39	31	Do.
20, A	4	17	25	28	30	16	51	27	17	1.8	56	39	A-7.
B	37	24	32	23	21	13	27	7	21	1.7	27	22	A-4.
21, A	46	11	24	39	26	11	48	17	34	1.4	58	41	
B	2	4	18	49	29	8	69	27	33	1.4	78	58	Do.

${ }^{1}$ Particles above 0.074 mm in diameter by sieve method; particles below 0.074 mm in diameter by the hydrometer method.

GENERAL METHOD OF CONSTRUCTING ROAD-MIX SECTIONS DESCRIBED

The road-mix type of construction was used on sections, 1 to 13 , inclusive. The bituminous materials used on these sections included slow-curing oils of 60-70 and $70-80$ asphalt content, medium-curing kerosene cut backs of 94+ asphaltic oil and of 110-120 penetration asphalt, and emulsions of $95+$ asphaltic oil and $110-120$ penetration asphalt designated as $95+\mathrm{M}, 95+\mathrm{L}$ and $110-120 \mathrm{M}$, respectively. Analyses of the bituminous materials are given in tables 4 and 5 . Tests on these materials were made according to the methods used at the time of construction and are therefore not those
now generally advocated. The approximate SayboltFurol viscosity values have, however, been included in the tables to facilitate comparison with present grades of asphaltic materials.

With the exception of the 70-80 slow-curing oil, the consistencies of the liquid asphaltic materials used in the road-mix sections, expressed as specific viscosity, Engler, at 122° F., ranged from 64 to 100 . In terms of Saybolt-Furol viscosity, the range is from 255 to 400 seconds. For the medium-curing cut-back materials, 20 to 25 percent of kerosene was required in the manufacture to soften the base asphalt to the required consistency.

Figure 1.-Typical Condition of the Old Surface at Time of Construction.

The bituminous materials were delivered in tank cars which were heated to about 100° to $150^{\circ} \mathrm{F}$.; the asphalt was pumped into tank trucks and hauled to the job. A detachable pressure distributor was used for spreading.

The aggregate was hauled in trucks and dumped in two windrows, one on each edge of the roadbed. The correct amount of aggregate was obtained by measuring the loads at the place of loading and spreading them over measured distances on the road. On those sections requiring the addition of fines, the procedure was to add this material to the top of the windrows and then mix the two together before applying the oil. The grading of the aggregate was determined by frequent sampling and testing at the loading plant and by later tests on the material in the windrows immediately before applying the oil. The amount of fines or filler to be added was determined from frequent mechanical analyses of the aggregate at the loading plant.

A typical grading of the fine muck-sand added to the crusher-run aggregate on a number of the sections to increase the percentage of material passing the no. 200 sieve was as follows:
Screen or sieve size:
Percent passing

The amount of bituminous material required was determined largely from the appearance of the mix, the grading of the aggregate, and the results obtained during the progress of the work. The detailed descriptions of the sections show the grading of the aggregate and the amount of water determined at the time of mixing. Table 3 gives additional information from tests made on the mixes at different intervals following the construction. Comparisons, of the amount of oil used and that required according to various formulas based on the grading of the aggregate can be made from the data in table 6.

Prior to adding the bituminous material, one windrow of aggregate was moved to about midway between the

Figure 2.-During the Spring, Slides Caused Poor Drainage at Numerous Points.

Figure 3.-The Roadside Crushing Plant Consisting of a Jaw Crusher and a Gyratory Crusher.
edge and the center of the roadway and spread to a width of approximately 10 feet. The oil was then applied in three applications and disked in after each application. After the last application of oil, the materials were mixed with blade machines, using the usual turn-over method, until the aggregate had a uniform coating. It was then left in a windrow at the edge of the road and the same procedure was followed on the opposite windrow, after which the 2 were combined and mixed again 5 or 6 times to insure uniformity.
In the construction of those sections where emulsions were used it was found advantageous to blade the material into a windrow following each application of oil and subsequent disking. Blade machines were used, one on each edge of the material, each turning toward the other, followed by a third machine which flattened the windrow thus formed in preparation for the next application. The arrangement of equipment is shown on the cover page.

Upon the completion of the mixing process the material was windrowed to the center of the road and spread by blading toward each edge. After spreading to the full width, a light power grader was used to smooth and maintain the surface.
TABLE 3.-Results of tests of samples from mixed surfaces

[^0]Table 4.-Analyses of bituminous materials used on various sections (asphalt emulsions excepted)

${ }^{1}$ Material did not pull to a thread.
Table 5.-Analyses of typical asphaltic emulsions used on the various sections

Table 6.-Amounts of bituminous material used on the different road-mix sections (exclusive of seal coat) and the amounts indicated by various formulas

Section	Calculated amount of bitumen exclusive of solvent and water in mix (percent) ${ }^{2 / 3}$	Average amount of bitumen 1 year after construction, by extraction	Amount of bituminous materials required according to various formulas ${ }^{1}$			Remarks on richness of the mix as indicated by service behavior
			Stanton, Calif.	Utah	W yoming, N. Dak.	
1, A	$4.23{ }^{3}$	3.3	2.7	3.1	2.9	Slightly lean without seal.
1, B	$4.3{ }^{3}$	3. 6	3. 7	4.0	4.1	Do.
$1, \mathrm{C}$	$5.5{ }^{3}$	3.3 3.6	3. 7	4. 0	4.1	Satisfactory without seal.
3.	3.6 4.4	3.6 3.8	2. 4.6	2.5 4.9	2. 1	Rich. Satisfactory without seal
4.	5.0	3.8 3.1	4.0	4.2	4.3	Datisiactory without seal.
5	4.8		4.2	4.5	4.8	Slightly lean without seal.
6.	4.2		3.8	4.0	4.1	Very lean. Satisfactory with seal.
7	6.1	5.1	4.4	4.5	4.8	Satisfactory.
8.	4.0	3. 5	2.3	2.8	2.4	Rich.
9	4.2	3.5	4.5	4.8	5.0	Slightly lean without seal.
10.	3.5--.-.-.-.-.-	4.0	3.9	4.2	4.3	Satisfactory without seal.
11.	$\left\{\begin{array}{l}2.6-3.5 \text { emulsion }{ }^{3} \\ 1.5 \text { slow-curing oil }\end{array}\right.$	3.9	3.7	3.8	3.9	Sufficient but poorly distributed.
12.	\{3.3-3.6 emulsion ${ }^{3}$---1.5-2.2 slow-curing oil	4.7	2.8	3.1	2.9	Do.
13.-			2.7	3.0	2.8	Very lean.

${ }^{1}$ These formulas are all based on the division of the aggregate on the no. 10 and no. 200 sieves:
$P=$ Percent of oil required.
$a=$ Percent of aggregate retained on the no. 10 sieve
$b=$ Percent of aggregate passing to no. 10 and retained on the no. 200 sieve. $c=$ Percent of aggregate passing the no. 200 sieve.
Stanton, Calif.: $P=0.02 a+0.045 b+\left\{\begin{array}{l}0.15 c \text { for fine aggregate. } \\ 0.18 c \text { for average aggregate }\end{array}\right.$
Utah: $P=0.02 a+0.033 b+0.195 c+H$ (H is an absorption factor and is usually

An 8 -ton tandem roller was used to obtain final compaction on the road-mixed emulsion sections and cutback asphalt sections. The sections built with slowcuring oil were not rolled but were compacted entirely by traffic.

Obstructions, as shown in figure 4, A, were devised to guide the traffic so as to compact the full width of the surfacing. These were moved at frequent intervals to distribute traffic as required. The road-mix sections were built in 1929 and their behavior up to the final inspection in October 1932 is discussed in the following pages.

ROAD-MIX SECTIONS DESCRIBED IN DETAIL

Section 1.-The section consisted of a road-mix with medium-curing cut-back asphalt. The mix was composed of crushed rock and 110-120 penetration asphalt cut back with kerosene. The section was divided into three parts in order to investigate the use of differently graded aggregates and different amounts of binder.

Section 1-A, at eastern end of the project, was 639 feet long and was surfaced with crusher-run stone (three-fourths inch to dust) mixed with 1.71 gallons per square yard of cut-back asphalt. The aggregate contained 0.5 percent moisture and the mechanical analysis was as follows:
Passing-
Percent

1/2-inch screen
76. 5

No. 3 sieve.
46.0

No. 10 sieve
13.0

No. 200 sieve
2.5

Section 1-B was 660 feet long and was surfaced with crusher-run stone (three-fourths inch to dust) with an admixture of fines to increase the percentage of dust and was mixed with 1.92 gallons per square yard of cut-back asphalt of the same grade as used on section $1-\mathrm{A}$. The aggregate contained 2.5 percent moisture and the mechanical analysis was as follows:
${ }^{2}$ The percentage of bituminous material by weight were calculated on the basis of the specific gravities of the bituminous materials as given in tables 4 and 5 and the following unit weights of loose aggregates:

Pounds per
Gravel
cubic foot
Close graded crushed stone 100
90
85
Crusher-run stone
Open graded crushed stone 80
${ }^{3}$ The quantities of cut back and emulsion have been corrected for solvent or water using 56 percent of bitumen for the emulsions and 80 percent residual bitumen for the cut backs.

Passing-

Percent

$1 / 2$-inch screen ... 72.0

No. 10 sieve.. 28.0

Section 1-C was 1,320 feet in length and was identical with section $1-\mathrm{B}$ as to aggregate and type of binder. The section was mixed at the same time as 1-B using 2.26 gallons per square yard of the cut-back material. The mixed material was spread and compacted by traffic for 8 days. A wide spread in bituminous content was desired betwen sections 1-C and the other sections and at this time it was evident that a greater amount of bituminous material could be used without causing instability. The section was therefore scarified and remixed with the addition of 0.21 gallon per square yard.

No difficulty was encountered in handling, applying, or mixing the cut-back material. Less mixing seemed to be necessary than with the slow-curing oils of similar viscosity. The mixture on sections $1-\mathrm{B}$ and 1-C, which contained added fines, compacted and bonded much more quickly under traffic than did section 1-A where fines were not added. The edges of these sections were rolled about 10 days after construction and were greatly improved in appearance. By that time the traveled portion of the roadway had compacted to such an extent that rolling of this portion was not considered necessary.

Cost of section 1:
$1-\mathrm{A}-46.94$ cents per square yard or $\$ 5,507$ per mile.
$1-\mathrm{B}-51.18$ cents per square yard or $\$ 6,005$ per mile.
$1-\mathrm{C}-58.57$ cents per square yard or $\$ 6,872$ per mile.
All three sections were in good condition when inspected 3 years after the construction. The surfaces were free from rich areas such as developed extensively on some of the slow-curing oil sections. Section 1-C which had the highest asphalt content, retained

Figure 4.-A, Obstructions Used to Guide Traffic so as to Compact Entire Surface; B, The Relatively Quick-Breaking Emulsion Used on Sections 11 and 12 Produced a Mixture Which was Difficult to Compact; C, A Uniform Mix Which Compacted Readily Was Obtained on Section 13 by the Use of a Slow-Breaking Emolsion; D, The Leanness of Section 13 Resulted in Raveling Which Continded Until the Surface Was Sealed.
the most wear-resistant surface. Sections $1-B$ and 1-A began to show slight signs of surface raveling during 1932 and were given a light seal treatment of 0.15 gallon of $90-95$ asphaltic oil applied hot and a cover of 11 pounds of $1 / 4$-to 18 -inch crushed stone per square yard.

Except for the seal treatment, the only maintenance required had been the skin patching of a few small areas on section $1-\mathrm{A}$ where the surface cracked due to movement in the subgrade.

Section 2.-The section consisted of a road-mix of cut-back asphalt and open graded crushed-stone aggregate. The aggregate was $3 / 4$ - to $1 / 8$-inch crushed stone bound with 1.4 gallons per square yard of $110-$ 120 penetration asphalt cut back with kerosene.

The moisture content of the aggregate was 0.25 percent and the mechanical analyses were as follows:

	Sample A	Sample B
Passing-	Percent	Percent
3/4-inch screen	100.0	100.0
12-inch screen	86.0	79.5
No. 3 sieve.	55.5	41.0
No. 10 sieve.	2.0	1.0
No. 200 sieve	. 25	0

Mixing was completed on this section with considerably less effort than on section 1 where the aggregate included fines. The cut-back asphalt readily and thoroughly coated all of the stone particles. The mix, how-
ever, compacted and bonded slowly with the result that for several days some aggregate was displaced by traffic. Less displacement of aggregate would probably have occurred, not only on this section but also on section 1 , had the mix been allowed to cure until somewhat tacky before being spread and compacted.

The cost of the surface was 66.50 cents per square yard, or $\$ 7,802$ per mile.

As a result of the use of the medium-curing type of cut-back asphalt, instead of the rapid-curing type which would have been better suited to the open-graded aggregate, the mix did not develop high stability until about 2 years after construction. The surface of this section remained in excellent condition although the indications were that it was somewhat rich when constructed.

Probably a better design for this section would have been a leaner mix with a light seal treatment to provide the necessary resistance to displacement. Maintenance had been limited to a few small skin patches where the surface cracked or slight surface depressions had developed.

Section 3.-A slow-curing oil was mixed with a closegraded gravel. The surface was composed of 25 -percent uncrushed, washed gravel 1 to $1 / 8$ inch in size and 75 percent of crushed gravel $9 / 16$ inch to dust, bound with a $60-70$ oil applied at the rate of 1.70 gallons per square yard. The moisture content of the aggregate was 3 percent, and the mechanical analyses were as follows:

	Sample A	Sample B
Passing-	Percent	Percent
114-inch screen.	100.0	100.0
1 -inch sereen	98.0	97.0
3/4-inch screen	91.0	88.0
1/2-inch screen	78.0	75.0
No. 3 sieve.	62.0	60.0
No. 10 sieve	40.0	41.5
No. 200 sieve.	11.0	11.5

The materials were mixed readily and the mixture, on being spread, appeared quite dark in color for a typical oil-mix. It seemed to compact more rapidly under traffic than did the other oil and crushed-stone mixes. The mix appeared richer than the stone mixes having the same grading of aggregate and amount of oil This was probably due to the relatively high percentage of moisture in the aggregate.

The cost of the surface was 69.68 cents per square yard or $\$ 8,175$ per mile. Its high cost was due largely to the use of gravel aggregate which was shipped by rail.

The action of moisture on the mix seems to have been more pronounced than on section 4 where crushed stone aggregate was used. The surface, except for a small area on the west end where drainage and subgrade conditions were bad, remained generally hard and stable until the spring of 1931 when it softened quite generally, necessitating scarifying and remixing of about 500 lineal feet on the east end and 700 feet on the west end.

It should be noted that the portions which failed first on this section, as well as on section 4, were those where the mix appeared somewhat rich in oil at the time of construction. Poor drainage and subgrade conditions, which prevailed on several small portions of the section, also seemed to greatly hasten the softening of the surface.

During the summer of 1932 a seal treatment of onefourth gallon of $90-95$ hot asphaltic oil and a cover of 16.5 pounds of one-fourth- to one-eighth-inch crushed stone was added to several portions of the section on which the mix had not softened appreciably. The area treated was mostly over fills and totaled 3,111 square yards, or slightly more than half of the entire section.

Section 4.-A slow-curing oil was mixed with a closegraded crushed stone. The mix was composed of crusher-run stone, three-fourths inch to dust, with fines added as filler, and $60-70$ oil applied at the rate of 1.78 gallons per square yard. The aggregate contained from 2.75 to 3 percent of moisture and the mechanical analyses were as follows:

Sections 4,5 , and 6 were designed to have practically identical mixes except as to percentage of oil used. Sections 5 and 6 , however, were surface treated while section 4 was not.

The cost of the surface was 44.57 cents per square yard or $\$ 5,229$ per mile.

The surface remained in good condition generally. The mix appeared somewhat lean at the time of construction but no appreciable raveling occurred. Sof-
tening of the mix did not develop to the extent that it did on section 3 although it was necessary to scarify and remix about 500 feet on the east end during the summer of 1931. This portion was almost entirely in a cut where the drainage and subgrade were not satisfactory. A seal treatment, similar to that used on section 3, was applied in 1932 to several short portions totaling 666 square yards where the surface was beginning to ravel, particularly along the edges.

Section 5.-A slow-curing oil was mixed with a closegraded crushed stone and followed with a light seal. The mix was composed of crusher-run stone, threefourths inch to dust, with fines added and 1.7 gallons of 60-70 oil. After compaction a light seal treatment of 60-70 oil and a cover of $1 \frac{1 / 4}{}$ to $1 \frac{1 / 8}{}$-inch screenings was applied. The aggregate contained from 2.75 to 3.25 percent of moisture and the mechanical analyses were as follows:

	Sample A	Sample B
Passing -	Percent	Percent
1 -inch screen.	100.0	100.0
$3 / 4$-jnch screen	95.0	93.0
1/2-inch screen.	72.0	80.0
No. 3 sieve.	54.0	69.0
No. 10 sieve	33.0	44.0
No. 200 sieve	9.0	9.25

After the surface had been down about 35 days and had become thoroughly compacted, it was swept clean with a power broom and a light seal treatment of 60-70 oil was applied. The oil was heated to about $140^{\circ} \mathrm{F}$. and was applied at the rate of 0.17 gallon per square yard on the right half of the surface and at the rate of 0.10 gallon on the left half. A cover of about 19 pounds of $\frac{1}{4}-$ to $1 / 8$-inch screenings was then spread, following which the surface was rolled with an 8-ton tandem roller. The major portion of this cover material was thrown to the sides by traffic due to the inability of the slow-curing oil to hold the aggregate cover.
The appearance of the surface before applying the seal treatment seemed to indicate a slight deficiency in oil which would probably have resulted in some raveling had not the seal treatment been applied. The principal effect of the treatment was to enrich the surface and make it more resistant to the wear of traffic. The cost of the surface was 52.03 cents per square yard or $\$ 6,105$ per mile.

In general, this section had remained in better condition than either sections 3 or 4. Although there were some indications of softening of the mix in a few small local areas, failures did not develop sufficiently to affect the generally good condition of the surface.
Maintenance, except for some skin patching, had consisted of scarifying and remixing in the summer of 1931 of about 200 feet of surface on the east end and the application of an additional seal treatment during the summer of 1932 to 751 square yards of the surface which was beginning to show some signs of wear. This treatment was similar to that applied to sections 3 and 4 except that one-fourth gallon of bituminous material and 16.4 pounds of cover were used per square yard.
Section 6.-The section consisted of slow-curing oil mixed with crushed stone with a light surface treatment. The mix was composed of crushed stone, three-fourths inch to dust, without the addition of fines, and 60-70 oil at the rate of 1.40 gallons per square yard. A light surface treatment was applied late in the fall. The aggregate contained 2.5 percent moisture and the mechanical analyses were as follows:

The mix in this experiment was purposely made lean as a surface treatment was to be applied later. Some raveling and pot-holing occurred during the period of about 2 months which intervened between the placing of the mix and the applying of the surface treatment and it is doubtful if the untreated oil-mix surface could have gone through the first winter without considerable failure.

Previous to the application of the surface treatment the surface was swept and all holes patched. A $94+$ grade of asphaltic oil heated to about $400^{\circ} \mathrm{F}$. was applied at the rate of 0.28 gallon on the right half of the roadway and 0.22 gallon on the left half. It was immediately covered with 18.7 pounds per square yard of $1 / 2$ - to $1 / 8$-inch stone and then rolled. A different amount of oil was used on each half of the road width in order to obtain information as to the most economical amount to use. As the treatment was not applied until late in the fall, cold weather prevented complete cementing of the cover stone and, as a result, some of the aggregate was displaced by traffic. It was not until the following summer that the oil warmed sufficiently to come up through the stone and at that time some additional cover had to be added to stop bleeding.

The cost of the mix and surface treatment was 47.17 cents per square yard or $\$ 5,534$ per mile. The mix alone cost 37.88 cents per square yard or $\$ 4,444$ per mile.

This section had remained in excellent condition. The surface was free from soft spots such as occurred on some of the other sections with light oil mixes. Such little maintenance as had been required consisted of applying a few small seal patches.

Section 7.-A slow-curing oil was mixed with a closegraded crushed stone. The mix was composed of crushed stone, three-fourths inch to dust with which fines were added, and $70-80$ oil at the rate of 2.16 gallons per square yard. The aggregate contained from 1.5 to 3 percent moisture and the mechanical analyses were as follows:

	Sample A	Sample B
J'assing- 3/4-inch screen	Percent 100.0	Percent 100.0
1,5 -inch screen	79.5	84.5
No. 3 sieve....	65.0 45.5	70.0
No. 10 sieve-- No. 200 sieve-	45.5 11.0	41.0 6.5
No. 200 sieve		

Considerable difficulty was encountered in mixing the 70-80 oil because of cold weather during construction. The quantity of oil first tried was 1.93 gallons per square yard. Since this did not appear to be sufficient an additional 0.23 gallon was used. The mix compacted rapidly and developed an excellent nonskid surface texture. The oil seemed to have better adhesive properties than did the $60-70$ oil but was less adhesive than the cut-back asphalts.

The cost of the mix surface was 47.82 cents per square yard or $\$ 5,611$ per mile.

Softening of the mix developed early on about 600 feet on the west end and on about 200 feet on the east
end. These portions appeared rich at the time of construction and the soil and drainage were not as satisfactory as on the other portions of the section. The soft places were scarified and remixed during 1931. In 1932 a seal treatment, similar to that used on a portion of section 5, was applied to 265 lineal feet where the surface was beginning to wear. The section was in good condition at the time of the last inspection.

Section 8.-A slow-curing oil was mixed with an open-graded crushed stone. The mix was composed of crushed stone, three-fourths to one-eighth inch in size and a $70-80$ oil at the rate of 1.24 gallons per square yard. The aggregate contained from 0.2 to 3.5 percent moisture and mechanical analyses were as follows:

The material was mixed very quickly and was allowed to remain in the windrows for several days before it was spread. Compaction took place slowly and there was appreciable displacement of stone under traffic for several days during the early compaction. Rolling was finally resorted to and aided considerably in compressing and smoothing the loose surface material. The surface obtained was more open than was desired but, in accordance with the original plan, it was not given a seal. The early behavior of this section and the difficulty in compaction was similar to that experienced on section 2 where a $110-120$ penetration asphalt cut back with kerosene was used. The cost of the surface was 59.55 cents per square yard, or $\$ 6,987$ per mile.

In the spring following construction this section failed by rutting extensively under the truck traffic incident to the construction of sections in 1930. Although the west half of the section, which was in a cut where the subgrade soil and drainage were bad, failed first and most extensively, it was evident, even on the good subgrade, that the mix lacked sufficient stability. The section was considered unsatisfactory and it was discontinued as an experiment during the fall of 1930.

Section 9.-A close-graded crushed stone was mixed with a kerosene cut-back. The mix was composed of crushed stone, three-fourth inch to dust, with muck-sand filler added, and $94+$ asphaltic oil cut back with kerosene and applied at the rate of 1.86 gallons per square yard. The aggregate contained from 1 to 2 percent moisture and mechanical analyses were as follows:

	Sample A	Sample B
Passing-	Percent	Percent
$3 / 4$-inch screen.	98.0	96.5
1/2-inch screen.	82.0	83.5
No. 3 sieve.	67.5	70.0
No. 10 sieve	41.0	48.5
No. 200 sieve.	9.0	11.0

On account of a delay in shipment of a portion of the cut-back material for this section, several days intervened between the mixing of the two windrows. The south windrow was mixed and left to cure for 4 days before being combined with the north windrow. Such slight hardening as occurred in the mix did not seem to add difficulty to the final processing or compaction and seemed to aid in obtaining early compaction with much
less raveling under traffic. The section was rolled during the early compaction. The cost of the surface was 50.81 cents per square yard, or $\$ 5,962$ per mile.
This section had remained in excellent condition. Practically no maintenance had been required although it appeared that a light seal coat would probably be beneficial. The surface was nonskid, uniform in color, and free from soft spots
Section 10.-A kerosene cut-back and was mixed with close-graded gravel. The mix was composed of a close-graded gravel, such as was used on section 3, containing sufficient fines without the addition of filler and a $94+$ asphaltic oil cut back with kerosene. A small amount of cut-back asphalt of 110-120 penetration was also used. The aggregate, containing 0.5 to 0.6 percent moisture, was analyzed as follows:

	Sample A	Sample B
Passing-	Percent	Percent
1 -inch screen	93.0	99.0
$3 / 4$-inch screen .	81.0	85.5
1/2-inch screen.	63.2	77.5
No. 3 sieve	56.4	63.0
No. 10 sieve.	36.7	37.5
No. 200 sieve.	7.5	6. 8

The asphaltic material used in the mix consisted of 1.58 gallons of $94+$ cut back and 0.14 gallon of $110-120$ cut back, the latter being added to make up for the shortage of the former.

The material for the left half of the road was processed and windrowed 5 days before processing the other half. Four days after mixing the second windrow the two were mixed together and spread. The surface was rolled on the following day. Here, as on section 9, the short period of curing seemed to have been of considerable benefit as the mixture compacted quickly and a smooth hard surface was obtained.

The total cost of the surface was 71.19 cents per square yard or $\$ 8,353$ per mile. The high cost of this experiment is due largely to the freight charges on the gravel, which was shipped a long distance by rail.

The surface was in excellent condition except for 200 feet on the west end where bad subgrade and drainage conditions had resulted in some displacement and cracking. The surface appeared much richer than that of section 9 and was less nonskid. Except for some patching on the west end and at a few locations on the edges, no maintenance had been required.

Section 11.-This section was road-mix, composed of asphaltic emulsion and crusher-run stone, three-fourths inch to dust. The aggregate was first mixed with 0.48 gallon of 60-70 oil, after which 1.54 gallons of 110-120 M asphaltic emulsion was applied and mixed. The portion between stations $361+39$ and $353+59$ was enriched by adding 0.49 gallon of $95+\mathrm{M}$ asphaltic emulsion.

A seal treatment consisting of 0.30 gallon of a mixture of $95+\mathrm{M}$ and $95+\mathrm{L}$ emulsions and about 11 pounds of $1 / 4-$ to $1 / 8$-inch cover stone was applied to the portions between stations $361+39$ and $357+49$ and between $349+69$ and the west end of the section. The remaining portion of the section was left until the following summer when it also was sealed, using 0.18 gallon of $95+\mathrm{L} 2$ asphaltic emulsion on the left half of the roadway and 0.17 gallon on the right half, with a cover of 11 pounds per square yard of $1 / 2-$ to $1 / 8$-inch stone chips. All the seal treatments were rolled immediately following the application of the cover stone.

The aggregate contained 1.5 percent of moisture and was analyzed as follows:

	Sample A	Sample 13
Passing -3/4-inch screen	Percent 100.0	Percent 95. 0
1,2-inch screen	85.5	82.0
No. 3 sieve.	75. 5	70.)
No. 10 sieve	49.0	37.0
No. 200 sieve	4. 5	5. 0

The results obtained in the mixing operation were not very satisfactory. The emulsion, ${ }^{1}$ which was not a true mixing emulsion, broke and became viscous so quickly that mixing was difficult. Instead of coating all of the particles uniformly, as did the other types of bituminous materials, this relatively quick-breaking emulsion had a decided tendency to form the finer particles in balls, leaving the larger particles practically uncoated. When the materials had been processed as well as possible, the mix was spread and rolled but it did not bond well and displaced considerably under traffic. It was decided to enrich the east half from stations $361+39$ to $353+59$ by remixing with the addition of 0.49 gallon of the $95+\mathrm{M}$ emulsion. This portion bonded somewhat more readily than before although considerable displacement of aggregate by traffic occurred for several days. An attempt was made to consolidate the mix by rolling intermittently for several days. Consolidation was finally accomplished to a fair degree, the finer particles being pressed around and interlocking with the larger poorly-coated particles.

Although the manufacturers of the emulsion contended, and it was generally agreed at the time of construction, that the emulsion-mix sections would require a seal treatment for best results, it was decided to seal only a portion of each section immediately. However, in order to prevent extensive deterioration of the unsealed portions, which were on relatively poor subgrade, they were given a seal treatment during the following summer.

The cost of the mix and seal was 64.46 cents per square yard or $\$ 7,563$ per mile.

Section 12.-A road-mix was placed consisting of an asphaltic emulsion and crusher-run stone. The crusherrun stone ranged from three-fourths inch to dust. The aggregate was first mixed with $60-70$ oil at the rate of 0.48 gallon between stations $345+79$ and $343+79$, and 0.70 gallon on the remainder of the section, following which 1.84 gallons of emulsified asphaitic oil of the $95+\mathrm{M}$ grade was applied and mixed. The portion between stations $345+79$ and $343+79$ was enriched by adding 0.23 gallon of $110-120 \mathrm{M}$ asphaltic emulsion.

The portions between stations $345+79$ and $340+89$ and from station $331+09$ to the end of the section were sealed shortly after the compaction of the surface. On the first portion 0.3 gallon of a mixture of $95+\mathrm{M}$ and $95+\mathrm{L}$ emulsion was applied, while on the latter portion the same amount of the $95+\mathrm{L}$ grade emulsion alone was used. About 11 pounds per square yard of $1 / 4$ - to $1 / 8$-inch stone screenings were used in covering both portions. As in the case of section 11, the portion left unsealed at the time of construction was given a seal treatment during the following summer. In this treatment 0.18 gallon of $95+\mathrm{L} 2$ emulsion was applied to

[^1]the left half of the roadway and 0.21 gallon to the right half. Both portions were covered with 11 pounds per square yard of $1 / 2-$ to $1 / 8$-inch stone screenings and rolled.
The aggregate used on this section contained 1 to 1.2 percent moisture and was analyzed as follows:

As in the case of section 11, difficulty was encountered in mixing and compacting and, during the extended period of compaction, considerable aggregate was displaced by traffic. This condition is illustrated in figure 4, B. After the mix had hardened, about half the section was sealed, the remaining portion being left until the following summer when the sealed and unsealed surfaces had about the same appearance as the corresponding parts of section 11, except that the unsealed surface was slightly better bonded than that on the leaner portion of section 11 .

The cost of the mix and seal was 64.62 cents per square yard or $\$ 7,582$ per mile.

Section 13.- On this seetion an asphaltic emulsion was mixed with crusher-run stone ranging from three-fourths inch to dust. The aggregate was primed and mixed with 2.23 gallons of water. Following this, asphaltic cmulsion $95+\mathrm{L}$ was applied at the rate of 2 gallons per square yard and mixed. Figure $4, C$ illustrates the mix.

The easterly portion, stations $326+19$ to $311+23$ was sealed after compaction of the mix, using 0.3 gallon of $95+\mathrm{L}$ emulsion and covered with about 11 pounds per square yard of $3^{1 / 4}$ - to $1 / 8$-inch screenings. The remaining portion was given a seal treatment during the following summer, consisting of $95+\mathrm{L} 2$ emulsion applied at the rate of 0.18 gallon on the left half and 0.21 gallon on the right half and covered with 13 pounds per square yard of $1 / 2-$ to $1 / 8$-inch screenings on the left half and 11 pounds per square yard on the right. Raveling resulting from the leanness of the mix is illustrated in figure 4, D.

The aggregate used on this section contained from 5 to 7.5 percent moisture and was analyzed as follows:

	Sample A	Sample B
Passing -	Percent	Percent
1 -inch screen	100.0	100.0
$3 / 4$-inch screen	89.0	93.0
1/2-inch screen	69.0	70.5
No. 3 sieve. -	52.0	48.0
No. 10 sieve	24.0	21.0
No. 200 sieve.	1.0	1.5

The cost of the mix and seal was 67.29 cents per square yard or $\$ 7,895$ per mile.

Although the subgrade was variable and of inferior quality on portions of the section, certain types of failure occurred in the emulsion mixtures which seemed to be due to the character of the mix rather than to that of the subgrade.

Where the worst subgrade conditions existed, it was necessary to remove the defective subgrade to a depth varying from a few inches to 18 inches or more and to do extensive patching during the early summer of 1931. This work put the surfaces in fairly good condition and

Figure 5.-Typical Cracking and Peeling Whichi Occurieen During the Spring on Portions of Sections 11 and 12, Due to the Bad Subgrade and Poor Drainage in the Ditches.
it was thought that the sections would go through the next winter satisfactorily. However, further failure of the subgrade occurred and additional extensive repairs were again necessary during the spring of 193%.
MORE IMPORTANT FACTORS AFFECTING THE BEHAVIOR OF THE: ROAD-MIX SECTIONS DISCUSSED
Of the factors affecting the service behavior of the oil-mix type of surfacing as built in the Western States, moisture is probably the most important. Moisture in the aggregate at the time of mixing, moisture seeping into the surface from the top and, perhaps most important of all, moisture entering the surface from the subgrade, must all be considered as potential causes of failure.

In these experiments the most noticeable result of the effect of moisture was the development of areas having the appearance of excessive richness in bitumen. On these areas the mat became so soft and unstable as to require scarifying and remixing. The time intervening before this unsatisfactory condition developed varied from a short time after construction to a period of 2 years. Subgrade water which entered the mixture from below was responsible for most of the failures of this type.

Examination of the mat from areas affected by moisture in otherwise good sections indicated that water, in rising through the mix toward the surface, had apparently carried with it an appreciable amount of oil.

The richer mixes seemed to lose stability earlier and to a greater extent than did the leaner ones. Section 7 furnishes a good example of the comparative effect of subgrade moisture on rich and lean mixes. On this section drainage and subgrade conditions were fairly uniform but the west half of the section, which was comparatively rich, softened, became unstahle and had to be scarified and remixed in 1931, while the east. portion, except for a small area at the beginning of the section, has remained in excellent condition. Analyses of mat samples taken from the east and west portions show the former to contain approximately 25 percent more bituminous material than the latter.
Softening of the mat occurred most generally in cuts where drainage conditions were least satisfactory. Section 4 remained in good condition except for a short portion at the east end which was in a cut with poor
drainage and subgrade. The mat on this portion of the section softened and was scarified and remixed in 1931.

Section 3, on which gravel was used, softened more extensively than did section 4 , on which crushed stone was used. Due to the smooth, round character of the gravel particles, the stability of the gravel is apparently reduced more quickly than that of the rough, angular crushed material when an excess amount of water is present in the mix.
The mix on section 5, which appeared somewhat lean and was lightly sealed with the same oil used in the mix, was affected by water to a much less degree than either section 3 or 4 . Only a few small areas of its surface had softened. The seal coat provided an excellent, wear-resistant surface on this section which, due to its leanness, would otherwise undoubtedly have failed by raveling. It is believed, however, that its resistance to loss of stability has been due largely to the leanness of the mix rather than to the seal treatment.

On section 6 the mix was very lean, appearing to be much more so than that on section 5, and the surface was sealed with a soft grade of asphalt. This combination of a lean mix with an asphalt seal coat provided an excellent surface and there were no indications that the mix had softened because of subgrade moisture. The behavior of sections 5 and 6 in contrast to that of the richer unsealed sections, particularly in their resistance to the action of moisture, suggest the possible advantage of using a lean mix with a wear resistant surface treatment, particularly where moisture conditions are unfavorable.

The belief that bituminous materials of high viscosity offer more resistance to the effect of moisture on this type of construction than materials of lower viscosity has led to the use of more viscous materials. The effect of the viscosity of the slow-curing oils on their resistance to moisture was not studied in this investigation, but the exceptionally good condition of section 7 on which the more viscous $70-80$ oil was used tends to substantiate the opinion regarding the advantage of the heavier vils. The water-resistant properties of the asphaltic cut-back materials are also well illustrated by the behavior of the road-mix sections in which these materials were used. These surfaces continued in good condition, uniform in color, and free from any indication of softening or lack of stability.
(iRADING OF AGGREGATE IMPORTANT IN DESIGNING MIXTURES
The grading of the aggregate is important in designing all types of bituminous mixes and is particularly so in designing those types of road-mix in which the bituminous materials used may not compensate for a possible lack of stability in the aggregate. Obviously, if the aggregate does not possess inherent stability it must be supplied by the bituminous material. Conversely, if the aggregate has this property it need not necessarily be characteristic of tho bituminous material. Satisfactory stability was obtained on all the road-oilmix sections where the aggregate was close-graded (from 5.8 to 11.5 percent of dust), although the bituminous material used with it had relatively little cementing value.

Sections 2 and 8 were built with open-graded crushedstone aggregate ranging from three-fourths to one-eighth inch. A medium-curing kerosene cut back was used on section 2 and a $70-80$ slow-curing oil on section 8 . On the former section the mix remained plastic for a long time after construction, during this time it seemed
on the verge of failure. However, it gradually hardened and in time its condition materially improved. The behavior of this section conforms with experience on other projects where similar medium-curing cut-back materials were used, in that satisfactory stability of the mix developed only after a considerable period of time during which an appreciable amount of volatile material evaporated resulting in greater viscosity in the remaining bituminous material which enabled it to furnish the stability lacking in the aggregate.

Section 8, on which the $70-80$ slow-curing oil was used with open-graded aggregate, lacked stability and failed early since the oil was not of a type which hardened so as to provide the stability lacking in the aggregate

It is apparent that aggregate should be closely graded, contain an appreciable amount of fine material, and have high inherent stability if it is to be used with slow-curing or medium-curing asphaltic materials. The fine particles, particularly that portion of the aggregate passing the no. 200 sieve, seem to stiffen the bituminous material and provide the necessary early stability. The mix on section 2, which contained no fines, displaced under traffic for a long time after construction. Although it finally developed a wellbonded and stable surface the early behavior was not satisfactory, due to the slow development of cohesive properties in the binder.

The exact amounts of fines which should be present when slow-curing, medium-curing, or rapid-curing materials are used cannot be stated definitely. Experience indicates that in constructing road mixes with average aggregates of open grading, rapid-curing materials should be used and that, in general, slow-curing or medium-curing materials should not be used when the dust content of the aggregate is less than approximately 5 percent.

Sections 2 and 8 are typical examples of surfaces containing open aggregates where better results would have been obtained had a more rapid-curing binder been used.

AMOUNT OF SLOW-CURING OIL REQUIRED MAY BE DETERMINED SATISFACTORILY WITH FORMULAS

The subgrade soils on sections 1 to 13 , as shown in table 2, include the A-2 (mostly plastic), the A-4, and A-7 types. The A-2 plastic type predominates except on sections 11,12 , and 13 . The more unfavorable A-4 and A-7 types comprise the soil on these three sections and were also found in the deep cuts and on other short portions of some of the other sections.

Failures of the surface due to the subgrade were confined almost entirely to those portions overlying A-4 and $\Lambda-7$ soils. The characteristic tendency of the A-4 soils to flow under load was reflected in the behavior of the surface, which failed by settlement and cracking (fig. 5). This type of surface failure was extensive on section 11
The A-7 soils, which are elastic when loaded, caused cracking without appreciable displacement of the surface. Failures of this type occurred extensively on section 12.

The data on laboratory curing and stability tests made on the material from the various mixtures passing no. 10 sieve, and presented in table 3, give some indication of the degree of curing which might occur in mixed surfaces containing oils and cut backs. It also illustrates the gain in the stability of the fine portion of the mixtures which accompanies the loss of volatile
constituents. The tests reported show high stability values indicating that the inherent stability of the fine portion of these road-mixes was high. Gains in stability corresponding to a given loss of volatile matter were substantially greater for the cut-back mixtures than for the slow-curing oils.

The comparatively low total oven losses of volatile matter for the cut-back mixes from sections 9 and 10 indicates that considerable more volatile matter had gone off during the construction operation than on sections 1 and 2. This explains the better early behavior of sections 9 and 10 as compared with sections 1 and 2 and shows the necessity of obtaining an appreciable loss of the solvent (in cut-back materials) before final compaction of the mix.

A comparison of the amount of bituminous materials used with that shown to be required by several formulas, together with comments as to the sufficiency of the amounts used as indicated by service behavior, are given in table 6. In general, the behavior of the sections indicates that the amounts of slow-curing oil required for close-graded aggregates may be determined satisfactorily by means of one of several formulas now in use. The results of these experiments, however, as well as observations on other projects, indicate that where very heavy slow-curing oils and cut backs which produce heavy residues in the road surface are used it may be advantageous to apply greater quantities than called for by the formulas.

Sections 11,12 , and 13 , on which asphaltic emulsions were used, were of a more highly experimental character at the time of construction than the remainder of the sections. Little experience had been had with this type of material and little information was available relative to its behavior during construction or as to the proper amount of the material to use under given conditions. Practically all details therefore were experimental and with the complication of inferior subgrade conditions, the results were not very satisfactory.

Considerable difficulty was encountered in mixing sections 11 and 12 . The emulsions broke during the mixing operation, balled with the fine particles of aggregate and produced an apparently lean, nonuniform mix which was harsh and very open and in which the coarse particles were very poorly coated with bitumen. On the unsealed portions, the open and poorly bonded surface cracked extensively, especially during the spring season when the subgrade was least stable.

The emulsion on section 13 had a slower break than that used on sections 11 and 12 as indicated during the mixing operation. The fines did not segregate and ball, the coarser particles were well coated and the mixture obtained was uniform and of a close texture. The appearance of the mix on section 13 , as compared to that of sections 11 and 12 at the time of construction, is shown by figure $4, B$, and $4, C$.

The raveling which occurred on the unsealed portions of section 13 appears to have been caused by insufficient bitumen rather than by the character of the emulsion. As shown in table 3 , there was only 1.4 percent bitumen in the mix, and the total amount, including the seal, was 2.7 percent. Figure $4, D$, illustrates the tendency of the surface to ravel before being surface-treated. A further comparison of the quantity of bitumen, including the admixed oil used in the mix on sections 11,12 , and 13 , is obtained by deducting the water content of the emulsions as given in table 5 from the total amounts used. This shows that approximately 1.2 to 1.5 gallons of
bitumen per square yard were used in the mix on section $11,1.8$ gallons on section 12 , and only 1.2 gallons on section 13.

Since these sections were built, considerable progress has been made in the development of methods of manufacture and handling of this type of material and, without doubt, most of the construction difficulties encountered on these experimental sections can, to a large extent, now be avoided.
VARIOUS TYPES OF SCRFACE TREATMENT APPIAED TO CRLSHEI). ROCK BASE
A 3-inch compacted base course for the surface treatments, sections 14 to 21 , inclusive, was built in the fall of 1929. This consisted of crusher-run stone, threefourths inch to dust, to which 10 to 15 percent of local clay and silt binder was added. Early snow and freezing weather made it impossible to thoroughly shape and consolidate the base course so that it was necessary to continue this work during the following spring.

Due to the unusually dry weather during the early summer, much of the base material was whipped off by traffic, the final thickness of the base course being thus reduced to between 2 and $2 \frac{1}{2}$ inches instead of 3 inches as planned.

Immediately prior to application of the surface treatments, the base was lightly scarified, watered, and bladed. This work was often done during the night preceding application of the prime coat to avoid, so far as possible, damage from traffic between the final shaping of the base and the application of the prime treatment. The base was swept and this was followed immediately by the prime coat. Figure 6, A, shows the sweeping operation.

A typical grading of the aggregate used in the base course was as follows:
Passing
Percent
1 -inch screen 99. 6

No. 200 sicve
10. 2

Details concerning the various sections are given in table 7. A prime treatment was applied to all of the sections. On the right half of sections 14 to 17 , inclusive, a 110-120 penetration asphalt cut-back with kerosene was used, while on the left half of these four and on the remaining sections a 50-60 penetration slowcuring oil was used.

The prime coat was applied to one-half the road width and the material allowed to penetrate and dry for about 2 days, after which it was opened to traffic while the other side was similarly treated. Wet areas remaining at the end of the 2-day drying period were blotted with stone chips, one-eighth inch to dust. The cut-back asphalt penetrated to an average depth of three-eighths inch and the slow-curing oil to about onehalf inch. The former material produced a tougher, better bonded and more wear-resistant surface than did the oil. Failures did not develop in the cut-backprimed surface, but considerable breaking and scaling occurred where the light oil was used. This tendency of the oil-primed surface to break and ravel is illustrated in figure $6, B$.

Where raveling occurred in the primed base, the holes were swept clean of dust, sprayed lightly with a slowcuring oil and then filled with crushed rock, threefourths inch to dust in size.

Figure 6.-A, Sweeping Base Before Priming; B, Surfaces Primed with Slow-Curing Oil Broke in Many Places and Required Considerable Repairing before Applying the Surface Treatment; C, Spreading Stone with Boxes Attached to Trucks; D, Equipment Used to Lightly Manipulate and Spread the Cover Stone.

Both light and heavy types of surface treatments involving several types and grades of bituminous materials were used. To facilitate their application, all the bituminous materials, including the emulsion, were warmed.

The crushed stone was loaded from cars or stock piles with a truck crane fitted with a $1 / 2$-cubic-yard clamshell bucket. Three- and four-cubic-yard dump trucks were used for hauling and spreader boxes were used for spreading. Figures 6 and 7 illustrate the spreading, leveling, and finishing operations.

Typical gradings of the crushed stone used as cover material are given below:

All of the surface treatments were applied in the summer of 1930 and their behavior up to the final inspection in October 1932 is described.

SURFACE TREATED SECTIONS DESCRIBED IN DETAIL
Section 14.-A heavy treatment of hot asphalt was applied.

The cut-back priming on the right half of the section had been down 5 days and the $50-60$ slow-curing oil priming on the left side 3 days when the surface treatment was applied.

On this section an attempt was made to further smooth the surface by honing the seal coat cover. This procedure was abandoned, however, since it proved impossible to hone the surface without disturbing the larger underlying stone. It was therefore decided to use a broom drag on all cover courses and to limit the light honing operation to the heavy stone cover.

The application of the bituminous material on this section was unsatisfactory due to poor operation of the distributor. Many small areas were missed and considerable patching was necessary before applying the seal. The seal treatment was applied after the surface had been under traffic for about 3 weeks.

The cost of the base course was 31.98 cents per square yard, or $\$ 3,752$ per mile. The cost of the surface treatment was 42.12 cents per square yard, or $\$ 4,942$ per mile.

Table 7.-Details of surface treatments applied to 3 -inch compacted stone base, three-fourths inch to dust and bound with approximately one-fiftieth cubic yard per square yard of selected soil

1 Quantities used in successive applications and corresponding applications of cover material are shown below.
2 The final application consisted of 0.58 gallon of $90-95 \mathrm{~L}$ emulsion from stations $185+00$ to $174+20$ and 0.35 gall
${ }^{2}$ The final application consisted of 0.58 gallon of $90-95 \mathrm{~L} 3$ emulsion from stations $185+00$ to $174+20$ and 0.35 gallon of the $94+22$ emulsion of the rernainder of the section

Seal application.--
Cover-
and rolled
20 gallon of the same asphalt- $\mid 0.20$ gallon of the same asphalt 0.20 gallon of the same asphalt-
15 pounds, $1 / 20$ o. $\begin{gathered}0.20 \text { gallon of the same asphalt } \\ \text { crushed stone. }\end{gathered}$ to $1 / 8$-inch
21 pounds, $1 / 2^{-}$to $1 / 8^{-i n c h}$
crushed stone.
(e) Drag broomed, spotted, and rolled

The total cost was 74.10 cents per square yard, or $\$ 8,694$ per mile.

Section 15.-A light surface treatment of a heavy asphaltic oil was applied hot.

Because of the light cover used in this treatment, smoothing by blading, as in the other sections, was not attempted. The equipment and methods used were otherwise the same.

The cost of the base was 32.1 cents per square yard, or $\$ 3,769$ per mile. The cost of the surface treatment was 14.5 cents per square yard, or $\$ 1,707$ per mile. The total cost was 46.68 cents per square yard, or $\$ 5,477$ per mile.

Section 16.-A heavy surface treatment of a heavy asphaltic oil was applied hot.

The method of construction was similar to that used on the other heavy surface treatments. The subgrade conditions were about the same as on the other sections.

The cost of the base was 32.1 cents per square yard or $\$ 3,766$ per mile. The cost of the surface treatment was 29.8 cents per square yard or $\$ 3,493$ per

Figure 7.- Touching Up Surface by Hand and Dragging WITH A Broom.

	Left half	Right half
Prime	0.29 gallon, $50-60$ slow-curing oil.	0.29 gallon, kerosene cut-back.
Tack coat	0.18 gallon of $94+$ asphaltic oil.	0.11 gallon of $94+$ asphaltic oil.
Cover stone	32 pounds of $3 / 4-$ to $1 / 2$-inch crushed stone.	32 pounds of $3 / 4$ - to $1 / 2$-inch crushed stone.
Penetration application.	0.31 gallon of $94+$ asphaltic oil.	0.28 gallon of $94+$ asphaltio oil.
Keystone........-	18 pounds, $1 / 2$ - to $1 / 8$-ineb crushed stone.	34 pounds, $1 / 2$ to $1 / 8$-inch crushed stone.
Seal application...	0.20 gallon of the same asphaltic oil.	0.20 gallon of the same asphaltic oil.
Seal cover.	13 pounds, $1 / 2$ to $1 / 8$-inch crushed stone.	12 pounds, $1 / 2$ to $1 / 8$-inch crushed stone.

mile. The total cost was 61.87 cents per square yard or $\$ 7,259$ per mile.

Section 17.-A heavy surface treatment of rapidcuring cut-back asphalt was applied.

	Left half	Right half
Prim	0.29 gallon of $50-60$ slowcuring oil.	0.29 gallon of kerosene cutback.
Tack coat application.	0.29 gallon of $110-120$ asphalt cut back with about 25 percent naphtha.	0.28 gallon of $110-120$ asphalt cut back with about 25 percent naphtha.
Cover stone	50 pounds, $3 / 4$ - to crushed stone.	37 pounds, $3 / 4$ - to $1 / 2$-inch crushed stone.
Penetration application.	0.15 gallon of naphtha cutback.	0.22 gallon of naphtha cutback.
Keystone.	19 pounds, $1 / 2$ - to $1 / 6$-inch crushed stone.	15 pounds, $1 / 2=$ to $1 / 8$-inch crushed stone.
Seal application	0.22 gallon of naphtha cutback.	0.17 gallon of naphtha cut back.
Seal cover	11 pounds, $1 / 2$ to $1 / 8$-inch crushed stone.	13 pounds, 1,2 to $1 / 8$-inch crusherd stone.

The same methods were used in the construction of this section as on sections 14 and 16 . The prime had been applied on the left side 18 days and on the right 20 days at the time the surface treatment was
applied. The right half of the base which was primed with the cut-back asphalt was in perfect condition and free from holes or raveling, while the left side on which the $50-60$ slow-curing oil was used had developed a few pot holes and some raveling.

The amount of cover stone used, particularly on the left half, was far too great for the quantity of asphalt used. An excessive amount of raveling occurred on this half before the seal coat was applied. The difficulty was corrected to some extent in applying the seal treatment by increasing the amount of asphalt and reducing the amount of stone cover.

The cost of the base was 32.6 cents per square yard or $\$ 3,825$ per mile. The cost of the surface treatment was 38.7 cents per square yard or $\$ 4,544$ per mile. The total cost was 71.33 cents per square yard or $\$ 8,369$ per mile.

The high cost of this section was largely due to the cost of transporting the cut-back asphalt in steel drums, which was necessary because of the small quantity used.

Section 18.-A heavy surface treatment of asphalt emulsion was applied.

This section, as well as sections 19,20 , and 21 , received surface treatments of essentially the same type as did sections 14,16 , and 17 , except that asphaltic emulsions from two producers were used. The designs of the sections were furnished by the producers and the work was carried out under their supervision.

	Left half	Right half
Prime -........-	0.32 gallon of $50-60$ slow-curing oil.	0.32 gallon of $50-60$ slow-curing oil.
Tack coat application.	0.15 gallon of $90-95 \mathrm{~L} 3$ asphaltic emulsion.	0.17 gallon of $94+\mathrm{L} 2$ asphaltic emulsion.
Cover stone.-.-. -	47 pounds, $3 / 4$ - to $1 / 2$-inch crushed stone.	58 pounds, $3^{3} 4^{-}$to $1 / 2$-inch crushed stone.
Penetration application.	0.27 gallon of $90-95 \mathrm{~L} 3$ asphaltic emulsion.	0.27 gallon of $94+\mathrm{L} 2$ asphaltic emulsion.
Keystone.......-	16 pounds, $1 / 2$ to $1 /$ sinch 2 crushed stone.	13 pounds, $1 / 2$ - to $1 / 6$-inch crushed stone.
Seal application.-	0.58 gallon of $90-95 \mathrm{~L} 3$ asphaltic emulsion from stations $185+00$ to $174+20$ and 0.35 gallon of the L2 grade on the remainder.	0.29 gallon of $94+\mathrm{L} 2$ asphaltic emulsion.
Seal cover.	16 pounds. $1 / 2$ to 1 -inch crushed stone.	13 pounds, $3 / 2$ - to $1 /$-inch crushed stone.

The prime coat had been down on the left side 8 days and on the right side 9 days before the surface treatment was applied. Holes and raveling which had developed during this time were repaired before applying the surface treatment.

The change in the grade of emulsion for the seal on the left side was made because of a shortage of L3 material. The emulsion was heated at the plant to about $140^{\circ} \mathrm{F}$. in order to facilitate handling and spreading. The penetration application did not penetrate through the cover stone to meet the tack coat and, as a result, the stone was only partly coated. Failure from insufficient bituminous material was indicated by the large amount of raveling which occurred before the application of the seal treatment. Although the surface was considerably strengthened by the seal coat, failures by raveling continued to develop on many areas.

The cost of the base was 32.2 cents per square yard or $\$ 3,781$ per mile. The cost of the surface treatment was 34.5 cents per square yard or $\$ 4,050$ per mile. The total cost was 66.74 cents per square yard or $\$ 7,831$ per mile.

Section 19.- A heavy surface treatment of asphaltic emulsion was applied.

The treatment on this section was essentially the same as that on section 18, except that the seal coat was applied only to the left half.
The priming coat had been down 8 days on the left half and 9 days on the right half when the surface treatment was applied. As on section 18, an insufficient amount of emulsion was used on this section. The cover stone was poorly coated, and the application did not penetrate through to the tack coat. Early loosening and raveling of the stone occurred under traffic.
The cost of the base was 32.7 cents per square yard or $\$ 3,834$ per mile. The cost of the surface treatment was 26.9 cents per square yard or $\$ 3,160$ per mile. The total cost was 59.61 cents per square yard or $\$ 6,994$ per mile.

Section 20.-A heavy surface treatment of asphaltic emulsion was applied.

	Left half	Right half
Prime	0.32 galion of $50-60$ slow-curing oil.	0.31 gallon of $50-60$ slow-curing oil.
Tack coat application.	0.26 gallon of asphaltic emulsion (standard).	0.25 gallon of asphaltic emulsion (standard).
Cover stone.	44 pounds, $3 / 4$ - to $1 / 2$-inch crushed stone.	44 pounds, $3 / 4$-to $1 / 2$-inch crushed stone.
Choke stone	11 pounds, $1 / 2$ to 18 -inch crushed stone	10 pounds, $1 / 2$ to 38 -inch crushed stone
Penetration application.	0.35 gallon of the same emulsion.	0.37 gallon of the same emulsion.
Keystone.	21 pounds, $1 / 2$ to $1 / 8$-inch crushed stone.	25 pounds, $1 / 2$ to 38 -inch crushed stone.

The section differs from sections 18 and 19 in that a different asphaltic emulsion was used and also that a choke stone cover was added before the penetration application. No seal treatment was used.
It was apparent during the construction that the amount of emulsion used was insufficient to fully penetrate and coat the heavy stone cover. The use of a choke stone further increased the deficiency of asphalt. A similar deficiency had been apparent ou sections 18 and 19 but additional stone cover was not used on those sections. Excessive raveling occurred in the surface shortly after construction and it was soon apparent that this section would not prove entirely satisfactory.

The cost of the base was 31.3 cents per square yard and $\$ 3,674$ per mile. The cost of the surface treatment, including the cost of the emulsion, was 27.2 cents per square yard or $\$ 3,196$ per mile. The total cost was 58.55 cents per square yard or $\$ 6,870$ per mile.

Section 21.- A heavy surface treatment of asphaltic emulsion was applied.

The method of construction was similar to that on section 20, except that a seal treatment was applied. As was the case in all the experiments with emulsions the stone was poorly coated due to the use of an insufficient amount of bituminous material. The sur-
face showed early indications of weakness and failure from this cause.

	Left half	Right half
Prime	0.32 gallon of $50-60$ slow-curing oil.	0.32 galion of $50-60$ slow-curing oil.
Tack coat	0.19 gallon of asphaltic emulsion (standard).	0.19 gallon of asphaltic emulsion (standard).
Cover stone	45 pounds, $3 / 4$ - to $1 / 2$-inch crushed stone.	44 pounds, $3 / 4$ - to $1 / 2$-inch crushed stone
Choke stone	8 pounds, $1 / 2-$ to 3 -inch crushed stone.	7 pounds, $1 / 2$ to 3 -inch crushed stone.
Penetration application.	0.39 gallon of the same emulsion.	0.38 galion of the same emulsion.
Keystone	26 pounds, $1 / 2$ - to $1 / 8$ - inch crushed stone.	24 pounds, $1 / 2$ - to $1 / 8$-inch crushed stone.
Seal application.--	0.20 gallon of the same emulsion.	0.18 gallon of the same emulsion.
Seal cover.	11 pounds, 1/4- to 38-inch gravel	11 pounds, 1/4- to 1/8-inch gravel.

The cost of the base was 35.4 cents per square yard or $\$ 4,158$ per mile. The cost of the surface treatment was 33 cents per square yard or $\$ 3,876$ per mile. The total cost was 68.47 cents per square yard or $\$ 8,034$ per mile.

PERFORMANCE OF SURFACE-TREATED SECTIONS NOT SATISFACTORY

The behavior of the surface-treated sections was, in general, unsatisfactory. In the spring following construction, extensive failures had occurred.

Except on section 21 which was discontinued as an experiment and rebuilt, these failures were repaired during the early summer. In the fall a light surface treatment was added to sections 18,19 , and 20 . This treatment consisted of applying one-quarter gallon of emulsion, of the type and grade used on the original construction, covering with screenings at the rate of about 25 pounds per square yard and rolling.

Following this maintenance work in the fall of 1931 all the sections appeared in good condition. However, failures occurred again during the winter of 1931-32 to such an extent that it was decided to discontinue all the surface-treatment experiments.

Although other factors, particularly the subgrade conditions and the operation of heavy equipment for snow removal, seriously affected the behavior of the sections, an important cause of early failure was insufficient bituminous material.
As shown in table 8, all of the surface-treatment experiments except section 15 and the left half of section 16 were greatly deficient in bituminous material. Because of the low specific gravity of the cover stone, which weighed only 1,970 pounds per cubic yard, this deficiency was actually greater than the quantities used might indicate. Table 8 gives the percentages by weight of bitumen which would have resulted had the same volume of asphaltic material been used with the same weight of aggregate but weighing 2,700 pounds per cubic yard.

Experience has shown that surface-treated wearing surfaces require approximately 0.1 gallon of bitumen for each 10 pounds of cover, particularly where the subgrade is poor. It is believed that had these sections been built with quantities conforming more closely to this rule the surfaces would have been better bonded and more plastic and would therefore have been more satisfactory, particularly for the conditions which prevailed on this project.

Considering the character of the subgrade, the unfavorable drainage during the early spring months and the use of very heavy snow-removal equipment, it is evident that the conditions were unfavorable for any type of thin surface treatment, and were particularly so for the lean surface treatments used on this project.

construction cost detalls given

Due to the experimental nature of the project and to the short sections built, the actual costs of the different surfaces are excessively high and would no doubt be considerably reduced in the construction of an appreciable mileage of any one type. Table 9 gives details of costs by sections and the following tabulation gives

TABLE 8.-Quantity of bitumen and stone cover used on each of the surface treatments and conclusions as to the sufficiency of bitumen based on construction and early service behavior

[^2]Table 9.-Cost of construction and maintenance of the experimental sections

${ }^{1}$ Experiment retreated in part only; cost prorated over entire experiment.
${ }^{2}$ Surface failed and experiment discontinued.
8 Includes seal applied in 1930 to complete construction

- Maintenance cost not reportel.
the average unit cost of some of the more important items entering into the construction of the experimental sections:
Local stone at crushing plant:
Per cubic yard
$3 / 4$ inch to dust
$\$ 1.19$
$3 / 4$ to $1 / 8$ inch

2. 46
$3 / 4$ to $1 / 2$ inch
3. 44

Other aggregates, f. o. b. destination:
Crushed gravel, $3 / 4$ inch to dust, per cubic yard
Fine sand filler (muck sand), per ton
\$2. 78
Up to the time of the p to the time of the inspection in 1932 the eight sur-face-treated sections had required complete reconstruction. The three road-mix sections on which emulsions were used had received extensive repairs where subgrade failures had occurred. The road-mix section with 70-80 oil and open-graded aggregate had been reconstructed by extensive foundation repairs and by reworking the surface with the addition of fines. The remaining nine sections, all of the road-mix type, had required some repairs due primarily to base failures but were generally in good condition.

Later inspection of the experimental sections in 1934, 5 years after construction, showed that all of the roadmix sections were in serviceable condition. No extensive maintenance or reconstruction had been required except over certain areas where poor subgrade and drainage existed. A seal coat of hot oil had been applied to portions of sections $1,3,4,5$, and 7 and to all of sections 11,12 , and 13 .

RESULTS OF INVESTIGATION SUMMARIZED

A summary of the more important results follows:

1. Portions of the oil-mix sections were affected by capillary moisture which resulted in the surface becoming soft and unstable.
2. The effect of moisture on the road-mix sections with slow-curing oils was greatest with the rich mixes and on areas where the drainage was not satisfactory, as well as on subgrades having high capillarity.
3. The road-mix surfaces containing emulsion and cut-back asphalt did not lose stability or develop soft
areas from the action of moisture as did several of the oil-mix sections.
4. The action of moisture seemed to be more severe on the oil and gravel mixes than on the oil and crushed stone mixes.
5. The excellent behavior of a lean oil mix with a light surface treatment of heavy asphaltic oil and stone chips suggests possible advantages of this type over the richer and unsealed oil mixes, particularly where moisture conditions are unfavorable.
6. Satisfactory repair of those portions of the oil-mix surfaces which softened was obtained by scarifying and remixing.
7. Slow-curing or medium-curing bituminous materials should be used for road-mix construction with aggregates of the dense-graded type, while the more rapid-curing materials are best adapted to aggregates of the more open type (those containing less than 5 percent of material passing the no. 200 sieve).
8. The results of these experiments indicate that several of the formulas now in use are satisfactory for determining the amount of bituminous material required as binder in road-mix construction with the lighter slow-curing oils and close-graded aggregates.
9. For the very heavy slow-curing oils and the cutbacks and emulsions which develop heavy asphaltic residues in the road surface, somewhat greater quantities than those indicated by the formulas may be used to advantage.
10. Early failure of the road-mix sections occurred generally where unsatisfactory subgrade conditions existed. In the case of the unsealed portions of the road-mixes containing emulsions, failure was hastened by the open and porous condition of the mix.
11. Early failure of the treated surfaces was due to the unsatisfactory subgrade and the use of an insufficient amount of bituminous material which resulted in surfaces which were highly friable and poorly bonded. Because of the dust content and low specific gravity of the stone cover, the deficiency in bitumionus material was greater than the quantities indicate when expressed by weight.

CURRENT STATUS OF UNITED STATES PUBLIC WORKS ROAD CONSTRUCTION

CLASS 2．－PROJECTS ON EXTENSIONS OF THE FEDERAL－AID HIGHWAY SYSTEM INTO AND THROUGH MUNICIPALITIES

										：80우ㅇㅜㅜ ぶぎロ								\＃	
					niol ํํํํ	gox			$\begin{aligned} & \text { ning } \\ & \text { ning } \\ & \text { ing } \end{aligned}$	$\begin{gathered} \stackrel{9}{9} \\ \underset{\sim}{m} \\ \stackrel{y}{c} \\ \hline \end{gathered}$							$\begin{aligned} & \text { す⿳亠口冋彡⿸丆口广 } \\ & \text {-i. } \end{aligned}$	$\begin{aligned} & \ddot{(2} \\ & \stackrel{\sim}{\sim} \end{aligned}$	
		－0909	Nơ	\bigcirc	$\xrightarrow{\text { N }}$ mis	mon	$\stackrel{\infty}{\infty}$	$\cdots \stackrel{7}{\square}$	ごき	へั－	$\stackrel{\text { NAF }}{\substack{\text { ¢ }}}$		$\min \dot{s}$	－0．	－6．	－9\％－	$\stackrel{\text { N }}{\text { ¢ }}$		～
			$\begin{aligned} & 800 \% \\ & \text { nom } \\ & \text { no } \end{aligned}$	政等 ざ								$\begin{aligned} & \text { nub } \\ & \text { ininion } \\ & \text { inini } \end{aligned}$		$\begin{gathered} \tilde{\mathrm{O}} \\ \stackrel{0}{\circ} \\ \stackrel{y}{3} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Nong } \\ & \text { Nin } \\ & \text { Nin } \end{aligned}$				－
					$\begin{gathered} \text { Ma } \\ \text { ing } \end{gathered}$		$\underset{\approx}{E}$			$\begin{gathered} \text { تِّ } \end{gathered}$		$\begin{aligned} & \text { AN } \\ & \text { N } \\ & \underset{\sim}{=} \end{aligned}$		$\begin{aligned} & \text { 俞名 } \\ & 80 \end{aligned}$					c
		忈「ご	¢	-no	Oon	－rio	$\stackrel{n}{m}+.$		룰	$\stackrel{9}{\text { ¢ }}$	$\stackrel{\text { ® }}{\text { ¢ }} \dot{\sim}$	Numin		\bigcirc	－	$\stackrel{\text { ® }}{\substack{\text { M } \\ \pm j}}$	－	\cdots	$\stackrel{\text { ¢ }}{\text { ¢ }}$
				$\begin{aligned} & \text { Oow } \\ & \text { wion } \end{aligned}$	$\begin{aligned} & \text { wan } \\ & \text { Ni } \end{aligned}$		$\stackrel{\tilde{N}}{\underset{\sim}{\sim}}$					$\begin{aligned} & \text { cos } 8 \\ & \text { ond } \\ & \text { onn } \end{aligned}$	$\begin{aligned} & \circ \\ & 0 \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { 喜䔍 } \end{aligned}$	$\begin{array}{ll} \stackrel{8}{0} \\ \vdots \\ \vdots & \\ \end{array}$			$\underset{\sim}{\underset{\sim}{n}}$	
			$\begin{aligned} & \text { ơ } \\ & \text { on } \end{aligned}$				志迠冗 รัตัต \％											志	事
				우우웅			$\begin{aligned} & \text { تug } \\ & \text { Nod } \\ & \text { Ning } \end{aligned}$	隠运き สัธ 꾸 min						$\begin{gathered} \text { Ning } \\ \substack{0 \\ 0 \\ m} \\ \hline \end{gathered}$			$\begin{aligned} & \text { BiNu } \\ & \text { SiN } \\ & \text { Bing } \end{aligned}$	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{\sim}{\tilde{N}} \end{aligned}$	（
$\begin{aligned} & \text { 虽 } \\ & \text { 炭 } \\ & \text { 若 } \end{aligned}$	范		noy		Nまँ	$\begin{gathered} \text { mour } \\ \text { in } \end{gathered}$		－ining					ต่กิ์		ヘּ̈	～6．	คัก	ถั่	＋
		N్రీ			$\stackrel{\hat{\jmath}}{\underset{\sim}{0}}$	$\begin{aligned} & \text { ois } \\ & \\ & \text { nin } \end{aligned}$		$\stackrel{\square}{\text { ¢ }}$		$\begin{gathered} \hat{6} \\ \underset{\sim}{6} \end{gathered}$		$\begin{gathered} \underset{\Omega}{0} \\ \stackrel{\sim}{0} \end{gathered}$	$\begin{gathered} \stackrel{\rightharpoonup}{0} \\ \stackrel{y}{n} \end{gathered}$		$\begin{aligned} & 8 \\ & \stackrel{8}{6} \end{aligned}$		$\underset{\sim}{n}$	$$	－
											두묘ํ言通志 ベデ		뿡뭉 ำำ －五的				ํㅜㄴㅜN すิ่ ํ． N－	$\begin{aligned} & \text { 厄్ల } \\ & \text { ti } \end{aligned}$	
	$\begin{aligned} & \text { 岃 } \\ & \stackrel{y}{\circ} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$		$\begin{aligned} & \text { miz } \\ & \text { مin } \\ & \text { Bin } \end{aligned}$															$\begin{aligned} & \text { ®๊ } \\ & \stackrel{\Xi}{\circ} \end{aligned}$	\％
										하ㅇㅜㅜ जूँ్ల సี				$\begin{aligned} & 807 \\ & \text { Bing } \\ & \text { ingin } \end{aligned}$					\％
									ఆో్ㅜㅇ高高 ーデテ					성무웅 2if －i					
	$\begin{gathered} \text { 唇 } \\ \stackrel{5}{5} \end{gathered}$																		第

[^0]: Percentage loss based on amount of water and bitumen in the mix.
 Sampled during compaction.
 2 Percentage during compaction
 2 Sampled
 3 Tests on looses samples.
 Tested at $60^{\circ} \mathrm{C}$.

[^1]: ${ }^{1}$ The demulsibility of this emulsion, using 50 cubic centineters 0.10 N . calciutu chloride, was 100 percent compared with present A.S. T. M. requirement of a maximum of 30 percent.

[^2]: 1 In the calculation, emulsion was assumed to contain 56 percent of bitumen and the naphtha cut-back 80 -percent residual bitumen.
 2 Stations 185 to $200+60$.
 2 Stations $174+20$ to 185 .

