

A JOURNAL OF HIGHWAY RESEARCH

UNITED STATES DEPARTMENT OF AGRICULTURE

BUREAU OF PUBLLC ROADS
VOL. 15 , NO. 10 DECEMEER 1934

A SECTION OF U.S. 85 IN WYOMING

PUBLIC ROADS $\cdots \cdots$

Issued by the

UNITED STATES DEPARTMENT OF AGRICULTURE

BUREAU OF PUBLIC ROADS
G. P. St. CLAIR, Editor

Volume 15, No. 10
December 1934

The reports of research published in this magazine are necessarily qualified by the conditions of the tests from which the data are obtained. Whenever it is deemed possible to do so, generalizations are drawn from the results of the tests; and, unless this is done, the conclusions formulated must be considered as specifically pertinent only to described conditions

In This Issue

Soil Tests Useful in Determining Quality of Caliche 237
Traffic on State and County Roads of Indiana 243
Effect of Temperature and Moisture Content on the Flexural Strength of Portland Cement Mortar

DISTRICT OFFICES

DISTRICT No. 1. Oregon, Washington, and Montana.
Post Office Building, Portland, Oreg.
DISTRICT No. 2. California, Arizona, and Nevada.
Mark Sheldon Building, 461 Market St., San Francisco, Calif.
DISTRICT No, 3. Colorado, New Mexico, and Wyoming.
237 Customhouse, Nineteenth and Stout Sts., Denver. Colo.
DISTRICT No. 4. Minnesota, North Dakota, South Dakota, and Wisconsin.
907 Post Office Building, St. Paul, Minn.
DISTRICT No. 5. Iowa, Kansas, Missouri, and Nebraska.
Saunders-Kennedy Building, Omaha, Nebr.
DISTRICT No. 6. Arkansas, Louisiana, Oklahoma, and Texas.
Room 502, U. S. Courthouse, Fort Worth, Tex.

DISTRICT No. 7. Illinois, Indiana, Kentucky, and Michigan.
South Chicago Post Office Building, Chicago, III.
DISTRICT No. 8. Alabama, Georgia, Florida, Mississippi, South Carolina, and Tennessee.

Post Office Building, Montgomery. Ala.
DISTRICT No. 9. Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, and Vermont. Federal Building, Troy, N.Y.
DISTRICT No. 10. Delaware, Maryland, North Carolina, Ohio, Pennsylvania, Virginia, and West Virginia.

Willard Building, Washington, D.C.
DISTRICT No. 11. Alaska.
Room 419. Federal and Territorial Building, Juneau, Alasks. DISTRICT No. 12. Idaho and Utah.

Federal Building, Ogden, Utah.

Because of the necessarily limited edition of this publication it is impossible to distribute it free to any person or institutions other than State and county officials actually engaged in planning or constructing public highways, instructors in highway engineering, and periodicals upon an exchange basis. At the present time additions to the free mailing list can be made only as vacancies occur. Those desiring to obtain Public Roads can do so by sending $\$ 1$ per year (foreign subscription $\$ 1.50$), or 10 cents per single copy, to the Superintendent of Documents, United States Government Printing Office, Washington, D.C.

SOIL TESTS USEFUL IN DETERMINING QUALITY OF CALICHE

Reported by H. S. Gillette, Materials Engineer, District 6, Bureau of Public Roads

THE TERM "CALICHE", as used in the United States, is applied to a group of formations consisting principally of calcium carbonate and silica but containing some alumina, iron and magnesium carbonate. Formations occur locally, in relatively thin beds in solid or powdered form, but usually consist of clays and sands more or less thoroughly cemented by calcium carbonate, or of gravels or breccia so cemented, into caliche conglomerate.

They have been found and developed as road material, ${ }^{1}$ in extensive areas of the semiarid regions of the southwest, notably in Arizona, New Mexico, northwestern Oklahoma, and western and southern Texas.

They are frequently described as being both calcareous and siliceous. The latter term arises apparently from chemical analyses which do not distinguish the cementing material from the chemical content of siliceous particles of clays or sands which form the base for cementation. However, one deposit in Texas is reported definitely as having silica alone as the cementing material.

The caliches of the United States are not related, unless in general appearance, to the nitrate deposits of Chile, to which the term caliche was originally applied.

Geologically, our caliches are superficial formations, varying from beds of incoherent powder to those of very considerable hardness and a corresponding high degree of cementation. They have limited continuity and are local in extent, but are of widespread occurrence. They vary in thickness from a few inches to 60 feet or more. Occasionally they are surface deposits, exposed by the erosion of wind or water, or, quite rarely, are products of evaporation of standing bodies of water. Their origin has been carefully studied and described by J. F. Breazeale and H. V. Smith. ${ }^{2}$

Most caliches have been formed at various depths beneath the surface and originate probably through evaporation of ascending or descending waters, the former frequently being the result of capillarity.

The following conclusions are from the bulletin cited:

1. Caliche, wherever found in Arizona, was formed by the solution, transportation, and precipitation of calcium carbonate.
2. Water, when charged with carbon dioxide, dissolves calcium carbonate and forms calcium bicarbonate. The calcium bicarbonate is carried in solution and is precipitated as calcium carbonate, or caliche, when the water is evaporated, or when there is a relief in pressure, which drives off carbon dioxide.
3. Caliche strata may be formed beneath the surface of a soil, either by the evaporation of descending surface water or by the evaporation of ascending ground water.
4. Caliche may be formed in a soil by means of plant roots. Plants growing upon the surface absorb soil water for transpiration purposes, and the calcium carbonate that is dissolved in the soi? solution is precipitated as caliche.
5. As long as they are permeable to water, caliche strata will move downward in a soil as fast as erosion removes the upper soil surface.

[^0]6. Caliche probably is formed upon the surface of a soil by the evaporation of surface or flood water. The formation under such conditions is hastened by the presence of algae and other water plants.

caliches vary in characteristics

Generally, caliche is white in color. In specific instances, however, this white color may blend to a light pink, a light purplish red, a dark gray, a light brown, or a light ocher-yellow color. Usually, however, these colors bleach out under the effect of moisture and climate when left for any length of time on the surface.

The chemical constituents of caliche vary considerably. This is because the composition of a deposit depends upon the type of material in which precipitation took place, or upon the chemical nature of the salts in the ground water solution, or both. In Texas, the caliches in which silica or calcium carbonate is the predominating constituent are the ones most widely distributed and, by reason of this widespread distribution, are the ones more largely used. However, other caliches, of a different type from a chemical standpoint, are available in restricted areas.

Outside of Texas there are materials, locally defined as caliche, with other cementing mediums. In the "Imperial Valley of California a so-called deposit of "caliche" occurs which consists of a gravel conglomerate cemented with sodium chloride. In Chile the so-called caliches are cemented with sodium nitrate - the Chilean saltpeter of commerce.
Caliches used in highway construction may be classified under three general types, according to hardness:

1. Flourlike caliche.-This type consists of a fine sand loosely cemented with a fine impalpable powder which, according to chemical analyses, is composed principally of silica or calcium carbonate. Such caliche may be handled or loaded in the pit without plowing or mechanical breaking of any kind. It may be scraped to a loading platform; may be loaded into wagons or trucks with an elevating grader; or may be loaded into wagons or trucks by laborers with shovels without previous mechanical manipulation.
2. Semihard caliche.-This type consists of cemented areas interspersed with the flourlike caliche. Beds of this nature have to be broken up with a hard steel plow or hard steel rooter before the material can be loaded into trucks or wagons. Formations can be broken up and loaded with a steam shovel. When placed on the subgrade of a road the large and semihard lumps usually have to be broken up with mauls or hammers.
3. Hard caliche.-This type consists of well-cemented strata or conglomerate areas that have to be blasted with powder or dynamite, and broken into lumps of variable size before the material can be loaded from the pit. Usually it must be run through a crusher before it can be used.

The thickness of overburden on these formations varies with the nature of the terrain and presumably with the previous geological history of the locality where it was formed.

CALICHE DEPOSITS IN TEXAS DESCRIBED

In Live Oak County there is a deposit of flourlike or fine, loosely bound caliche situated at the lower point of a sloping terrain. This deposit has a very thin overburden of disintegrated material locally called soft limestone, the thickness of which is approximately 8 inches. The flourlike caliche can be loaded with an elevating grader without plowing. The pit is 20 or more feet in depth, 200 to 300 feet wide, and approximately 1,100 feet long and can be extended in length, width, and depth.

About 50 miles south of this location in Duvall County test holes have indicated a similar formation several square miles in area on rolling terrain. The only difference noted in this area is a variation in the amount of overburden. Here it varies in thickness from a few inches to 3 feet.

This same type of flourlike caliche occurs in west Texas in Throckmorton County on the surface of the rolling prairies. This formation, however, is shallow in depth, usually ranging from 3 to 7 feet, and is underlain by instead of covered by a disintegrated limestone formation. While in some areas there is no overburden, in others topsoil occurs from 6 to 18 inches in depth. Pits of a similar nature exist in southeast Texas, particularly in Kerr and Gillespie Counties.

Semihard caliche formations occur in numerous areas in Texas. A typical example is the Realitos pit in Duvall County. This pit is over 1,500 feet long, 500 to 800 feet wide, and from 3 to 25 feet in depth. Although some blasting had to be resorted to, nearly all material has been taken out with a large steam shovel without blasting. Material found in this pit consists mainly of large cemented areas and conglomerate strata in the interstices of which is fine flourlike material.

Hard caliche beds occur in a great many west Texas areas and, in some instances, in south Texas. They usually consist of stratified layers and conglomerate beds very firmly bound together with a cementing medium. In all instances the caliche has to be blasted before it can be excavated and has to be run through a crusher and broken into small sizes before being used for highway construction.

The use of caliche for highway construction in Texas has been one of necessity. There are a great many areas in the State, some distance from railroads, where other road materials are scarce or wholly absent. Long and expensive railroad hauls prohibited the use of shipped-in materials and the local caliches were developed for use. The construction methods used in building caliche bases and the tests used to determine the quality of the materials have been developed gradually over a period of years.

The first instance of its use on any considerable mileage of Federal-aid highway work was in Hidalgo County in 1920. Since caliche is confined to a more or less localized area, it had not received the widespread attention in road building literature that had been accorded most materials of construction, and as a consequence no special methods of testing this class of road material had been developed. Therefore, some method of testing had to be devised.

STUDIES MADE TO DEVELOP BETTER TESTS FOR CALICHE

Since tests for determining the cementing value and slaking time had been used for a number of years as a means of determining the quality of binders such as
rock dust resulting from crushing, and since calcareous binders approached the composition and character of caliches, it was thought at the outset that these tests could be applied to caliches and used to differentiate between caliches of inferior quality and those of good quality. These methods were used for a number of years for control of caliche materials in Texas.

Within the last two years, however, the chemical composition and physical characteristics as disclosed by the routine subgrade tests of the Bureau of Public Roads have been investigated as a means for determining the probable performance of caliche as a road material.

Chemical analyses disclose the percentages of silica, alumina and iron oxide, calcium carbonate, magnesium carbonate, and ignition loss. The routine subgrade soil tests disclose the grading and constants as follows: Liquid limit, plasticity index, shrinkage limit, shrinkage ratio, centrifuge moisture equivalent, field moisture equivalent, and either the volumetric change or the lineal shrinkage.

The significance of these physical tests and the procedures for making them have been discussed in detail in Public Roads. ${ }^{3}$

TABLE 1.-Results of chemical analyses and physical tests of samples of caliche

GROUP 1

GROUP 2

15.	47.30	11. 20	34.11	1.78	4.76	294	15
16.	47.10	7.90	37.68	3. 33	3.44	$500+$	$60+$
17.	6. 00	1. 00	90.36	2. 59		104	$60+$
18	60.80	7.45	19.73	8. 71	1.70	203	8
19	18.20	2.95	72.50	3.26	2. 50	287	45

GROUP 3

20	66.45	7.50	17. 23	3. 30	3. 45	$500+$	58
21.	75.00	9.60	7. 68	2. 46	3.35	$500+$	17
22	51. 20	6.35	34.73	2.61	3. 20	$500+$	25

GROUP 4

23.	57.90	5. 60	25. 00	10.07	1. 05	467	17
24	28. 10	8. 40	56.25	1. 55	4.05	$500+$	$60+$
25	34. 70	7.50	50.57	3. 40	3.65	441	9
26.	42. 10	5. 50	44.64	4. 77	1. 57	464	23
27.	53. 40	17.80	17. 77	2. 12	8.07	311	15
28	40.05	9.75	45.00	3. 03	2. 07	288	28
29.	36. 40	10. 20	43. 21	3, 03	5. 91	480	6
30.	78.00	11.50	1.43	1. 29	6. 55	163	,

${ }^{3}$ See Public Roads, vol. 12, nos, 4, 5, and 7.

The routine tests are supplemented by the flocculation test, which is being investigated for use as a substitute for certain of the routine tests in the examination of particular materials, of which caliche is one. It furnishes information on the maximum porosity of sediments and the presence of colloidal gels. The maximum porosity is disclosed by a voids ratio termed the flocculation factor or a corresponding moisture content termed the flocculation limit.

The flocculation factor is defined as the ratio of pores to solids in a sediment formed in 24 hours from a mixture of 5 cc absolute volume of powdered soil solids thoroughly dispersed in 39 cc of distilled water and 1 cc of chemical deflocculent. ${ }^{4}$ The quantity of gel present is indicated by type numbers discussed later in this report.

In order to determine the relative efficiency of the various methods of tests for identifying caliches for road building purposes a number of samples representative of both good and undesirable caliches were obtained from roads and pits in various parts of Texas and tested in the Bureau laboratory at the Arlington Experiment Station.

All the samples which could be definitely classified as good or poor base material, according to the performance of the roads in which they were used, were divided into four groups, the first two groups representing the satisfactory caliches, and the third and fourth groups representing the unsatisfactory materials. All the samples represented material in the base courses of roads that had been in service from 3 to 13 years. The chemical analyses and results of the cementing and slaking value tests are shown in table 1. The results of the subgrade soil tests are shown in table 2.

HARD AND SEMIHARD CALICHES GAVE BEST SERVICE

Group 1.-All samples of group 1, except no. 6, were taken from roads in west Texas which have been in use from 3 to 8 years. Each sample was from a base course of 6 or 8 inches compacted depth. These base courses were topped with an asphaltic surface from 1 to 2 inches in depth. All surfacing courses were in excellent condition. One significant feature of this group is that practically all the materials are from pits of hard caliche where most of the material had to be blasted. This, in itself, tended to keep the amount of fine material or binder within safe limits.

In samples, as removed from existing bases, the major amount of material is larger than 2 millimeters in size with a minor amount of excellent binder material containing sufficient cohesive material to thoroughly bind the coarse particles firmly together without detrimental volumetric change. This is not shown in table 2 since in preparing the samples for testing a rubber-covered pestle was used to break down lumps of material.

Group 2.-These materials were collected in south Texas, except sample no. 19, which was from west Texas. The samples were from roads that had been used from 7 to 13 years. All the materials used in these roads were from deposits of semihard caliches which had to be plowed for the most part before excavating. In some few instances strata had to be blasted. All the caliche bases were topped with an asphaltic surface course and in 1933 were in satisfactory condition. The materials of this group will be discussed singly.
162.

Deposits of Flourlike, Semihard and Hard Caliche in Texas.
Sample 15 was taken from a road constructed in 1926. The base course had a compacted depth of 8 inches and was constructed in two layers. The bottom layer was wetted, rolled until thoroughly compacted and permitted to set up before the second course was placed. The same method was used in constructing the second course. Previous to constructing the top course, the base course was bladed even and smooth. This is an important step in preparing caliche bases for top courses, particularly where the traffic is heavy. A major portion of the material, as placed in the road, was above the 2 mm sieve with very little binder. This caliche base was topped with a $3 / 4$-inch Uvalde rock asphalt surface course and in 1933 was in excellent condition.

Sample 16 is from a road built in 1927 with semihard caliche containing a high proportion of lumps larger than the 2 mm sieve. The caliche was excavated

Table 2.-Results of soil tests performed on samples of caliche
GROUP 1

Sample no.	Mechanical analyses							Physical characteristics of material passing no. 40 sieve						Volumetric change	Flocculation test	
	Parti-cleslargerthan 2mm	Particles smaller than 2 mm						Liquid limit	Plasticity index	$\begin{gathered} \text { Shrink- } \\ \text { age } \\ \text { limit } \end{gathered}$	Shrinkage ratio	Moisture equivalent			Floceulation factor	Type
		$\begin{gathered} 2.0 \text { to } \\ 0.25 \mathrm{~mm} \end{gathered}$	$\left.\begin{array}{\|c\|} 0.25 \text { to } \\ 0.05 \mathrm{~mm} \end{array} \right\rvert\,$	$\begin{gathered} 0.05 \text { to } \\ 0.005 \\ \mathrm{~mm} \end{gathered}$	Smaller than 0.005 mm	Smaller than 0.001 mm	Passing no. 40 sieve					Centrifuge	Field			
$\begin{array}{r} 3- \\ 4 \\ 5 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 9 \\ 10 \\ 11 \\ 12- \\ 13- \\ 14- \end{array}$	Percent 0 0 0 0 0 0 0 55 28 0 0 0 0 49	Percent 25 39 31 24 26 44 28 22 16 17 22 17 14 20	Percent $30 \pm$ 20 24 $38 \pm$ 41 26 18 22 47 23 23 25 20 17	Percent (1) 29 (1) 17 18 27 27 20 38 29 28 28 35	Percent (1) 16 16 $\left({ }^{(1)}\right.$ 16 12 27 29 17 22 26 30 38 28	Percent (1) 8 5 8 3 3 9 9 8 6 10 15 9 10		Percent 33 20 22 21 24 25 26 26 26 25 26 27 31 36	0 3 4 5 6 6 6 6 7 8 8 10 13 14	Percent 40 25 21 21 22 33 22 24 25 21 20 18 18 26	1. 3 1. 6 1.7 1.7 1.6 1.4 1.4 1.7 1.6 1.6 1.7 1.7 1.8 1.8 1.6	Percent 25 19 18 15 19 19 20 25 18 21 24 24 24 32	$\begin{array}{\|r} \text { Percent } \\ 37 \\ 21 \\ 21 \\ 20 \\ 23 \\ 26 \\ 24 \\ 23 \\ 22 \\ 21 \\ 23 \\ 20 \\ 24 \\ 31 \end{array}$	Percent 0 0 0 0 2 0 3 0 0 0 5 4 11 8	1.7 1.7 1.3 1.6 1.3 1.2 1.4 1.6 1.3 1.4 1.5 1.7 1.9 2.2	1

GROUP 2

GROUP 3

GROUP 4

${ }_{2}^{1}$ Flocculated.
with a steam shovel and as placed in the road, did not contain an excessive amount of binder.

Samples 17 and 18 are considered together as they were taken from the same highway about 5 miles apart. The road was built in 1920 with caliches of the semihard variety. While some strata had to be blasted with dynamite most of the material was plowed and loaded. An 8-inch compacted base was surfaced with 1 -inch of Uvalde rock asphalt. About 1924 the surface was given a light treatment of liquid asphalt. The condition of the surface in 1933 was satisfactory, although some maintenance of edges had been necessary. This road is in a semiarid country; the grades provide excellent drainage and the subgrade is a sand. The temperature very rarely falls lower than $40^{\circ} \mathrm{F}$. It is doubtful if this material would be satisfactory for use with a large amount of binder, in regions of heavy rainfall, frosts, and poor drainage or without a thoroughly sealed surface course.

The material represented by sample 19 has an interesting history. The road was built in 1926 when the cementing value and slaking tests were specified as the criteria for quality. At that time very little was known locally about soil physics. The road was
in west Texas where caliches are mostly pure white. After the contract was let for the construction of the road, the caliche pit was opened and the material found was of a light pink color instead of white. This was the first pit of pink caliche found in west Texas. Its quality was questioned and considerable concern felt about using it. However, tests were made and the material met the specification requirements as to cementing value and slaking. There were no other pits close at hand and the material was finally used. It is a semihard caliche. Some of the strata had to be blasted, but most of the material was plowed with a tractor.

A base course, 8 inches in compacted depth, was placed late in the fall and allowed to go through one winter without a surfacing course. During wet winter weather the surface became slippery and mucky. In the following summer, after the caliche had dried out and set, it was surfaced with a $2 \frac{1}{2}$-inch penetration course with a surface seal coat of liquid asphalt. The seal coat was entirely successful in completely sealing the surface. The grades on this road provide good drainage. At the time of inspection in 1933 this road was in excellent condition.

A Sample of Caliche.
Group 3.-The road from which these samples were taken is in extreme south Texas in a semiarid territory. It was built about 1925 or 1926 . Tests of the materials at that time disclosed very high cementation and acceptable slaking properties.

The material was laid to form a base course 6 inches in compacted depth. For 3 years this base course carried traffic without being surfaced. Surface evaporation caused the material to set hard and it gave satisfactory service under traffic. At the end of 3 years the base was surfaced with 1 inch of Uvalde rock asphalt. The rock-asphalt surfacing failed completely in less than a year and had to be removed. This history indicates that caliches of high plasticity, when used in arid regions of high temperatures, with provision for adequate surface evaporation, will set hard and provide good traffic service for up to about 800 vehicles per day. Such caliches may be totally unsatisfactory as bases for a bituminous surfacing. The surfacing prevents evaporation of moisture from the caliche. High capillarity produces considerable water which, if not removed by evaporation, causes loss of stability.

Group 4.-All materials in this group are unsatisfactory caliches. All of the samples were taken from complete failures. Samples of these materials taken from bases beneath asphaltic top courses show high moisture contents and soft cheeselike consistencies with very little stability. In one instance this type of caliche gave reasonably satisfactory traffic service for light traffic during one summer previous to placing the bituminous surface. However, they all failed as a base course for bituminous surfacing.

CHEMICAL ANALYSES AND TESTS OF CEMENTING VALUE NOT

 SIGNIFICANTThe results of the tests for cementing value show a lack of correlation between test results and field behavior. There is some indication that the better caliches have a lower cementing value and a higher slaking time than the poor materials, but the relations between tests results and field service, in general, are too erratic to be of value.

The chemical analyses illustrate the variable chemical composition of caliches, and also demonstrate the
inadequacy of a chemical analysis as a basis for differentiating between the good and poor varieties of caliche. There is dissimilarity in the chemical composition of caliches within the various groups, and also frequent similarity in the compositions of good and poor caliches as, for example, between nos. 14 and 24 and nos. 9 and 22. In general, the better caliches contain more calcium carbonate than the unsatisfactory varieties, but numerous exceptions to this general rule render the chemical analysis ineffective for definitely identifying the satisfactory materials.

GOOD CALICHES HAVE LOW PLASTICITY

In developing a routine procedure for testing soils it has been the aim to develop a sufficient number of tests, varied in character, as to make possible the identification of all the soils apt to be encountered in highway construction. However, in the testing of special surfacing and base course materials, such as limerock, caliche, shale, disintegrated granite and the like, the tests may be limited to those which disclose the particular characteristics upon which the performance of the material depends. These dominating characteristics, as well as the tests which disclose them, may be learned from the results of all the routine tests performed on a sufficient number of samples.

To illustrate, the results shown in table 2 and averaged in table 3 show that the undesirable caliches have higher liquid limits and plasticity indexes than the good materials. The tests for field moisture equivalent, shrinkage limit, volumetric change, and centrifuge moisture equivalent (except in the case of waterlogged materials) do not show consistent differences between good and poor caliches. The poor caliches appear to differ from the good ones mainly in having higher plasticity. Shrinkage as indicated by either the volumetric change or its related constant, lineal shrinkage, seems to be a minor factor in contributing to failure.

Table 3.-Average results of subgrade soil tests

Group	Liquid limit	Plasticity index	Shrinkage limit	Centri- fuge mois- ture equiva- lent	Field moisture equivalent	Volumetric change	Floceu lation factor
	$\begin{array}{r} \text { Percent } \\ 26 \\ 34 \\ 35 \\ 44 \end{array}$	$\begin{array}{r} 7 \\ 11 \\ 20 \\ 24 \end{array}$	$\begin{array}{\|r} \text { Percent } \\ 24 \\ 26 \\ 20 \\ 22 \end{array}$	$\begin{array}{\|r\|} \hline \text { Percent } \\ 22 \\ 26 \\ 82 \\ 29 \end{array}$	$\begin{array}{\|r\|} \text { Percent } \\ 24 \\ 31 \\ 23 \\ 29 \end{array}$	$\begin{array}{\|r} \text { Percent } \\ 2 \\ 10 \\ 5 \\ 12 \end{array}$	$\begin{aligned} & 1.6 \\ & 1.9 \\ & 7.4 \\ & 3.8 \end{aligned}$

Considering the test results it seems that a plasticity index less than 15 is sufficient to indicate a caliche satisfactory for road purposes, and that a plasticity index exceeding 15 denotes a material which may prove troublesome. As a supplementary requirement for indicating good caliche the flocculation factor might be limited to 2.5. However, it is possible that either semiarid climate or good drainage may have contributed to the satisfactory performance of several of the caliches represented by the samples with the higher plasticity indexes in group 2. Until more is learned concerning the matter it may be advisable to use caliches with plasticity indexes of, say, 10 to 15 only in fairly dry climates and where subgrade drainage conditions are favorable. In this case flocculation factors up to and including 1.7 would designate materials suitable under
general conditions and factors up to and including 2.5 would denote caliches suitable under favorable conditions.

SILICA GEL MAY BE DISTINGUISHING FEATURE OF CALICHE PERFORMANCE
The flocculation factor, resulting from the flocculation test, is useful but the test may serve a more important purpose in disclosing the properties of caliche by indicating the presence or absence of a silica gel.

Sediments of caliches may be of five different types, as follows:

Type 1: No gel, with a clear suspending medium above the sediment.

Type 2: Little or no gel, with a cloudy suspending medium above the sediment.

Type 3: Well defined gel, not exceeding about 5 ce in volume; suspending medium clear.

Type 4: Heavy gel, 5 to 15 cc in volume, suspending medium clear.

Type 5: Very heavy gel exceeding 15 cc in volume, suspending medium clear.

Types 1, 3, and 5 are shown in the illustration.
From table 2 it can be seen that with but one exception the good caliches, groups 1 and 2, contain little or no gel. Those of group 3 are highly colloidal, as indicated by very heavy gels. This is undoubtedly responsible for the waterlogging in the test for centrifuge moisture equivalent. Oddly enough, however, these gels do not increase the plasticity to the extent which would be expected from the increase in the moisture equivalent.

That the gel, in itself, is not responsible for the high flocculation factors is indicated by the tests on the group 4 samples. Samples 27 and 28 , with flocculation factors above 3, have no gel whatever. This indicates that while the presence of a heavy gel may be responsible, in part, for high flocculation factors, as in the case of the group 3 samples, the absence of gel does not necessarily indicate a low flocculation factor.

The gel occurring in caliches is, to all appearances, the same as that produced by the bentonite colloids, which act as emulsifying agents on bituminous materials. Consequently, this silica gel, acting as an emulsifying agent, may be responsible for the failures of processed surfaces and thin bituminous surfaces on caliche bases. Except for the presence of this gel, the soil tests disclose no reason for such failures on caliches.

This leads to the general indications (1) that caliches with plasticity indexes less than about 10 , with flocculation factors not exceeding 1.7, and without the gelproducing colloids should prove satisfactory as bases for thin bituminous surface treatments under average moisture conditions; (2) that caliches with plasticity indexes of 10 to 15 , flocculation factors not exceeding 2.5 and without colloidal gel, should prove satisfactory for thin bituminous surfaces in semiarid or well-drained locations; and (3) the better grade materials, even with a considerable amount of gel, may prove satisfactory as bases for the thicker bituminous surfaces.

SUMMARY

The information available relative to the use of caliche suggests the following conclusions:

Types 1, 3, and 5 of Caliche Sediments.

1. The stability of caliche base courses for bituminous surfacing depends upon the quality and quantity of the fine binder material (passing the no. 40 sieve) contained in the total volume of material in place.
2. The quality of the binder depends on the geologic origin of the material. The quality can be determined by the standard physical soil tests developed by the Bureau of Public Roads. Study of soil constants derived by subjecting caliches which have given various degrees of road service to this standard series of tests makes possible the establishing of suitable limiting test values.
The quantity of fine soil binder (material passing no. 40 sieve) depends on the nature of the caliche deposit and on the mechanical appliances and methods used in excavating and handling.
3. The hard and semihard caliches are the best materials since they are most likely to contain a desirable quantity and quality of fine binder material.
4. Flourlike or very fine caliches may be used under favorable conditions. However, they generally contain an excessive amount of very fine clay and colloidal material. Such fine material will bind and set when properly manipulated, but the completed road has very high capillary action. Material of this kind should be thoroughly investigated before being used.
5. In regions of sparse rainfall, freedom from frost or snow, and good surface drainage, caliches with high colloidal content, as evidenced by high liquid limits, high plasticity indexes and colloidal gels, may be successfully used to carry light traffic without surface covering. This type of caliche will prove unsatisfactory if a surface covering, which prevents evaporation of capillary moisture, is placed on top of it or if it is placed without providing good drainage.
6. The minimum depth of compacted base course that will give good service, as deduced from records of roads that have been built for 5 or more years, is 8 inches.
7. Base courses in excess of 4 inches compacted depth will give better service if built in two courses. The base course material should be thoroughly compacted from the subgrade upward.

TRAFFIC ON STATE AND COUNTY ROADS OF INDIANA

A DIGEST OF A REPORT BY THE STATE HIGHWAY
COMMISSION OF INDIANA

THE present State highway system has been developed since 1920 with funds derived principally from automobile license fees, a gasoline tax, and Federal aid. The county system, the intensive development of which began with the enactment of the State's famous "Three Mile Gravel Road Law" in 1905, was paid for almost entirely with the proceeds of county and township bond issues. The issuance of State bonds is prohibited in the Indiana constitution. There are 2.14 miles of road in the State for each square mile of area, a figure exceeded only in Massachusetts and Connecticut. The mileage of surfaced roads is greater than that of any other State, there being a total of 59,085 , of which 8,450 are dustless, including 5,536 miles of pavement. There are 50,635 miles of untreated gravel and waterbound macadam. Most of the pavement is on the State system. Table 1 gives a detailed summary of the various types of surfaces on the State highway system.

The unusual facilities for traveling throughout the year provided by the extensive county road system result in a narrower range of seasonal changes in traffic density than is found in other parts of the Middle West. The topography of the State is faily uniform, there being no mountains and only limited areas of marsh lands where construction is difficult. Indianapolis, with a population of about 400,000 is the largest city. Farming and manufacturing are about of equal importance in the State's economic life. The 1930 population was $3,238,503$ of which 55.5 percent was classified as urban and 44.5 percent as rural.

Table 1.-Miles of different types of surfaces on the State highway system, 1932

Type of surface
Miles

Brich	106. 96	106. 96
Cement concrete.	3,356. 25	3, 463. 21
Rock asphalt	360.60	3, 823, 81
Bituminous concrete	52.17	3,875. 48
Bituminous macadam	209.84	4, 085. 82
Surfaca-treated waterbound macadam	46. 26	4,132.08
Bituminous retread	304.87	4, 436. 95
Bituminous mulch top	437. 73	4,874.68
Road-oil mat top.	1,766, 16	6, 640. 84
Oil-treated surface	103. 48	6, 744. 32
Stone	507.52	7, 251. 84
Gravel	863. 63	$8,115.47$
Earth	28. 149	8, 143. 56
Torn up for construction	197.35	8, 340.91
Miscellaneous.	81.72	8, 422.63

SURVEY MADE ACCORDING TO ACCEPTED METHODS

The survey was undertaken to obtain information concerning the volume and kind of traffic on the various

[^1]classes of highways as a basis for properly classifying highways and controlling expenditures upon them.

The methods of the survey were in accordance with principles which have been developed in a number of State-wide surveys and which are accepted as yielding satisfactory results. Traffic counts were made at 1,016 stations on the State system and data were collected at 525 points on county roads in 21 selected townships in 11 counties representing different conditions throughout the State. For certain classes of data intensice studies were made at a number of representative points: and factors determined which were applied to other points of like character. The survey covered a 1 -year period beginning in May 1932.

heaviest traffic found on u. s. routes

The 8,423 miles of State roads cosered by the report do not include the 451 miles of State routes in cities with a population over 3,500 which were not maintained by the State. The Federal-aid highways included in the State system aggregated 4,923 miles.

During the year of the survey there was a motor vehicle movement on the State highways of approximately $6,890,200$ rehicle-miles per day. On the county roads the figure was $3,483,953$. The relative use of the Federal-aid systems and the United States routes is shown in table 2.

The daily volume of traffic on different parts of the State system varied widely. The number of motor vehicles per average 24 -hour day ranged from 18,881 at the junction of routes US 41 and US 12 and US 20 near Chicago, Ill., to a minimum of less than 100 i vehicles on some unimproved sections recently added to the system. The arerage for the entire 8,423 miles was 818 vehicles per day. On county roads the average was 50.6 and the range was between a maximum of 3,943 and a minimum of 2.2 .

Table 2.-Average daily traffic on different route classifications of the State hightay system

	Highway mileage	Percent of state highway system	A verage daily ve-hicle-miles	Percent of total vehiclemiles
Primary Federal-aid system	1,830	21.7	3, 149, 652	45.7
Secondary Federal-aid system	3, 093	36.7	$2,305,816$	33. 5
Other State roads...	3, 500	41.6	1, 434, 732	20. x
Total State system	8. 423	100.0	6, 890, 200	100. 3
US routes......	1,933	22.9	3, 194,545	46. $\overline{5}$

The largest volume of traffic of both passenger cars and trucks is found in the areas adjacent to large centers of urban population and on the main traffic routes. The picture of the traffic flow in the Indianapolis: area (as shown by maps accompanying the full report) is a striking example of the urban influence. The flow on all the roads increases as the city is approached. The den-
sity lines, on the maps, for US 40 between Indianapolis and Terre Hate and for (522 between Indianapolis and Lafayette show the characteristic maximum on these sections near the urban areas and the minimum midway between the cities.

The most striking example of the combination of the influence of urban traffic and through traffic is in the Calumet region and on US routes 12 and 50 skirting Lake Michigan. The heary traffic in this section is the result of a large population within the area itself, its proximity to Chicago, and the junction of several important through routes. The 28 miles of US 12 outside of citios carries an average daily traffic of 4,509 . From Gary to Elkhart, a distance of 63 miles, there is an average flow of 3,061 vehicles per day. The principal through routes, in general, are those designated as US highways, of which the most important are U S $12,20,30,31,40,41$, and 52.

The mileage of State highways carrying various densities of total traffic and of truck traffic is shown in figures 1 and 2 .

Pigure 1.-State Highway Mileage Ciassification According to Traffic Density.
AUGUIST FOUND TO BE MONTH OF HEAVIEST TRAFFIC
The seasonal variation in traffic is shown in figure 3, which is based on counts at 102 control stations. The har's represent the average traffic during each month as a percentage of the average monthly total traffic. Pas-senger-car traffic shows a greater variation than truck traffic. Maximum passenger-car traffic was in August and the minimum in March, with a ratio between the two of 1.56 . For trucks the high and low months were August and February, with a ratio between them of 1.20 .

Figure 4 shows the variation in traffic on different days of the week. Volumes of traffic are expressed as percentages of total traffic on the average week day (average for Monday to Friday, inclusive). Figures 3 and 4 are based on traffic on State highways only. It was found that the increase in traffic on Sunday was greater on local roads than on main routes, probably because of the desire of some pleasure drivers to avoid heary traffic. Table 3 shows variations between weekday traffic and Saturday and Sunday traffic.

Figure 2.-State Highway Mileage Classification According to Truck Density.
Table 3.-Average Saturday and Sunday traffic as percentages of average week-day traffic

	Average week-day flow	Saturday flow	Sunday flow
Passenger cars.	$\begin{gathered} \text { Percent } \\ 100 \end{gathered}$	$\begin{array}{r} \text { Percent } \\ 121 \end{array}$	Percent 167
Trucks.	100	81	41
Total.	100	113	142

HEAVY TRUCK TRAFFIC CONFINED LARGELX TO PRINCIPAL

 ROUTESMotor-truck traffic is 16.9 percent of the total traffic on State highways and 16.3 percent of the total on county roads. In the density counts busses were counted as trucks. However, early in the survey, a check was made on the relative number of busses to trucks and to total vehicles. This count showed that the bus flow was less than 1 percent of the total flow and approximately 4 percent of the truck flow.

It is highly significant that the percentage of truck traffic in Indiana is practically the same on State and county roads and still more significant that the percentage of heavy trucks on county roads, as determined by inspection, is approximately half that of heavy trucks on State roads. It was found during the summer of 1933 that 47 percent of the trucks passing the survey stations on State roads during daylight hours were either equipped with dual tires or were obviously large and heary. This figure includes busses. On county roads the proportion of similar heavy vehicles was 26 percent. Dual tire equipment is principally used on vehicles which may be roughly classified as heavy. No classification by tonnage was attempted.

The average daily traffic flow map published in the full report shows that the number of miles of State roads that averaged over 200 trucks per day are comparatively few. In figure 2 the mileage of the State highway system is classified according to several truckdensity classes. The number of trucks per average 24-hour day varied from 3,790 at the junction of routes U S 41 and U S 12 and 20 northwest of Whiting to less

Figure 3.-Daily Variation of Traffic on State Higheays. Total Trafeic on Average Week Day (Monday to Friday) is Taken as 100 Percent.
than 10 on some of the unimproved sections of the State system. On the county roads the maximum on the average day was 726 and the minimum none.

Table 4 gives the average truck flow on the principal truck routes. The decrease in this traffic on Saturdays and Sundays brings the average flow below the flow on a week day.

Table 4.-Average daily truck flow on the principal truck routes

Upon analysis of field data it was found that traffic characteristics in Lake County, in the Chicago metropolitan area, differed so widely, in many respects, from those in the other 10 counties that a separate study of them would be required. Tables 5 and 6 show the major characteristics developed for the State as a whole and for Lake County alone. The rarious items are grouped

Figire 4.-Monthly Vartation of Traffic on State Hinhwars.
for convenient comparison and each group represents 100 percent of the traffic. Direct comparison of State road and county road traffic can be made easily. In table 6 for Lake County the first column shows data relative to the State highways; the second, county roads in the northern portion of the counts which lies within the Chicago metropolitan area; the third, the entire county road system. Many of the roads in North and Calumet townships are really city streets under the jurisdiction of county authorities. They carry a large volume of traffic and more elaborate studies than those undertaken in this survey will be required to give an adequate picture of them.

All comparisons in the second, seventh, eighth, and ninth groups in both tables are based on 24-hour traffic flow, but the remainder are based on the flow in the daylight period, during which observations were taken and for which no night factors were available. Survey figures show that foreign traffic maintained its percentage with reasonable uniformity throughout the night and indicate that the percentage of city-owned vehicles was greater on the State highways at night and less on county roads, and it may be worth while to bear this in mind in considering the 12 -hour characteristics shown in the table. Seasonal variations in the characteristics listed were not great, except in resort areas and on roads near recreation centers and in items which constituted very small percentages of the total traffic.

It is apparent from the figures in table is that the State road system has distinctly different traffic characteristics from those found on the county-road system.

Table 5.- Composition of traffic-all roads

	Vehicle-miles		
	Percent on state roads	$\begin{aligned} & \text { Percent } \\ & \text { on county } \\ & \text { roads } \end{aligned}$	Percent on combined systems
Indianm-owned vehieles	82.5	96. 6	87.2
All other vehicles.	17.5	3.4	12.8
Total	100.0	100.0	100.0
Passenger cars	83.1	83.7	83.3
Trucks	16.2	16.1	16.2
Busses	7	. 2	. 5
Total	100.0	100.0	100.0
3. City vehicles	62.5	33. 4	52.8
Farm rehicles	18. 4	43.7	26.8
Village vehicles..	19.1	22.9	20.4
Total.	100.0	100.0	100.0
4. Vehicles traveling to or from points in the township Vehicles traveling to or from points in the count? outside the township Vehicles traveling to or from points in the State outside the county Vehicles traveling between points in other States (trans-state) Total \qquad	33.0	71.3	45.8
	36. 7	22.5	31.9
	22.5	6.0	17.0
	7.8	. 2	5.3
	100.0	100.0	100.0
Vehicles traveling from city to city Vehicles traveling from city to country Vehicles traveling from country to city Vehicles traveling between points in the country	43. 5	12. 5	33.2
	20.3	17.1	19.2
	19.3	14.7	17.8
	16.9	55.7	29.8
Total	100.0	100.0	100.0
Vehicles traveling within the State (intra-State) Vehicles traveling between points in Indiana and points in other States (intor-State) Vehicles crossing the state (trans-State).....................	77.9	96.9	84. 2
	14.3		10.5
	7.8	2	5.3
Total	100.0	100.0	100.0
- Indiana passenger cars Foreign passenger cars Indiana trucks Foreign trucks Indiana busses Foreign busses	67. 2	80.6	71.7
	15.9	3.1	11.6
	14.6	15.8	15.0
	1.6	. 3	1.2
	. 7	. 2	. 5
Total			
	100.0	100.0	100.0
A. Passengers cars owned in the county Passenger cars owned in the State, outside the county Passenger cars owned in other States or countries- Trucks owned in the county- Trucks owned in the State, outside the county Trucks owned in other States or countries. Busses owned in the county Busses owned in the State, outside the county. Busses owned in other States or countries	37.9	60.8	45.6
	29.3	19.8	26.1
	15.9	3.1	11.6
	7.5	11.4	8.8
	$\bigcirc 1$	4.4	6.2
	1.6	. 3	1.2
	. 3	. 1	2
	4	. 1	3
Total	100.0	100.0	100.0
a. County-owrState-ownedForeign veh	45.7	72.3	54.6
	36.8	24.3	32.6
	17.5	3.4	12.8
Total	100.0	100.0	100.0

The figures for the different sections of the individual roads included in the averages shown in the table indicate that extreme rariations from these averages may be found on a single road. For instance, most of the characteristics found on U S 31 in Marion County are quite different from those in Scott County. Centers of population, proximity to the State border or location in a highly developed resort area will cause changes in the composition of the traffic which will make the figures for certain sections of almost any State road either greater or less than similar figures for the average county road. Likewise, many of the county road characteristics shown in the table vary widely between the different counties in which the survey was conducted, although the percentages of foreign velicles and of trucks are fairly uniform. Individual county roads can

Table 6.-Composition of traffic- Lake County roads

	Vehicle-miles		
	Percent on State roads	Percent on county roads ${ }^{1}$	Percent on conty ronds ?
1. Indiana owned rehicles	53.3	85. 7	-6. 8
All other vehicles......	46. 7	14.3	13.2
Total	100.0	100.0	100.0
2. Passenger cars	85.0	86.0	85.9
Trucks	14.0	12.6	12.9
Busses	1. 0	1.4	1.2
Total	100.0	100.0	100.0
3. City rehicles	85.9	89.2	83.9
Farm vehicles	5.6	3. 0	fi. 4
Village rehicles	8.5	7.8	9.7
Total	100.0	100.0	100.0
4. Vehicles traveling to or from points in the township Vehicles traveling to or from points in the count y outside the township. Vehicles traveling to or from points in the state outcile the county. Vehicles traveling between points in other States (trans-State) Total	31.0	84.4	S2. 7
	23.9	10.9	12.2
	28.4	2.7	3.3
	16.7	2.0	1.8
	100.0	100.0	100.0
5. Vehicles traveling from city to city	72.8	79.7	72.3
Vehicles traveling from city to country	12.8	9.2	10. 7
Vehicles traveling from country to city	8.9	7.5	8.7
Vehicles traveling between points in the country -	5.5	3.6	8. 3
Total	100.0	100.0	100. 0
6. Vehicles traveling within the State (intra-State)	36.6	83.4	85.0
points in other States (inter-State)	46. 7	14.6	13. 2
Vehicles crossing the State (trans-State)	16.7	2. 0	1.8
Total	100.0	100.0	100.0
7. Indiana passenger cars	42.9	73.7	74.5
Foreign passenger cars	42.1	12.3	11. 1
Indiana trucks	9.6	10.6	11.1
Foreign trucks	4.4	2.0	1. x
Indiana kusses	. 8	1. 4	1.2
Foreign busses	2		
Total	100.0	10 \%. 0	100. 0
	32.0	70.6	68.2
	10.9	3.1	6.3
	42.1	12.3	11.4
	5.9	9.6	9.5
	3. 7	1. 0	1. 6
	4.4	2. 0	1.8
	. 4	1. 3	1.1
	4	. 1 !	1
	2		
	100.0	100.0	100. 0
9. County-owned vehicles	38.3	81.5	78.8
State-owned vehicles	15. 0	4. 2	S. 18
Foreign vehicles....	46.7	14.3	13.2
Total	100.0	100.0	100.0

be compared with the State road figures shown only when full consideration is given to every detail of their geographical locations. In making such comparisons it must be remembered that the average State road carries 16 times as much traffic as the average county road, and that even though a certain county road show: a higher percentage of foreign or nonlocal traffic than the average State road the volume of such traffic may be practically negligible. The possibility of a material increase in these two items following the inclusion of a road in the State system must be studied.
The relative use of the roads by local and nonlocal vehicles is perhaps the most important comparison of the various traffic elements that can be made from the tables. In this survey if a vehicle either began or ended
its trip in a certain place it was counted as local to that place. The first item in group 4 of either table is local traffic in the average township. The second item is traffic found crossing the township but local to the county in which the township is located. The sum of items 1 and 2 is the amount of traffic local to the entire county. The third item is traffic crossing both township and county coming from or going to points within the State and is called State traffic. Vehicles in the fourth item cross the State from border to border, passing through the county and the township. Thus the entire average vehicular movement is divided into "township", "county", "State", and "trans-State" traflic. The figures in table 5 indicate that the state highways carry an average of 33 percent township traffic, while the county roads carry 71.3 percent. Combined township and county traffic on the State highways is 69.7 percent of the total and on county roads 93.8 percent. Other comparisons are easily made from the tables themselves. The figures are arerages for the entire State and rary materially between urban and rural areas.

By combining township and county figures in the fourth group and comparing them with the combined figures for county-owned cars in the last group we find that about 46 percent of the traffic on the State roads originates in the local county while about 24 percent additional has its destination there, having come from somewhere else. These same figures for the county roads are approximately 72 percent and 22 percent. The remainder of the traffic in each case moved entirely across the county. In this method of comparison, location of ownership denotes origin. In other words, the "origin or destination" method indicates that about 70 percent of the State highway traffic and 94 percent of the county road traffic is local to the county in which a road lies, while the "origin only" method indicates 46 percent and 72 percent, respectively, for these two items. "Origin only" figures for the townships are not available.

In this survey municipalities with 2,500 or more population were classed as cities. Automobile license registration figures in 1932 showed that 54.3 percent of all vehicles were owned in cities, 26.6 percent on farms, and 19.1 percent in villages or towns. Traffic on State roads was found to consist of 62.5 percent city vehicles, 18.4 percent farm, and 19.1 percent village. On the county roads, farm and village vehicles aggregated 66.6 percent. On the combined systems city vehicles constituted 52.8 percent of the traffic. Vehicles traveling from city to city, and city to country accounted for 63.8 percent of the State highway traffic, which is almost the same as the percentage of city-owned vehicles found on these roads. The movement between points in the
country and from the country to the city on the county roads was 70.4 percent, which may he compared to the 66.6 percent of farm and rillage vehicles found on these roads. Figures in the table showing a slightly greater movement from city to country than in the opposite direction indieate that some of the heary pleasure traffic starting from the cities during daylight hours did not return until after the counting stations were closed for the night or that they returned by different rontes.

Trucks and busses were the only commercial vehicles segregated in the survey. Under the Indiana law busses used exclusively for carrying children to and from school are classed as trucks and carry truck license plates. While there are approximately 7,000 such vehicles in use they are very light, frequently mounted on passen-ger-car chassis, and travel an arerage of only 3,200 miles a year each.

The average mile of the State highway system carried 818 vehicles of all types a day; fiso of these were passenger cars, 132 were trucks and 6 were busses. On the county system these figures were $42.4,8.1$, and 0.1 , making a total of 50.6 vehicles per day

Bus registrations in the State amounted to only 878 , and these few together with those registered in other States accounted for the flow shown above. ()n the State roads approximately 1 bus in each 7 is foreign. Out of each 13 trucks 1 is foreign, and 1 in each group of 7 passenger cars is of foreign registration. Foreign traffic on the county roads is very light (3.4 percent). Although there is hardly any bus traffic on the county roads it is interesting to note that the ratio of passenger cars to trucks and busses is practically the same on State and county roads. Foreign trucks are found to furnish 1.5 percent of the total State traffic on State roads, while foreign busses account for less than onetenth of 1 percent. The total truck traffic is 16.9 percent. In other words, one-eleventh of the truck traffic, including busses, is of foreign registration.

COUNTY ROADS DO NOT EARN MAINTENANCE COSTS

Between May 1, 1932, and April 30, 1933, the net revenue from the 4-cent gasoline tax earned on all rural roads was $\$ 10,656,567$. Of this total 66.5 percent, or $\$ 7,081,766$, was earned on State roads and 33.5 percent, or $\$ 3,575,101$, on county roads. These figures are based on an estimated gasoline consumption by passenger cars of 15 miles per gallon and $11 \frac{1}{4}$ miles per gallon by trucks, which are the figures used by the Bureau of Public Roads in its report on the Survey of the Eleven Western States. No evidence has been produced since the publication of that report to justify a revision of these figures, although all available pertinent data have been studied. Some interesting light is thrown on this (Continued on P. 250)

Table 7.-Relative gasoline tax earnings on the State road and county road systems during the period of the survey, May 1. 1932, to 1 pr. 30, 1.933

EFFECT OF TEMPERATURE AND MOISTURE CONTENT ON THE FLEXURAL STRENGTH OF PORTLAND CEMENT MORTAR

BY THE DIVISION OF TESTS, BUREAU OF PUBLIC ROADS

Reported by D. O. WOOLF, Associate Materials Engineer, and K. F. SHIPPEY, Junior Highway Engineer

II I REPORT on the effect of steel reinforement in concrete parements which was presented at the 1931 meeting of the Highway Research Board, ${ }^{1}$ several theoretical considerations of the effect of change in moisture content and temperature on the flexural strength of concrete were advanced. It was stated that while both a lowering of temperature and a decrease in moisture content will cause a concrete slab to shorten in linear dimensions, these two effects may have opposite reactions on the flexural strength. When shrinkage occurs due to loss of moisture, the cement is placed under compression by the surface tension of the "solidified" water, and the modulus of rupture will be increased. Filling the pores of the mortar with water subsequent to drying reduces the capillary pressure to zero and causes the mortar to swell and the flexural strength to diminish. On the other hand, a decrease in temperature of rigid concrete causes molecular consolidation, the inert particles become smaller in diameter and the glue bands of the cementing material tend to shorten. This causes the linear dimensions of the slab to diminish and the glue bands to become stretched in effect and thus be placed in tension. This, in theory, should reduce the modulus of rupture.

This theoretical conception of the effect of temperature on the modulus of rupture was supported by the results of a series of tests of concrete made under field conditions. Since accurate control of temperature and moisture is quite difficult in the field, it was decided to make a series of tests under laboratory conditions to check the effect of temperature and moisture on the strength of mortar.

Several years ago a short series of tests to determine the effect of moisture content on the strength of mortar was made, using tension, compression and flexure specimens. ${ }^{2}$ After 6 months' curing in water, a portion of each set of specimens was dried in warm air for 2 days and then tested. The remainder of the specimens were tested wet. The following results were found:

Mortar strength, pounds per square inch

Test	Wet	Air dry
Tension	530	380
Compression...	6, 215	7,145
Flexure-.------	675	445

These results do not agree with the theories advanced. However, it is now believed that lack of agreement is the result of the air-dried specimens not being thoroughly dry and that when tested they still contained

[^2]an appreciable quantity of water. Subsequent tests have indicated the correctness of this conclusion.

Following these tests a set of seven 2 - by 3 -by 18 -inch mortar beams of $1: 3 \mathrm{mix}$ with Potomac River sand was tested at an age of 2 years to determine the effect of moisture content on the flexural strength. After each beam had been tested in a saturated condition, the beams were oven dried at $105^{\circ} \mathrm{C}$. to constant weight and tested dry. As shown in table 1, the wet beams developed a flexural strength averaging 750 pounds per square inch. The average strength of the dry beams was 1,065 pounds per square inch, or 142 percent of the strength of the wet beams. These tests demonstrated that the moisture content had an appreciable effect on the flexural strength.

To determine the effect of both temperature and moisture, three series of mortar beams were prepared, using a $1: 2$ mix by weight of stock cement and Potomac River sand with a water-cement ratio of 0.68 by volume. Each series consisted of 6 beams 2 by 3 by 16 inches, and 6 beams 2 by 3 by 12 inches. Two other beams of the same proportions and consistency were cast with thermocouples and a thermometer placed in them. It was the intention to use these beams as temperature control specimens for the test beams. After one day in moist air, the beams were removed from the molds and stored in water at a temperature of $70^{\circ} \mathrm{F}$. At an age of 28 days, half of the beams were dried in an oven at a temperature of $150^{\circ} \pm 5^{\circ} \mathrm{F}$. for a period of 7 days, in which time they attained a constant weight. ${ }^{3}$ All beams were tested at an age of 35 days.
Table 1.-Moduli of rupture of mortar beams tested in flexure at age of approximately 2 years with specimens at room temperature

Prior to the tests, investigations of the rate of heating or cooling of mortar beams were made to determine the time required to bring a test beam to the desired temperature. For this purpose, a surplus beam of unknown age was fitted with a thermocouple and thermometer. The beam was subjected to all the heating

[^3]and cooling treatments proposed for use in the test, and time-temperature records obtained. It was found in this preliminary treatment that the thermometer reading usually showed a lag of 2° or $3^{\circ} \mathrm{F}$. behind that obtained with the thermocouple. Some difficulty was experienced, however, in making thermocouple readings because of vibration of the galvanometer mirror. While the thermocouple was believed to give more accurate determinations of temperature, it was decided to use thermometer readings in the proposed tests.

FIRS T SERIES OF TESTS INCONCLUSIVE

Tests were made of the flexural strength of beams at temperatures of $40^{\circ}, 70^{\circ}$, and $100^{\circ} \mathrm{F}$., in both ovendried and saturated conditions. One long and one short beam were tested on each of 3 days for each of the 6 conditions of temperature and moisture. In most cases, 15 breaks were made under each test condition. Some specimens failed by shear at the ends because of uneven surfaces, and such breaks were discarded. After each test, the dimensions of the beam at the plane of failure and the length of the lever arm to the plane of failure were measured, and the modulus of rupture computed. The cantilever machine used has been described in Public Roads for May 1928. A 36 -inch lever arm was used rather than the 18 -inch arm used in the first work with the machine.

In the preliminary series of time-temperature tests, it was found that it was necessary to allow for a change of $10^{\circ} \mathrm{F}$. in the temperature of the beam while in the testing machine, in making tests at 40° and $100^{\circ} \mathrm{F}$. The beams for the low-temperature tests were cooled to freezing temperature before being placed in the testing machine, a bath of melting ice being used for the wet specimens, and the dry specimens being cooled by electric refrigeration. Wet specimens for testing at $100^{\circ} \mathrm{F}$. were heated in water to $110^{\circ} \mathrm{F}$. before being placed in the testing machine. Dry specimens for testing at $100^{\circ} \mathrm{F}$. were oven heated to $150^{\circ} \mathrm{F}$. and cooled in room air to $110^{\circ} \mathrm{F}$. before being placed in the machine. The wet beams tested at $70^{\circ} \mathrm{F}$. were taken direct from the laboratory storage water, while the dry beams were cooled from 150° to $70^{\circ} \mathrm{F}$. in room air before testing.

The temperature of the test specimen at the moment of failure was obtained by subjecting the thermometer equipped control beam to the same temperature treatment as was given the test specimen. When the test beam was placed in the testing machine, the control beam was placed beside it, and the test was made when the control beam reached the desired temperature.

Upon the completion of this series of tests it was observed that the individual test results at a given temperature were not always concordant, especially in the case of the beams tested in a dry condition.

An inspection of the average results also showed a much smaller difference in strength, due to moisture condition at time of test, than had been indicated by the 2 -year tests previously noted. It was felt that this might be due to the proportionately greater amount of water-curing given the wet beams (35 days as compared with 28 days for the beams tested dry). This would introduce an error which might be corrected, in part, by increasing the wet-storage period. It was therefore decided to repeat the test, using the same materials, proportions, and water-cement ratio but to give all beams a preliminary curing of 90 days in water instead of 28 days as in the former series. In this
second series of tests, six $2-$ by 3 -by 16 -inch beams were prepared on each of 12 days and stored for 90 days. Three of each set of six beams prepared on 1 day were then removed from storage and dried to constant weight at a temperature of $150^{\circ} \pm 5^{\circ} \mathrm{F}$. The remaining specimens were continued in water storage. It an age of 103 days both wet and dry beams were tested for flexural strength at temperatures of $40^{\circ}, 70^{\circ}$, and $100^{\circ} \mathrm{F}$., using the same methods as given above.
SECOND SERIES Of tests shows importance of control, of MOISTURE AND TEMPERATURE IN TESTING
The results of the two series of tests are given in tables 2 and 3, and in figure 1. In all cases, increase in temperature resulted in lowering the flexural strength of the mortar. This is more marked in the tests of the wet beams, and here a greater reduction in strength was found with increase in temperature from 70° to $100^{\circ} \mathrm{F}$, than from 40° to $70^{\circ} \mathrm{F}$. It an age of 35 dars, the dry specimens tested at a temperature of $40^{\circ} \mathrm{F}$. developed only 94 percent of the strength of the wet beams, but at $100^{\circ} \mathrm{F}$. the dry beams had a strength of 118 percent of that of the wet beams. It $70^{\circ} \mathrm{F}$. the dry and wet beams had practically the same strength.

At an age of 103 days, the strengths of the dry beams greatly exceeded the strengths of the wet beams at all temperatures. At $40^{\circ} \mathrm{F}$. the dry beams were 144 percent stronger; at $70^{\circ} \mathrm{F}$., 145 percent stronger; and at $100^{\circ} \mathrm{F}$., 195 percent stronger. It will be recalled that in the tests made at 2 years, the flexural strengths of the dry beams tested at $70^{\circ} \mathrm{F}$. averaged 142 percent of the strengths of the wet beams. It is apparent that the time of curing has a considerable effect on the ratio of flexural strength of wet and dry beams tested at the age of 35 days. In this case, the wet beams were cured in water for 35 days but the dry specimens had only 28 days' water-curing, followed by heating. This treatment probably affected the strengths of the dry specimens adversely.

It is interesting to note that, insofar as the effect of temperatures of specimens at time of test is concerned, these tests verify the results obtained several years ago by Parkinson, Finch, and Hoff, of the University of Texas * which indicated quite definitely that the

Figure 1.- Effect of Temperature and Moisture Conditions at Time of Test on Flexcral Strength of Portland Cement Mortar.

Table 2.- Moduli of rupture of mortar beams tested in flexure at age of 35 days and at various temperatures at time of test

Beams, dry			Beams, wet		
$40^{\circ} \mathrm{F}$.	$70^{\circ} \mathrm{F}$	$100^{\circ} \mathrm{F}$.	$40^{\circ} \mathrm{F}$.	$70^{\circ} \mathrm{F}$.	$100^{\circ} \mathrm{F}$
Pounds per					
whare inch	square inch				
726	672	590	897	788	575
862	740	614	852	785	6.89 635
\$28	705	607	9015	765	635
816	744	570	797	784	552
731	734	811	817	777	622
965	67.	78i	838	797	520
749	71	678	850	827	565
$\times 29$	¢91	900	9×9	676	5×6
$\times 49$	871	928	811	802	655
788	840	691	929	818	585
8.51	750	750	964	820	599
836	847	59.5	986	741	606
890	710	654	886	770	571
994	6.21			758	601
	$91 \times$			774	624
Av. 837	767	706	886	778	599

strength of mortar specimens tested in a wet condition is decreased as the temperature at the time of test is increased.

It should be noted that these observations were made on mortars using a single cement and a single sand and with one proportion. It is possible that the use of other materials and proportions might have indicated somewhat different relations.

The following conclusions appear to be warranted by the results obtained in these tests:

1. Increase in temperature of mortar beams at time of test results in a reduction of the flexural strength.
2. The effect of the temperature of a mortar beam at time of test on the flexural strength is more pronounced in the case of beams tested in a wet condition than with oven-dried beams.
3. In these tests, the flexural strength of mortar heams tested in a wet condition appeared to be affected to a greater extent by a change in temperature from 70° to $100^{\circ} \mathrm{F}$. than from 40° to $70^{\circ} \mathrm{F}$
4. Mortar beams tested in a dry condition show a uniform reduction in flexural strength with increase in temperature from 40° to $100^{\circ} \mathrm{F}$.
5. Nortar beams tested in a dry condition develop higher flexural strength than beams tested in a wet

TABLE 3.-Moduli of rupture of mortar beams tested in flexure al age of 103 days and at various temperatures at time of test

Beams, dry			Beams, wet		
$40^{\circ} \mathrm{F}$.	$70^{\circ} \mathrm{F}$.	$100^{\circ} \mathrm{F}$.	$40^{\circ} \mathrm{F}$.	$70^{\circ} \mathrm{F}$.	$100^{\circ} \mathrm{F}$.
Pounds per					
'square inch	square inch	square inch	square inch	quare inch	square inch
1,489	1,294	1,310	994	938	662
1,416	1,399	1,399	1,017	873	599
1,392	1,391	1,310	1,004	940	630
1,365	1,134	1,194	1,020	996	631
1,419	1,041	963	975	861	688
1,237	1,255	1,143	908	935	677
1,223	1,164		932	920	570
1,238			1,036	928	596
1, 279	1,122		948	870	
1,364	1,366	1,373	987	924	615
1,337	1,524	1,342	975	978	615
1,428	1,400	1,204	981	876	649
1,458	1,396	1,353	995	935	627
1,389	1,375	1,345	904	860	688
1,460	1,368	1,374	998	93.3	729
1,469	1,274	1,339	1,023	1,000	708
1,395	1,289	1,206	979	913	639
1,364	1,384	1,330	984	925	717
1,342	1,356	1, 300	921	894	623
1,465	1,274	1,265	927	858	654
1,360	1,277	1,304	935	856	596
1,373	1,314	1,254	891	842	636
1,404	1,381	1,257	916	888	689
1,386	1,342	1,268	963	924	649
1,372	1,317	1,293	933	884	624
1,446	1,317	1,246	897	805	632
1, 399	1,346	1,230	927	811	612
1,339	1,262	1,268	943	937	701
1,381	1, 247	1,161	923	848	618
1,391	1,381	1,221	956	865	657
1,318	1,257	1,277	972	936	594
1,304	1,260	1,152	892	911	664
1,423	1,306	1,199	1,001	911	573
1,404	1,332	1,194	923	883	699
1,429	1,345	1,290	990	915	
1,369	1,339	1,171	858	878	696
Av. 1,379	1,309	1,259	956	901	646

condition provided duplication in curing conditions has been attained.

These tests point to the necessity of closely controlling both the temperature and the moisture condition of concrete specimens for flexure tests at the time of test.

Because of the comparative ease with which saturation of specimen can be insured it is recommended that all flexure tests be made with saturated specimens. In view of the fact that a temperature of $70^{\circ} \mathrm{F}$. is commonly used and can be quite conveniently controlled, it is recommended that this temperature plus or minus $5^{\circ} \mathrm{F}$. be established as a standard temperature for testing.

TRAFFIC ON ROADS OF INDIANA

(Continued from p, 247)

subject by the results of an analysis of the registration figures in Indiana made during the period of the survey. It was found that 42 percent of all trucks had a capacity of less than 1 ton, 91.8 percent had a capacity of less than 2 tons, and an additional 5.3 percent were rated at less than $3 \frac{1}{2}$ tons. Very heavy vehicles with high mates of gasoline consumption constituted only 2.9 percent of the total registration.

Proportioned on the same basis registration fee earnings on the rural roads during the period of the survey amounted to $\$ 3,821,306$. Of this amount the State roads earned $\$ 2,539,841$ and the county roads earned $\$ 1,281,465$.

The net total earnings from the two sources just mentioned were $\$ 14,478,173$. Table 7 shows the daily vehicle-miles of travel on each system, separated as to trucks and busses, and the relative gasoline-tax earnings in each case. From these figures we find that in gasoline tax and automobile license fees the average State road earns $\$ 1.40$ annually for each daily vehicle-mile of travel (365 vehicle-miles in a year) and the average county road earns $\$ 1.39$. On this basis it is evident from figure 1 that a considerable mileage of State roads is not earning maintenance charges, which averaged $\$ 411$ per mile in 1932, but the average earnings per mile on the State system are $\$ 1,145,20$. The average earnings on the county system are $\$ 70.33$ per mile, which indicates that the county system as a whole does not earn its cost of maintenance, which, in 1931, was approximately $\$ 187$ per mile.
CURRENT STATUS OF UNITED STATES PUBLIC WORKS ROAD CONSTRUCTION

CLASS 1．－PROJECTS ON THE FEDERAL－AID HIGHWAY SYSTEM OUTSIDE OF MUNICIPALITIES

																		$\stackrel{\text { \％}}{\text { \％}}$	
		$\begin{aligned} & \text { Neñ } \\ & \text { Non } \\ & \text { Hinion } \end{aligned}$	$\begin{aligned} & \text { 华导 } \\ & =0 \end{aligned}$				鲜す 							$\begin{gathered} \hat{\sim} \\ \underset{\sim N}{*} \end{gathered}$	$\begin{gathered} \text { nay } \\ \text { and } \\ \text { Maj } \end{gathered}$			\％	或
	$\begin{aligned} & \text { 芘 } \\ & \frac{1}{2} \end{aligned}$	¢	Э－	$\stackrel{\text { ®® }}{\text { ¢ }}$	－	\％igio	$\stackrel{\sim}{\sim} \times$	－ก ¢	¢0\％	Nợ	c）		8 －		－x ${ }^{-1}$	泰	＋	\bigcirc	等
											$\begin{aligned} & \text { eqte it } \\ & \text { ofoig } \end{aligned}$			$\begin{aligned} & \text { MND } \\ & \text { No } \\ & \text { Nin } \end{aligned}$					
			憙	$\begin{aligned} & \text { 第 } \\ & \text { mion } \end{aligned}$		$\underset{j}{2}$					$\stackrel{\underset{\sim}{\sigma}}{\stackrel{\sim}{\sigma}}$							$\left.\begin{aligned} & 8 \\ & 8 \\ & 0 \end{aligned} \right\rvert\,$	－
		边	¢ ¢ ¢	’isix	Ning		部状		:	き年～				$\begin{aligned} & \text { Co } \\ & \text { en } \end{aligned}$		ベッ	$\begin{gathered} \text { goun } \\ \text { inmin } \end{gathered}$	\％	7
				$\begin{aligned} & \text { No } \\ & \text { N } \\ & \text { We } \end{aligned}$	$\begin{aligned} & \text { iow } \\ & \text { in } \\ & \text { in } \end{aligned}$			$\begin{aligned} & \text { Nun } \\ & \text { Mi. } \end{aligned}$			$\begin{gathered} 980 \\ \text { aio } \\ 0.0 \end{gathered}$								会
		嵒表呙 โั้		$\begin{gathered} \text { nio } \\ \text { 㖸 } \end{gathered}$											여ㅂㅜㅠㄴ ส゙ఱ゙అ			$\begin{aligned} & \text { 墨 } \\ & \stackrel{y}{4} \end{aligned}$	\％
									Bide mivi										（\％
								～以N		－¢	－m						－ֹ～ヘ	$\dot{\sim}$	－
					$\begin{gathered} \underset{\sim}{n} \\ \underset{\sim}{c} \end{gathered}$	$\underset{\substack{6 \\ \hline}}{ }$		${ }^{2}$			$\begin{aligned} & 8 \\ & = \\ & =1 \end{aligned}$		$\stackrel{8}{=}$		$\stackrel{8}{\circ}$	$\begin{aligned} & \text { Ko } \\ & \stackrel{\circ}{\circ} \end{aligned}$			帝
																		$\begin{aligned} & \circ \\ & \vdots \\ & \stackrel{y y y}{c} \end{aligned}$	
	若																		\％
							請号 												令
									$\begin{gathered} \text { ming } \\ \text { miñ } \\ \text { mind } \\ \text { minn } \end{gathered}$	$\begin{aligned} & \text { 高高家 } \\ & \text { ます。 } \end{aligned}$									\％
	$\stackrel{4}{5}$																		第

AS OF NOVEMBER 30,1934

									$\begin{aligned} & \text { yn9 } \\ & \text { yon } \end{aligned}$							$\begin{gathered} \text { Figix } \\ \text { Bision } \end{gathered}$		5	婁
		－						器曼					Rizz					$\stackrel{8}{8}$	感
	皆	9	º่ํํ	＂${ }^{\text {¢ }}$	？		－		－	；	$\stackrel{9}{3-7}$	จั่ั๋	翟枵	3	minm	Nّ0¢0	4		$\stackrel{\circ}{\text { ¢ }}$
				笑	2itio		$\begin{aligned} & \text { 总 } \\ & i \end{aligned}$		是言会								－		枵
								\％									$\stackrel{\text { \％}}{\substack{\text { ¢ }}}$		－
	曾		$\stackrel{\text { nem }}{\text { cier }}$		－	－inn	式き	－		¢		momix	－ิธّ		9\％	～～～		$\stackrel{\circ}{\circ}$	＋
		$\stackrel{0}{\dot{i}}$		$\stackrel{\circ}{\square}$	$\stackrel{\sim}{\sim}$		$\stackrel{\&}{\underset{\sim}{\sim}}$						$\stackrel{E}{2}$	$\frac{3}{7}$				$\begin{gathered} \hat{0} \\ \stackrel{y}{8} \end{gathered}$	言
			§							$$								旁	柰䓂
											\% \% ix						Bixiei		
$\begin{array}{\|l\|l} \hline 0 \\ 0 \\ 0 \\ 8 \\ 8 \end{array}$	毞	¢－	부ำ．			¢ ¢				¢8®	－		N－		สั่ ¢	－		7	蜜
		＂\％${ }^{\text {\％}}$				\％		0				$\stackrel{2}{8}$	$\stackrel{5}{6}$		8		$\stackrel{8}{6}$	\|ix	管
																			䓂
																Rigi io	言感	$\stackrel{\alpha}{\alpha}$	䓓
					Fio													素	呂
	妟									zziz								垅	$\stackrel{\square}{7}$

		$\begin{aligned} & \text { mod } \\ & \text { ow } \\ & \text { No } \\ & \text { N二 } \\ & \text { min } \\ & \text { min } \end{aligned}$			さロい －＝ ゆ． －iビテ														
			$\begin{aligned} & \text { ~o } \\ & \text { mo } \\ & \text { in } \end{aligned}$			击瓦侖 ベぶ્へ						은으N Mor	moy स्न				옹웅눙 เूल		
APPROVED FOR CONSTRUCTION	$\begin{aligned} & \text { u } \\ & \text { © } \\ & \text { © } \end{aligned}$	เึ่mix		$\stackrel{\text { Lnन }}{\sim}$	∞ ペロ～		$\stackrel{n}{\min } \stackrel{n}{=}$		$\underset{\sim}{n} \dot{\sim}$			m~o	$\begin{aligned} & \text { mor } \\ & \text { さn } \end{aligned}$			$\begin{array}{cc} N \\ \infty \\ \infty \\ \text { in } \\ \text { co } \end{array}$	$\dot{\sim} \dot{\sim}$	i^{-}	¢ ¢ N N
		$\begin{aligned} & \text { mon } \\ & \text { ön } \\ & \text { oing } \\ & \text { min } \end{aligned}$									$\begin{gathered} \text { oong } \\ \text { ono } \\ 0.0 \\ \text { ong } \\ \text { hing } \\ m \end{gathered}$							$\begin{aligned} & \frac{0}{n} \\ & \frac{1}{m} \end{aligned}$	
			$\begin{array}{ll} \stackrel{\infty}{\circ} & \text { む్ } \\ \stackrel{0}{\circ} \\ \stackrel{\circ}{\square} & \end{array}$		$\begin{aligned} & \text { moi } \\ & \text { No } \\ & \text { No } \\ & \text { On } \end{aligned}$			$$			$\begin{aligned} & \approx \\ & \stackrel{y}{\sigma} \\ & \stackrel{y}{\sigma} \end{aligned}$		風志衾 gion		$\begin{aligned} & \text { ou } \\ & \text { N } \\ & \text { jon } \\ & \text { min } \end{aligned}$	$\begin{aligned} & \circ 40 \\ & \text { ons } \\ & \frac{\mathrm{m}}{}=-1 \end{aligned}$	$\begin{aligned} & \text { m్N } \\ & \text { Now } \\ & \text { Nin } \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	
	$\begin{aligned} & \text { 品 } \\ & \frac{\tilde{U}}{\Sigma} \end{aligned}$	$\begin{aligned} & \text { Min } \\ & \text { mín } \\ & m=\sim \end{aligned}$		$\dot{8} \dot{\text { min }}$	$\operatorname{mom}_{\infty}^{\infty} \underset{\infty}{\infty}$	$\begin{aligned} & \text { NuO } \\ & \text { ins } \\ & \text { mion } \end{aligned}$			$\begin{aligned} & \text { Hivg } \\ & \text { Nin } \end{aligned}$					No또		$\begin{aligned} & \pm m u s \\ & \text { ming } \end{aligned}$			$\stackrel{\infty}{\stackrel{\infty}{\sim}}$
				$\begin{aligned} & \text { mo } \\ & \text { ow } \\ & \text {-0. } \\ & \text { on } \end{aligned}$				$\begin{aligned} & \text { inn } \\ & 00 \\ & \text { ong } \\ & \text { on } \\ & \text { Ni- } \end{aligned}$			$\begin{aligned} & \text { 오 } \\ & \text { in } \\ & \text { io } \\ & \text { Mí } \\ & \text { ríz } \end{aligned}$				$\begin{aligned} & \text { Fio } \\ & \text { No } \\ & \text { Fion } \\ & \text { Fnn } \end{aligned}$	$\begin{aligned} & \text { ong } \\ & \text { of } \\ & 0 \\ & 0 \\ & \text { Mñ } \\ & \text { Mon } \end{aligned}$		$\begin{aligned} & \circ \\ & \circ \\ & 0 \\ & \vdots \\ & \ddagger \end{aligned}$	¢
		$\begin{aligned} & \text { moin } \\ & \text { min } \\ & \text { min } \\ & \text { Fin } \end{aligned}$		inmog $\begin{aligned} & \text { कion } \\ & \rightarrow-10 \\ & -1 \end{aligned}$						$\begin{aligned} & \text { BN } \\ & 0 \sim \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$								$\begin{gathered} \text { き士 } \\ \text {-5 } \\ \text { مing } \\ \text { No } \end{gathered}$	
																			응 0 0 0 0 0 \sim
$\begin{aligned} & \text { 曷 } \\ & \text { H } \\ & \frac{4}{2} \\ & 08 \end{aligned}$		$\begin{aligned} & \text { जूM } \\ & \text { ल̈ळ. } \\ & \text { NMN } \end{aligned}$		$\begin{aligned} & \text { ninin } \\ & \text { Mision } \\ & \text { Mim } \end{aligned}$		$\begin{aligned} & 000 \\ & 0.00 \\ & \text { inco } \end{aligned}$													M 0 0 0 0 0 0
					$\begin{aligned} & \text { \% } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \circ \\ & \hline 8 \\ & 8 \end{aligned}$	0 0 0 \sim \sim	$\begin{aligned} & \text { moo } \\ & \text { Now } \\ & \dot{\ddagger} \underset{0}{\circ} \end{aligned}$	$\begin{aligned} & 0 m \\ & 0 \mathrm{~N} \\ & \text { Nin } \end{aligned}$	$\begin{aligned} & 8 \\ & \underset{\sim}{n} \\ & \underset{\sim}{n} \end{aligned}$		$\begin{aligned} & \mathbb{N} \circ \\ & \text { Nion } \\ & \text { nio } \\ & \text { rin } \end{aligned}$		$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { M } \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}$		$\begin{aligned} & \text { E. } \\ & \text { ì } \end{aligned}$	
										表言合 か． レーデデ								$\begin{aligned} & \infty 0 \\ & \infty 0 \\ & 100 \\ & \text { Non } \\ & \end{aligned}$	m \sim \sim 0 0 \sim \sim
	$\begin{aligned} & \stackrel{\rightharpoonup}{3} \\ & 0 \\ & \stackrel{5}{0} \\ & \end{aligned}$	$\begin{aligned} & \text { ghin } \\ & \text { on } \\ & \text { Nigo } \\ & \text { Nin } \\ & \text { ininm } \end{aligned}$			$\begin{aligned} & \text { Enm } \\ & 0-10 \\ & \text { No } \\ & \text { Nom } \\ & \text { Nom } \\ & \text { mion } \end{aligned}$			Mさま जnio ㅇํㄴ N $0^{\circ} 0^{\circ}$	$\begin{aligned} & \text { 으․ } \\ & \text { on } \\ & \text { min } \\ & \text { gno } \\ & \text { mos } \end{aligned}$		$\begin{aligned} & \text { Bing } \\ & \text { Mo } \\ & \text { Mo } \\ & \text { min } \\ & \text { min } \end{aligned}$					슨べ⿳士口䒑口 misu 			
			$\begin{aligned} & 6.0 \\ & \text { co } \\ & \text { No } \\ & \text { Mo } \\ & \text { mín } \\ & \text { Nmin } \end{aligned}$					寺 ${ }^{\circ}$ ロ゙ベ 皆きき M゙ธ เั		す 気䧲合 m்									
		$\begin{aligned} & \text { mon in } \\ & \text { and } \\ & \text { n-in } \\ & \text { min } \\ & \text { min } \end{aligned}$	士묵욱 Min － Lin ${ }^{\circ}$			응흥 솓두 －웅	$\begin{aligned} & \text {-iNu } \\ & \text { Now } \\ & 000 \\ & 000 \\ & \text { Non } \\ & \text { inim } \end{aligned}$						옹ํㅇㅇ No जio so						8 0
	$\underset{i n}{\stackrel{\text { m }}{\stackrel{1}{4}}}$																		等

[^0]: See Caliche as a Surfacing Material, by L. C. Campbell, Western Highways Builder, April 1929. A number of articles on this subject have been published in highway journals of the Southwestern States, and in other technical magazines. A partial bibliography is appended to the report of J. F. Breazeale and H. V. Smith, cited below.
 ${ }_{2}$ Bulletin No. 131 of the Agricultural Experiment Station, College of Agriculture, University of Arizona.

[^1]: 1 The work was executed under the direction of F. A. Henning and W. F. Milner, engineers, and L. E. Freeman. statistician, for the State Highway Commission. The
 advice and assistance of tha
 ning the survey and supervision was furnished in part by the bureau in collecting field data. Tha complete report has been published by the Stata Highway Commisidion of Indiana.

[^2]: 1 Functions of Steel Reinforcement in Concrete Pavements and Pavement Bases, by C. A. Hogentogler, E. A. Willis, and F. A. Robeson, Proceedings, Highway Research 13oard, vol. 11. pt. 1.
 Effect of Moisture Content on the Strength of Cement Mortar Specimens, by 13. O. Woolf and Baxter smith, Public Roads, August 1929.

[^3]: ${ }^{3}$ Loss of 1 gram (0.03 percent) or less in 24 hours' heating.

