

A JOURNAL OF HIGHWAY RESEARCH

UNITED STATES DEPARTMENT OF AGRICULTURE
bureau of puble roads

VOL. 15, NO. 7
SEPTEMBER 1934

PUBLIC ROADS
 - A Journal of Highway Research

Issued by the
UNITED STATES DEPARTMENT OF AGRICULTURE BUREAU OF PUBLIC ROADS
G. P. St. CLAIR, Editor

Volume 15, No. 7
September 1934

The reports of research published in this magazine are necessarily qualified by the conditions of the tests from which the data are obtained. Whenever it is deemed possible to do so, generalizations are drawn from the results of the tests; and, unless this is done, the conclusions formulated must be considered as specifically pertinent only to described conditions

In This Issue

Power-Shovel Operation in Highway Grading -Part 2 165

Motor Vehicle Registrations and Revenue, 1933 178

DISTRICT OFFICES

DISTRICT No. I. Oregon, Washington, and Montana.
Post Office Building, Portland, Oreg
DISTRICT No. 2. California, Arizona, and Nevada.
Mark Sheldon Building, 461 Market St., San Francisco, Calif
DISTRICT No. 3. Colorado, New Mexico, and Wyoming.
237 Custom House, Nineteenth and Stout Sts., Denver, Colo.
DISTRICT No. 4. Minnesota, North Dakota, South Dakota, and Wisconsin.
907 Post Office Building, St. Paul, Minn.
DISTRICT No. 5. Iowa, Kansas, Missouri, and Nebraska.
Saunders-Kennedy Building. Omaha, Nebr.
DISTRICT No. 6. Arkansas, Louisiana, Oklahoma, and Texas.
Old Post Office Building, Fort Worth, Tex.

DISTRICT No. 7. Illinois, Indiana, Kentucky, and Michigan.
South Chicago Post Office Building, Chicago, III
DISTRICT No. 8. Alabama, Georgia, Florida, Mississippi, South Carolina, and Tennessee.

Federal Building, P.O. Box 60, Montgomery, Ala.
DISTRICT No. 9. Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, and Vermont.

Federal Building, Troy, N.Y.
DISTRICT No. 10. Delaware, Maryland, North Carolina, Ohio, Pennsylvania, Virginia, and West Virginia.

Willard Building. Washington, D.C.
DISTRICT No. 11. Alaska.
Room 419, Federal and Territorial Building, Juneau, Alaska.
DISTRICT No. 12. Idaho and Utah.
Federal Building, Ogden, Utah.

Because of the necessarily limited edition of this publication it is impossible to distribute it free to any person or institutions other than State and county officials actually engaged in planning or constructing public highways, instructors in highway engineering, and periodicals upon an exchange basis. At the present time additions to the free mailing list can be made only as vacancies occur. Those desiring to obtain Public Roads can do so by sending $\$ 1$ per year (foreign subscription $\$ 1.50$), or 10 cents per single copy, to the Superintendent of Documents, United States Government Printing Office, Washington, D.C.

POWER-SHOVEL OPERATION IN HIGHWAY GRADING

BY THE DIVISION OF MANAGEMENT, BUREAU OF PUBLIC ROADS

Reported by T. WARREN ALLEN, Chief, Division of Management, and ANDREW P. ANDERSON, Highway Engineer

PART 2.-THE HAULING

Shovel Loading Two 5-Cubic-Yard Wagons.

THE SHOVEL is the key unit in a power-shovel grading outfit as commonly operated on highway work, but ordinarily it functions only in coordination with the hauling equipment. Except where casting is possible, the shovel can dig material no faster than the hauling units can carry it away to the dump and can dig only when hauling units are in position to be loaded. A high rate of production is possible only with sufficient hauling units to carry the full output of the shovel. Operation of hauling units must be so coordinated as to proceed with almost clocklike precision and without the least interference in the steady operation of the shovel.

MAINTENANCE OF EXACT BALANCE BETWEEN SHOVEL AND HAULING UNITS A DIFFICULT PROBLEM

Attainment of a high degree of efficiency in the operation of the hauling units is not easy. Studies on a great many jobs indicate that the hauling equipment, either because of shortage or improper operation, is the most general cause of reduced production. From a study of more than a hundred power-shovel grading jobs, it was found that the average power shovel on highway grading jobs spent about 20 percent of its available working time in waiting for hauling units. A part of this time loss was unavoidable because of the nature of the work but most of the delays were avoidable and should never have been permitted to occur.
Elimination of all a avoidable delays without incurring the cost of carrying too much hauling equipment during much of the time is probably impossible. This is largely because there are constant but irregular variations in the hauling distance. The number of hauling
units required to maintain full shovel production varies almost directly as the length of haul. The length of haul on the average grading job often fluctuates between wide limits and at such frequent intervals that the maintenance of an exact balance is economically undesirable. The speed with which hauling can be done is also variable depending upon the condition of the roadway. High speeds are seldom possible and very low speeds are often necessary. To still further complicate an already difficult situation, the characteristics which affect the rate at which the material can be dug by the shovel sometimes also change with unexpected frequency.

Since the length of haul, road conditions, and the characteristics of the material are all subject to frequent change the maintenance of an exact balance between the shovel and the hauling equipment is generally impractical, especially on light work. Although perfect balance is impossible or impractical, there is the necessity for approaching this balance as closely as conditions permit. The closeness of approach will depend very largely upon the ease with which vehicles can be added and removed in conformity with the actual requirements as they occur on the job. On work within easy access of a source of truck or wagon supply, or on jobs using two or more shovels, conformity of supply to demand can be fairly close. Lack of balance on remote jobs forced to depend on a fixed number of hauling units will be measured largely by the range of fluctuation in hauling distances as fixed by the design. A general rule for such a condition is that the amount of hauling equipment should be such that the value of the occasional delays to the shovel in waiting for hauling equip-
ment should be equal to the value of the time spent from time to time by the hauling units in waiting for the shovel.

The operations of the hauling equipment consist of getting into position to receive the load, receiving it, taking it to the dump, dumping, turning at the dump, and returning to the shovel for another load. The time regularly consumed on each trip exclusive of the time of travel to and from the dump is called the "time constant" and is fairly uniform for any given type of equipment and set of operating conditions. Table 1 shows average time constants on a number of projects on which various kinds of vehicles of different capacities were used. The average values for the time constant as found on these jobs for the different operations vary considerably. This is to be expected. For example, the loading time will vary with the number of dipper loads required to the vehicle load, the kind of material handled, the skill of the shovel operator, and the numerous factors which affect the time of the shovel cycle.

While the time constant varies with many conditions, it is fairly uniform for a given set of conditions and its value on any job is easily determined by direct timing. It is an important factor in determining the number of vehicles most probably required to maintain a given rate of shovel operation.

Table 1.-Average time constants for various types of hauling units based on operation with a 1-or 11/4-yard shovel

Operation	7-yard tractordrawn wagons	41/2-yard trucks	$\begin{aligned} & 21,2-\mathrm{yard} \\ & \text { trucks } \end{aligned}$	$\begin{aligned} & 11 / 4 \text {-yard } \\ & \text { trucks } \end{aligned}$
Load	Seconds 210	Seconds 135	Seconds 75	Second* 40
Turn	25	32	34	26
Unload	14	26	29	27
Turn --	21	27	20	21
Waits or delays	80	55	50	44
Total	350	275	208	158

EFFICIENT OPERATION REQUIRES ATTENTION TO A NUMBER OF FACTORS
In highway grading work the time constant for the hauling units is of major importance. The hauls are generally short so that the actual speed of the vehicle usually has only a comparatively small effect as compared with the influence of the time constant. The time constant is made up of a number of individual items which are repeated with every load through the day. Their total for the day may therefore become very large.

Many contractors do not seem to realize the importance of saving seconds on the repetitive operations involved in the operation of the hauling equipment. Extension of the time constant by 2 minutes is as effective in reducing the output of the hauling equipment as an extension in the haul approximately equal to the average distance the vehicles traverse per minute of driving time. On many grading jobs the unnecessary extension of the time constant is far more than 1 minute.

Much of this delay can be eliminated by careful supervision of the operation of the hauling equipment, by keeping the traveled way in good condition, and particularly by giving attention to the conditions at the shovel and at the dump. "Bottle necks", a careless clean-up around the shovel, and restricted work-
ing area on the dump all tend to increase the time constant of the hauling equipment and thus adversely affect the output.

Another matter deserving attention is the load hauled per vehicle. There is considerable variation in the amount of material taken out per dipper load by a shovel. To place a given number of dipper loads in the vehicle on each trip is therefore a mistake, except possibly on very short hauls when there is a surplus of vehicles. Under normal road conditions, it takes as long to haul a half-loaded vehicle to the dump as it does to haul one that is fully loaded. On long-haul work there is much to be gained by hauling full loads, and the shovel operator should be charged with the responsibility of seeing that the vehicles leave the shovel properly loaded, no matter how many dipper loads are required. The hauling road should always be so maintained that full loads can be handled, especially on long hauls.

In selecting hauling equipment care should be taken to see that the units can be so handled that no single operation, such as turning, dumping, or maneuvering, will be likely to consume more time than is required for loading. Otherwise, this operation and not the shovel controls the job output. For ordinary highway grading, where fast shovel operation is so frequently possible, a hauling unit having a capacity of less than two dipper loads should never be considered. For ease in coordinating the operation of the hauling equipment so as to maintain fast shovel operation, the individual hauling units should carry three or more dipper loads. In general, the larger the capacity of the hauling units the more easily their operation can be properly supervised and coordinated, provided, of course, that they are otherwise adapted to the job.

The conditions under which the hauling equipment must operate are usually severe and frequently extremely difficult. Hauling equipment should be extremely strong and rugged and fully able to stand up under the most trying conditions. On the average grading job replacement of hauling units can seldom be made without incurring some delay to the shovel. Reliability is therefore a valuable asset.

backing of trucks to dump often desirable

The hauling units must be provided with an abundance of power and with traction or road grip such as will permit the full utilization of this power under the most trying conditions. Grades as steep as 25 percent are not unusual, while slippery, rough, or yielding road surfaces are so common as to be almost the rule. For satisfactory operation, the hauling units must have capacity to carry at least two full dipper loads, must be extremely strong and dependable, and provided with ample power and traction to operate on grades and road surfaces much more difficult than those encountered in ordinary transportation. Two or three speeds in reverse are also desirable for such vehicles as trucks which are frequently backed to the dump. A fast and reliable dumping mechanism with a high dumping angle is a necessity.

On short-haul work trucks are often shuttled or backed from the shovel to the dump and then returned forward to the shovel. This eliminates two turns of the vehicle on each trip. Since each turn usually consumes from 20 to 40 seconds, this practice is advantageous until a distance is reached at which the time
lost in driving from the shovel to the dump in reverse instead of in forward is equal to the time saved by the elimination of the two turns. This is demonstrated as follows: Let-
$L=$ the haul in feet at which shuttling the trucks ceases to be advantageous.
$S=$ the speed in feet per minute of loaded trucks when driven forward from the shovel to the dump.
$s=$ the speed in feet per minute of loaded trucks when backing to the dump.
$K=$ the turning and maneuvering time in minutes saved on each round trip when trucks are backed instead of driven forward, or in other words, the difference between the time constants for trucks driven in the usual manner and when backed from the shovel to the dump.

Then

$$
\begin{equation*}
L=\frac{K S s}{S-s} \tag{1}
\end{equation*}
$$

For example, if the average speed of the loaded trucks from shovel to dump is 500 feet per minute and their backing speed is 300 feet per minute, and the average difference between the truck time constants is 1 minute, then $L=\frac{1 \times 500 \times 300}{500-300}=750$ feet, which is the haul within which it is more advantageous to back the trucks than to drive them in forward. If the backing speed were only 200 feet per minute and the forward speed

Table 2.-Operating characteristics of heavy trucks having drive on all four wheels
[Three 11/4-yard shovels on same job. All equipment in good condition. Material, earth and blasted rock. Grades mostly 5 to 10 percent. For all hauls below 600 feet, trucks backed to dump. Number of round trips timed, 639. Average load, pay yardage, 2.9 cubic yards]

Length of haul		Speed	
		Loaded	Return
		Feet per minute	Feet per minute
50 feet		210	260
100 feet		220	295
150 feet.		250	302
250 feet		310	355
350 feet		365	400
450 feet.		430	445
750 feet.		510	420

Working time lost by shovels

Class of time loss	Shovel no. 1	Shovel no. 2	Shovel no. 3
Minor time losses of shovels:	Percent	Percent	Percent
Hauling equipment, insufficient supply	4. 1	2.5	5. 4
Hauling equipment, operation..	5.1	2.3	1.4
Moving shovel within cut	7.8	7.4	8.1
Shovel operator.-	2.4	2.1	1.3
Mechanical repairs or trouble with shovel	2. 6	2. 0	2.5
Sloping .-..........................-	3.9	2.9	4.1
Smoothing grade and loading pit	4. 7	7.1	8.6
Checking grade..................	0.1		
Miscellaneous	8.7	7.8	8.2
Major mechanical repairs, shovel and cable	5.7	3.7	3.8

still 500 feet per minute, then the maximum haul to which the trucks could be backed with advantage would be only 333 feet. This illustrates the importance of a relatively high backing speed in extending the distance to which shuttling may be profitable. Trucks are now made with special provisions for driving in reverse both as to the ease and comfort of the driver and the number of speeds available. The actual backing speeds attained in the field with present equipment under various road conditions are shown in tables 2,3 , 4, and 5.

Table 3.-Operating characteristics of heavy trucles on various lengths of haul
[Trucks carried average loads of 2.5 cubic yards of pay material when working with a l-yard shovel. All equipment in fair to good condition. Material mostly loam and clay, sticky and difficult to handle when wet Loaded trucks backed to dump on all hauls below 750 feet]

SPEED OF HAULING UNITS VARIES WITH JOB CONDITIONS

When two or more shovels are used on the same job they should, if possible, be so located that hauling units can be readily exchanged between them, and every effort should be made to schedule the work so that when one shovel is on long hauls the other will be on relatively short-haul work. The hauling units can then be shifted in accordance with the actual requirements at the shovels. The total number of hauling units for the shovels should be the same as though each operated independently with one constantly on long hauls and the other on short hauls. By this method the working time of both the shovels and the hauling units can be utilized more fully. Since the equipment and the personnel remain constant, any increase in production obtained is practically a clear gain. Jobs have been found on which this simple expedient added nearly 10 percent to the average daily production.

Dressing Slopes by Hand and the Same Slope Five Days Later as Washed by Rain. Too Much Refinement Increases Cost Without Producing Advantages.
Table 4.-Effect of length of haul and road condition on average hauling speed
[21/2-yard trucks in fair to good condition, working with 1 -yard shovel. Common excavation. Hauls below 600 feet all by backing loaded trucks to dump]

Length of haul	Speed		Road condition
	Loaded	Return	
	Feet per minute	Feet per minute	
155 feet	373	423	Good.
170 feet.	310	318	Fair surface, slippery steep downgrade.
200 feet	497	480	Good.
200 feet-	250	362 370	Very rough.
210 feet.	262 427	370	Poor road, rough with steep downgrade.
350 feet.	594	580	Good.
410 feet	524	530	Fair.
500 feet.	292	600	Rough and slippery with 3 percent upgrade.
500 feet.	518	700	Good to fair, nearly level.
600 feet.	632	838	Good.
800 feet.	990	717	Good.
1,000 feet	437	559	Poor.
1,125 feet	890	1,160	Good.
1,150 feet.	758	1,045	Good.
1,250 feet	695	517	Fair.
1,400 feet.	586	550	Fair.

Average time to-
Seconds
Load
74
Dump 29
Make two turns. 51

The road speeds for any given vehicle are affected by many factors, the most important of which are the condition of the road surface, grades, and lengths of haul. Road speeds under different conditions are given in

Table 5.-Average speed of heavy trucks on short hauls
percent grades by backing to dump and returning in forward. Trucks in good mechanical condition and hauling road well and systematically maintained. Trucks working with a 11/4-yard shovel]

Length of haul:

$$
\begin{aligned}
& \text { Average } \\
& \text { round-trip } \\
& \text { speed- } \\
& \text { feet per }
\end{aligned}
$$

0 to 50 feet
232
50 to 100 feet
100 to 200 feet

300 to 400 feet 384
400 to 500 feet 435
500 to 600 feet
455
tables $3,4,6,7,8,9,10,11,12$, and 13 . For different vehicles, the type, condition, and size are the most important of the factors which affect speed. The extent to which these factors frequently affect the hauling speed is indicated in tables $2,4,6,10,12$, and 14 .

Most of the hauling on grading work is done at an average speed of less than 500 feet per minute for trucks, about 300 feet per minute for large tractor-drawn wagons, and about 240 feet per minute for ordinary horse-drawn dump wagons. Average round-trip speeds as high as 900 feet per minute for trucks, 400 feet per minute for tractor-drawn wagons, and 250 feet per minute for horse-drawn wagons are rarely attained, except for short periods and under exceptionally favorable conditions. ${ }^{1}$ Tables 3, 7, 10, 12, and 14 show typical average speeds regularly maintained on a number of jobs using various kinds of vehicles.

LARGE CAPACITY HAULING UNITS OFTEN USED

In a summary of studies of power-shovel operation in highway grading compiled in $1927,{ }^{2}$ it was found that the prevailing size of the shovels then in use had a dipper of three-quarters yard capacity. Teams and bottomdump wagons were by far the most common type of hauling equipment. Trucks were used to some extent, the solid-tire type predominating. Tractor-drawn wagons of 4 or 5 cubic yards capacity were found on comparatively few jobs. At the present time (1933) the $1 \frac{1}{4}$-cubic-yard shovel is found on a majority of jobs and the $1 \frac{1}{2}$-yard shovel is observed as frequently as the three-quarter-yard shovel. The team and wagon had practically disappeared while the large truck equipped entirely with pneumatic tires had become the most common type of hauling equipment, followed by the large tractor-drawn wagon, now usually of 6 or 8 cubic yards capacity and generally provided with crawler treads.

In highway grading the hauls for most of the material are usually comparatively short so that road speed is not a prime factor in obtaining production from the hauling units. High speeds are generally impossible because of road conditions. Load-carrying ability, ease of operation, and dependability are more important factors. Recent developments in specialized hauling units have aimed at combining, in a rather low-speed vehicle, large capacity, rapid unloading, easy turning ability, and high mechanical dependability. A number of manufacturers have developed special hauling units designed particularly for operation with the power shovels, elevating graders, and draglines.

[^0]Table 6.-Operation characteristics of γ - and 8-yard tractor-drawn wagons
[Three 114-yard shovels on same job. All equipment in good condition. Material,
largely sandy earth, some frozen. Heavy trucks used for some very long-haul
work. Heaviest grades about 8 percent. Wagons carried an average of 7 cubic
yards of pay material per load, trucks carried 4.4 cubic yards]

Hauling unit	Grade	Length of haul	Speed		
			Loaded	Return	Return distance
	Percent-8-7-5-1-6-2+4	Feet3055256007008401,0251,0406,4006,800	Feet per minute	Feet per minute	Feet
Tractor-drawn wagons.					350
Do.			273 327	238 347	590 630
			327 320	347 326	630
Do.			334	348	890
Do.			380 388	393	1,010
Heavy trucks.			388 1,414 1	385 1,416	1,070 6,400
			1, 275	1,668	6,800

TIME CONSTANT					

WORKING TIME LOST BY SHOVELS

Class of time loss	Hauling by wagons	Hauling by trucks
Minor time losses of shovels:	Percent	Percent
Hauling equipment, insufficient supply	4. 1	17.3
Hauling equipment, faulty operation	3.1	1.6
Moving shovel within cut.	5. 0	4.3
Shovel operator.	. 6	. 9
Mechanical repairs and trouble with sh	2.9	1.9
Sloping--...-	4.3	1.5
Smoothing grade and loading pit	2. 7	2.9
Checking grade..	. 5	. 2
Miscellaneous.	3.2	3.8
Major mechanical repairs, shovel and cable	2.0	2.9

There are two types of units in general use - those drawn by tractors and those provided with their own power units. Crawler treads are generally used on the tractor-drawn wagons and are also found on the other type. The capacity of these units usually varies from 3 to 10 or even 12 cubic yards. The sizes generally used with power shovels range from 5 to 8 cubic yards. The operation characteristics of tractor-drawn wagons are shown in tables 6, 7, 9, and 14.

Where the grades are easy and the hauling conditions otherwise favorable, two of these wagons are sometimes drawn by one large crawler-tractor. Two wagons are seldom drawn by one tractor where the grades are steep, because of the difficulty of control on the descent. On good or fair roadways and light grades two wagons can be drawn at practically the same speed as one; but it is general practice to shift to one wagon when travel becomes dfficult. (See table 4.)

The observations made are not a conclusive proof that under favorable conditions a tractor can haul two wagons as fast as one since the conditions under which the 1 - and 2 -wagon operations were studied were not strictly similar. On elevating-grader work on which both 1- and 2-wagon trains were used there was noted a tendency to use two wagons until the hauling road became so bad that 2-wagon trains could not be handled or the haul became so short that a single wagon was

Table 7.-Operating characteristics of heavy trucks and tractordrawn wagons
[Two 11/4-yard shovels on one job. All equipment in good condition. Material,
earth and blasted limestone. Rates of production, 85 and 110 cubic yards per earth and blasted limestone. Rates of production, 85 and 110 cubic yards per working hour for the two shovels. Grades light. Average load, 4 cubic yards for
heavy trucks and 8 cubic yards for wagons] heavy trucks and 8 cubic yards for wagons]

Heavy trucks			Tractor-drawn wagons		
Length of haul	Speed		Length of haul	Speed	
	Loaded	Return		L.oaded	Return
150 feet 400 feet. 950 feet.	Feet per minute $\begin{aligned} & 240 \\ & 296 \\ & 966 \end{aligned}$	Feet per minute 265 220 704	200 feet 290 feet 370 feet	$\begin{array}{r} \text { Feet per } \\ \text { minute } \\ 235 \\ 279 \\ 310 \end{array}$	Feet pet minute 290 220 320
TIME CONSTANT					
				Heavy trucks	Tractordrawn wagons
Taking on load Turning Dump load Turning \qquad do Delays and waits Total gross time constant \qquad do....				122	239
				8	16
				18	9
				127	$\begin{array}{r}58 \\ 237 \\ \hline\end{array}$
				328	559

WORKING TIME LOST BY SHOVEL

Table 8.-Time constants and average round-trip speeds of trucks operating with $11 / 4$-yard shovel
[Hauling road maintained over fills and through cuts with bulldozers equipped with 8 -foot blades. On hauls exceeding 1,200 feet a water truck was used to sprinkle the road and keep it firm. When required, 1 or 2 laborers filled holes, ruts, etc. Grades generally about 5 percent]

Operation	Large trucks, 5.7 cubic yards pay load		Smaller trucks, 4 cubic yar ds pay load	
	Short hauls, no turns	Long hauls, 2 turns	Short hauls, no turns	Long hauls, 2 turns
Load	Seconds 138	Seconds 138	Seconds 120	Seconds 120
Dump.	34	34	38	38
Turn.		81		113
Average net time constant	172	253	158	271

AVERAGE ROUND-TRIP SPEEDS, FEET PER MINUTE
Large trucks:
Downgrade on hauls over 1,250 feet_...... 1, 050
Downgrade on hauls between 400 and 800 feet, no turns

262
Upgrade on hauls over 1,500 feet
Smaller trucks:
Downgrade on hauls over 1,250 feet
Downgrade on hauls between 400 and 800 feet, no turns

301
more than sufficient. The 1-wagon trains were operated only when the road was poor or when there was no need for speed.

Table 9.-Variations in hauling speed with length of haul
[7-yard crawler-tread wagons with heavy crawler tractors working with 114-yard power shovel. Road good, with easy return grades. Average load of pay material, 6.75 cubic yards]

Table 10.-Variation of hauling speed with steepness of grade, length of haul, and condition of road surface
[Heavy trucks carrying 4.0 and 5.7 cubic yards pay material per load, working with 114-yard power shovel. Trucks in good condition]

Length of haul	Grade	Speed		Size of load	Condition of road
		Loaded	Return		
	Percent	Feet per minute	Feet per minute	Cubic yards	
150 feet,	$\begin{aligned} & -6 \\ & -6 \end{aligned}$		178 247	5.7 4.0	Rough.
200 feet	-6	174	315	5.7	Rough and slippery.
350 feet	-9	220	360	4.0	Rough to fair.
1,250 feet	-5	660	662	4.0	Fair.
1,400 feet	-5	680	780	4.0	Good.
1,500 feet	+5	393	720	5.7	Fair.
1,550 feet-	+4	405	950	5.7	Do.
1,600 feet-	+4	453	1,090	5.7	Grood.
1,800 feet-	$+5$	433	1,190	5.7	Fair.
2,700 feet.	\pm	1,285	1, 847	5.7	Good.
2,700 feet-	-5	1,280	708	4.0	Do.
4,000 feet.	-5	970	830	4.0	Fair.
4,000 feet	-5	950	900	5.7	Good.

Table 11.-Average speeds on steep grades
[5-ton trucks backing to dump and returning in forward on hauls of 300 feet with an average of 15 -percent grade, one section about 50 feet long was over 22 percent. Trucks in good condition. Road fairly smooth and hard. 1-yard shovel. Studies extended over 3 days]

Day of study		Backing downgrade	Returning upgrade

AVERAGE TIME CONSTANT

Taking on load
Dumping load
Maneuvering on dump
Total.

[Average grade 12 percent, but one section of 100 feet of 25 percent grade, haul about 350 feet]

Day of study	Backing downgrade	Returning upgrade
First Second.	Feet per minute $\begin{aligned} & 229 \\ & 186 \end{aligned}$	Feet per minute 370 309

Table 12.-Effect of road condition and length of haul on hauling speed of $11 / 2$-ton trucks working with power shovel
[Trucks in fair to good condition. Mostly easy downgrades]

Length of haul	Speed		Condition of road
	Loaded	Return	
	Feet per minute 450	Feet per minute	
170 feet-	${ }_{344}$		Very poor.
275 feet-	475	528	Rough.
300 feet	475	${ }_{5}^{617}$	Do.
320 feet.	475 528	502 475	Rough and muddy. Rough
3250 feet-	${ }_{617}$	800	Mostly fair, some rough.
600 feet-	862	818	Fair, easy downgrade.
720 feet	750	${ }_{6}^{660}$	
1,050 feet	1,190	1,135	Fair to good, some downgrade.

Table 13.-Operating characteristics of heavy trucks working with 1-yard shovel under adverse conditions
[Mechanical equipment in fair condition. Road fair to poor and very poor. Trucks backed to dump. A verage load of pay material, 2.5 cubic yards]

Road condition	Fair	Poor	Very poor	Fair
Length of haul..................................feet.	320	420	530	550
Loaded speed...--.-...-.........- feet per minute	345	350	250	425
Return speed	330	395	360	490
Time constants for various operating conditions:				
Taking on load-seconds	79	78	71	${ }^{66}$
Turning		35	42	36
Dumping load	57	33	27	28
Turning .-.-.............................- do		38	20	47
Waits and delays........................-- ${ }^{\text {do }}$ -	13	41	20	51
Total time constant....-....---......- ${ }^{\text {do }}$	149	225	180	228

AVERAGE PERCENTAGE OF WORKING TIME LOST

Minor time losses of shovel: Percent
Hauling equipment, insufficient supply 2. 9
Hauling equipment, faulty operation
Moving shovel within cut... 2.6
Shovel operator.. 4
Mechanical repairs and trouble with shovel 1.1
Checking grade

Major mechanical repairs, shovel and cable
13. 2

MAINTENANCE OF HAULING ROAD IMPROVES EFFICIENCY OF

 OPERATIONIt is not difficult to show that the condition of the road surface has considerable influence on the stationyard cost of hauling, but it is difficult to obtain data as to the reduction in hauling costs which can be obtained by better maintenance of the road surface. Systematic maintenance of the hauling road is not a common practice among grading contractors. Only a few seem to have discovered that it pays to maintain a smooth surface on the hauling road and assign men and equipment specifically to road maintenance. A blade grader is most frequently used but in some cases the bulldozer is used whenever it is not busy on the dump. Systematic maintenance of the hauling roads frequently results in a sufficient increase in operating speed to permit the use of fewer hauling units, more regular operation of the shovel due to the elimination of hauling delays, and greatly reduces the wear and tear on the hauling vehicles.

Tables 5, 8, 13, and 15 are based on time studies on a number of jobs and show variations in road speeds which may be expected with changes in road conditions. These data indicate results which may be expected from adequate maintenance of the hauling road. The advantages of road maintenance are: (1) Faster speed, permitting more loads to be hauled in a given time;

Table 14.-Operating characteristics of i-yard tractor-drawn
[Two 11/4-yard shovels, working in common excavation. All equipment in good condition. Number of round trips timed, 628 . A verage load per wagon of pay yardage, 6.75 cubic yards. (irades light]

AlERAGE TIME CONSTANT	
Taking on load	19.5
Turning, at dump and shovel	31
Dumping	11
Waits and delays	32
Total	269

WORKING TIME LOST BY SHOVELS

Class of time loss	Shovel	Shovel
no.		
no. 2		

When the average round-trip wagon speed was 28.3 feet per minute for drawing 1 -wagon trains, this was reduced to 259 feet per second on changing to 2 -wagon trains. The loading time was increased from 195 seconds to 405 seconds.

TAble 15.-Operating speed of heavy trucks on steep grades
[Trucks operating with 11,yard shovel and carrying average load of 3.5 cubic yards of pay material. All equipment in good condition. Hauling road which had one or more sharp curves maintained fairly smooth]

Grade	Length of haul	Loaded	Return
	Fect	Feet per minute	Feet per minute
Minus 25 percent.	500	310	283
Do	550	305	290
Minus 20 percent	650	330	300
Do.	900	350	345
Minus ${ }^{\text {f }}$ percent	700	550	565

TIME CONSTANT

Taking on load 89
Turning 34
Dumping load 29
Turning 30
Waits and delays 84
Total 266
WORKING TIME LOST BY SHOVEIPercent
Hauling equipment, insufficient supply 4. 3
Hauling equipment, faulty operation 5. 3
Moving shorel within cut 2. 4
Shovel operator 4
Mechanical repairs and trouble with shovel 1. 8
Sloping 1. 1
Smoothing grade and loading pit 1
Major mechanical repairs, shovel and cable 2
(2) larger loads; (3) greater regularity in operation, thus reducing delays at the shovel; and (4) less wear and tear on the hauling equipment.

Figure 1 shows graphically the arerage hauling speeds attained before and after a rond was smoothed and shaped with a blade grader. The grade which averaged about 4 percent was quite rough before the blading and the average speed over it was only 630 feet per minute for loaded vehicles and fiss feet per minute for unloaded vehicles in returning up the errade. As a result of work with a blade grader the speed of the loaded rehicles was increased to 1,050 feet per minute and the speed of the unloaded vehicles was increased to 965 feet per minute. The improvement of the earth road resulted in an increase of 66.7 percent in the speed of the loaded rehicles and an increase of 47 pereent in the return speed of the empty vehicles up the grade. While this is only one example and involved only heary trucks carrying $3 \frac{1}{2}$ cubic yards of material, it is believed that conditions were trjical of those to be found on many projects. Sprinkling the roadway in very dry weather has sometimes been found advantageous.

Aside from rough or soft yiclding road surfaces, the chief deterrent to speed is steep grades. Sometimes all of these conditions are combined to form exceptionally bad hauling conditions. The effect of ascending grades is to gradually decrease the hauling speed at a rate somewhat faster than the increase in grade, as successive points are reached at which shifts must be made to lower gear ratios, until finally a point is reached at which the vehicle can no longer haul the load. The only recourse then is to reduce the load. In highway grading work, however, the steepest grades are almost invariably descending grades for the loaded vehicle. The limiting grade is therefore usually fixed by the climbing ability of the unloaded vehicle while both the size of the load and the speed of the loaded rehicle on the descent are largely fixed by safety considerations rather than the hauling ability of the vehicle. The extent to which grades reduce actual hauling speed is indicated in tables 4, 6, 10, 15, 16, and 17. Figures 1 and 2 illustrate the way in which the rate of speed varies on a grade.

Soft or yielding road surfaces have much the same effect in reducing the speed and load-carrying capacity of the hauling vehicles as a grade. As the road surface

Figure 1.-Speeds at Which j-ton Solid-Tired Trucks in Good Condition Operated Before and After Mantenance With a Blade Grader. Curves Show Sreeds at Various Points Along 2- to 4-percent Grade.

Table 16.-Speed of truch operation on long, moderate grades [Hauling exenvation from 114-yard shovel, 5-ton trucks, good condition. Pay load,

1 Fffect of narrow road which prevented easy passing of loaded and empty trucks. 2 Road somewhat slippery, requiring caution on downgrade.
${ }^{3}$ Part of road somewhat spongy,

> AVERACE TIME CONSTANT
.............-. - 110
Turn and back at dump 53
Dump load 11
Turn and spot at shovel
Waits and delays
Total 245

Table 17.-Effect of rough road surface on increase in speed with increase in distance
[Trucks hauling 2 cubic-yard loads of blasted rock down rough 5 percent grade. Trucks in fair to good condition; road surface very rough entire distance]

gives or depresses under the wheels of the moving vehicle there is the equivalent of an obstruction in front of the wheels which is effective in reducing speed. In very soft ground loads must be drastically reduced or hauling discontinued until the road becomes more stable. Hauling speeds are sometimes seriously reduced by the slipperiness of the road surface. Some gumbo and clay soils become extremely slippery and difficult to travel over when wet only on the surface.

determination of requred number of halung units not

 A DIFFICULT PROBLEMAttention has been called to the practical difficulties in keeping the shovel supplied with hauling units. Some of these difficulties are inherent in the nature of the work. Others can be ascribed to the contractors. On some jobs, however, the extent and frequency of variations in length of haul are largely due to failure of the designing engineer to appreciate the extent to which such fluctuations affect the cost of performing the work. The hauls on a job for which the average haul is 500 feet may be so distributed that hauling equipment sufficient to haul all of the material 1,000 feet must be provided. Even under favorable conditions this extra hauling equipment will probably add 3 or 4 cents per cubic yard to the unit cost of the job without adding any compensating value to the completed work.

It is believed that designers can profitably devote more attention to reducing variations in haul distances to permit more effective use of hauling equipment.
The length of haul is usually short-seldom more than 600 or 800 feet as the average haul for most of

Figure 2.-Speed of 5-ton Solid-tired Trucks Hauling Over Old Bituminous Macadam Surface. Shovel Located About 100 Feet From Highway.
the yardage. The difficulty is that the average haul is quite different from the actual hauls the contractor must make to place the materials in conformity with the requirements. The haul distance may readily vary from practically zero to 2,000 or 3,000 feet and in extreme cases to 4,000 or 5,000 feet for a relatively small part of the material.

These varying lengths of haul, in which the rate of variation is seldom uniform, cause difficulties in maintaining a correct number of hauling units not found in other lines of transportation. As the length of haul changes, the number of hauling units should be increased or decreased if perfect balance is to be maintained. In practice, this is usually impossible. The changes in haul lengths are too frequent to make this practical, and the number of hauling units maintained on the job is usually almost constant from day to day and frequently for the whole job. This requires the selection of such number of vehicles that when the hauls are long the supply will be insufficient and the shovel will lose time waiting for vehicles, while on short hauls the supply will be too large and the hauling vehicles will lose time waiting for the shovel. When this arrangement is necessary, the number of vehicles selected should be such that the job can be completed at a minimum cost. How this number can be determined will be shown later.

Determination of the number of hauling units of given size and kind required for a given set of operating conditions is not difficult. Values for the necessary factors can be determined readily by timing operations with a stop watch. Only factors which can readily be determined and checked from time to time need be used in the following method: Let
$S=$ average round-trip speed of hauling unit in feet per minute exclusive of all stops, turning, switching, etc.
$T=$ total time constant in minutes; that is, the sum of the average time required each round trip to take on the load, dump it, turn and maneuver both at the dump and shovel, and all regular stops and delays.

A, Two 5-Cubic-Yard Wagons Drawn by a Tractor; B, Truck Degigined for Fasy Backing; C, Truck Diaping About 41/2 Cubic Yards of Materiat.
$t=$ time in minutes required to take on load, or longest regrular stop or delay if this exceeds the loading time.
$L=$ length of haul in feet
$\lambda=$ number of vehicles required to just keep shovel in contimuous operation for any haul, L.
I rental value of hauling vehicle, including driver and operating cost, in cents per hour of working time.
$\|=$ arerage pay load, in cubic yards, carried by vehicle
$C=$ cost of hauling in cents per cubic-yard station.
$K=$ cost in cents per cubic yard for hauling the material a distance \tilde{L}.
$Q=$ number of loads hauled per hour by one rehicle.
Then

$$
\begin{align*}
& N=\frac{2 L}{S t}+\frac{T}{t} \tag{2}\\
& Q=\frac{60 S}{2 L+S T} \tag{3}\\
& K=\frac{1}{6011}\left(\frac{2 L}{S}+T\right) \tag{4}\\
& C=\frac{5 A}{3 H}\left(\frac{2}{S}+\frac{T}{L}\right) \tag{5}
\end{align*}
$$

Formula 2 gives the number of vehicles required to just keep the shovel in continuous operation when it is worlsing at the rate indicated by the factor t, which is the average time required to load each vehicle. Care must be taken, however, that the operation of the hauling units is such that no regular stop exceeding t is permitted; otherwise this stop, and not the loading rate of the shovel, becomes the pacemaker. As an example: With wagons having an average round-trip speed of 400 feet per minute, a time constant, T, of 5 minutes, and which can be loaded by the shovel in $2 \frac{1 / 2}{2}$ minutes, the number of hauling units required for a haul of 1,000 feet is determined by formula 2 as follows:

$$
N=\frac{2 \times 1000}{400 \times 2.5}+\frac{5}{2.5}=\frac{2000}{1000}+2=4
$$

Four wagons will thus be required under these conditions to maintain full shovel production. An additional vehicle must be added or taken off whenever the haul changes by the distance $\frac{S t}{2}$, in this case

$$
\frac{400 \times 2.5}{2}=500 \text { feet. }
$$

CONDITIONS REQUIRING ADDITIONAL UNITS ANALYZED

The addition of another vehicle at the first indication of insufficient hauling equipment is not economical. This is especially true when vehicles of large capacity are used. To examine this question, let
$I=$ total rental or operating cost to the contractor per hour of working time of vehicle to be added.
$X^{\prime}=$ total cost to the contractor per hour of working time of his working force and equipment, inchuding dump operations, before vehicle is added.
$H=$ the number of minutes per hour which shovel can afford to wait for hauling units before this waiting becomes more expensive than adding another hauling vehicle.
Then

$$
\begin{equation*}
I I=\frac{60 I)}{G+I)} \tag{6i}
\end{equation*}
$$

Hauling Under Adversé Conditions.
A contractor who is using trucks costing $\$ 3$ per hour of working time notices that because of the increasing haul distance his shovel is spending time waiting for hauling units. The operating cost of the equipment and force he now has, including shovel, hauling and dump operations, amounts to $\$ 20$ per working hour. How much time can he afford to let the shovel lose before it will be economical to provide another vehicle? From the above (formula 6), we have $I I=\frac{60 \times 3}{20+3}=7.8$. He can therefore afford to lose no more than 7.8 minutes an hour before the value of the losses in reduced production will exceed the cost of the additional vehicle.

In Heavy Work the Bulldozer is Essential to Orderly Dump Operation.

When the shovel is losing 7.8 minutes an hour in waiting for trucks, then the addition of another truck at $\$ 3$ an hour will neither increase nor decrease the unit cost of handling the material at this haul. The extra truck should be added whenever this length of haul is exceeded. By permitting the shovel to work continuously, the added truck will permit handling all the material with hauls longer than this at less cost than would be possible without the added truck.

The only factor to be watched in order to know when it becomes economical to add another hauling unit is the time lost be the shovel in watiting for vehicles. Consequently, no contractor should be without a stop watch, or fail to make regular use of it. If, however, a determination of the time lost by the shoved while waiting for hauling units is impractical, the length of haul at which another hauling unit should be added can be determined from the following formula in which all the terms have the same significance as previously given.

Here, L^{\prime} is the length of haul at which it beeomes cconomical to add another vehicle.

Large-capacity hauling units are frequently used with the power shovel, and the efficiency with which they can be operated is important. Under ordinary field conditions, the vehicles cannot maintain perfect operation. Drivers become careless or inattentive and the rehicles require attention from time to time.

Aside from vehicle delays which arise from having too many vehicles, there will be delays imposed by the shovel and delays due to the trucks themselves or their operators. (On a poorly managed job the total of these delays may be very large, and even on well-managed jobs they may consume from one-third to one-half of the total available working time of the trucks.

Table 18 gives the time losses on a fairly wellmanaged job for two kinds of trucks operating with different shovels. All the trucks were in good to fair condition. The 3%-ton trucks operating with the first shovel carried an average load of 3 cubic yards of pay material while the 5 -ton trucks operating with the second shovel carried average loads of $4 \frac{1 / 2}{2}$ cubic yards of pay material. The average haul was about 1,000 feet for the first and about 700 feet for the second. Grades were frequently steep but the road, pit, and dump were maintained in better than average condition. The studies cover a total of 1,467 truck-hours and 1,202 truck-hours, respectively.
Table 18 indicates the necessity of taking time losses into account in determining the time constant to be used in formula 2 for determining the number of hauling. units required. The ordinary shovel delays are, of course, reflected in the average time required to take on load. All regularly occuring delays to the hauling equipment which cannot be eliminated must be added to the time constant, otherwise the indicated number of vehicles will be insufficient. In determining the truck delavs to be included in the time constant, care should be taken to exclude all delays resulting from having too many vehicles. Regular waits at the shovel indicate an oversupply, but regular delays at the dump are an indication of improper dump operation. If the trouble cannot be remored these delays at the dump must be included in the time constant.

METHOD OF DETERMINING REQUIRED NUMBER OF HAULING UNITS

 HILUSTRATEDThe number of hauling units to be maintained with the shovel in order to complete the job at the lowest possible cost deserves more attention than this problem usually receives. The heary trucks or tractor-drawn Wagons gencrally used are usuatly considered to cost from $\$ 2$ to $\$ 3$ per hour, sometimes more. They are too expensive to warrant the use of more than are necessary. On the other hand, a shortage of only one vehicle

Table 18.-Percentage of available working time lost by trucks working with power shovels in well-blasted rock, shale and earth, and general data on operation
[All trucks in good to fair condition]

> Cause of delays tolrueks Working time lost hy frucks work.
> ing with

Shovel 1	Shovel 2
Pereent	Pereful
(). 3	2. S
15. 1	12.5
13. 2	5. 1
fi. 7	11.9
35.3	32.3

Major stopls each of 15 or more minutes in duration: Shovel casting.
Shovel down, trucks waiting
Truck down, adjustments, repairs, tires, efe
Too many trucks on job
Total major time loss
Minor stops each less than 15 minutes in cluration: Operating delays on road and at dump)
If aits to get under shovel
Total minor delays
Actual probuctive workine time of trusks Ceneral data:

Total available trucks, hours:
A verage pay yardage per lowl, cubic yards A verage length of haul, feet
A verage roumd-trip speed, feet per minute
Average net loading time, minutes
Total pay yardage hauled, cubie yards

A Small Truek Body Requires Careful Spotting of the Dipper and Increases Dumping Time.
on a moderate haul may readily reduce shovel production by 20 to 30 percent. The number of hauling units which the contractor maintains on the job therefore bears a very definite relation to the profits which the job may be made to yield.

The number of hauling units required for a particular set of operating conditions and length of haul can be readily determined by means of formula 2. This, however, offers no direct solution of the problem of the number of hauling units to be brought on a joh where conditions permit few, if any, changes to be made during the progress of the work. For this, a more detailed procedure is necessary.

To analyze this problem the quantities which must be hauled each given distance are first tabulated. These quantities and distances can most readily be taken from a mass diagram ${ }^{3}$ and are tabulated as shown in table 19. The quantities as taken from the mass diagram for each haul are summarized and entered in the first column of the table, with the corresponding haul distance given in the second column. On the project analyzed much material was to be hauled less than 500 feet, but the shorter hauls were all sum-

[^1]marized under this distance since it was clear that any possible minimum equipment for this job would be more than that required to keep the shovel at full production on a 500 -foot haul. To further subdivide this short-haul material would only be useless labor.

Tabiee 19.-Determination of most conomical number of trucks to use on a given job

Quantities (cubic yards) ${ }^{1}$	Length of haul	Shovel working at full production rate		Time to complete job with-			
		Hours to complete given yardage	Number of trucks required	$\stackrel{2}{\text { trucks }}$	$\begin{gathered} 3 \\ \text { trucks } \end{gathered}$	$\begin{gathered} 4 \\ \text { trucks } \end{gathered}$	$\begin{gathered} 5 \\ \text { trucks } \end{gathered}$
	Fect 500			Hours 27.00	IIours 18. 00	$\begin{aligned} & \text { IIours } \\ & 18.00 \end{aligned}$	Hours 18.00
14.400		18.00	3. 017	$\begin{aligned} & 27.00 \\ & 20.75 \end{aligned}$			
	600 700	13. 50	3.07 3.24	20.75 14.58	13.83 9.72	18.50 9.00	18.50 9.00
1.20)	700 $\times 00$	13. 50	3. 42	23. 10	15. 40	13. 50	13.50
15, T 50)	900	19.70	3. 44	33. 90	22. 58	19.70	19.70
7,200	1,100	9.00	3. 76	16. 92	11. 28	9. 00	9.00
18.400	1,500	23. 00	4.00	46. 00	30.70	23. 00	23. 00
12,800	3,000	16. 00	4. 67	37.40	25. 00	18. 70	16. 00
10,600.	4. 1000	13.25	5. 55	36.80	24.50	18. 41	14. 70
Hours required to complete job		134.95		256, 45	171.01	142.81	136. 40
Estimated cost of complete joh, dollars.				4, 103. 20	3,249. 19	3, 141.82	3, 410.00

1 Total, 107,960 cubic yards.
This example is based on a 11 -yard shovel operating in common excavation at a rate of sin cubic fards per working hour. Cost of equipment and personnel on shovel, dump, and maintaining hauling road estimated at. $\$ 10$ per working hour. Rental Valte of truck and driver, $\$ 3$ per working hour. For truck operation on the job the following values were used: $T=5.0$ minutes; $t=2.5$ minutes, while since the grades
were not had and a patrol grader was available for maintenance, S was taken as 400 Were not had and a patrol grader was available for maintenance, S was taken as 400
feet per minute for all hauls to and including 500 feet; 450 feet per minute for the hauls feet per minute for all hauls to and including 500 feet; 450 feet per minute for the hauls
abose soo feet to and including 1,100 feet; 600 feet per minute for all hauls of 3,000 feet ar more.
If trucks could be employed and discharged in conformity with the fuctuations in the length of haul, the cost of completing the job could be reduced to about $\$ 2,900$.

Bulldozers Can Often be Used in Opening the Cut and Preparing a Hauling Road Ahead of the Shovel.

In the third column was entered the number of hours estimated as required to move the quantities shown in the first column with a full supply of hauling equipment; in other words, the time required for the shovel to handle these quantities when working at full production. In estimating the production rate for the shovel the contractor should consider his past experience and all available evidence in regard to the character of the material and the probable conditions under which the work will be performed. If different classes of material resulting in different production rates are involved, such as common excavation, loose rock, and solid rock, the known or probable quantities of each should be entered in column 1 for each haul distance. This will result in a more reliable estimate of the time required to complete the work at each haul distance.

In the fourth column was entered opposite each haul distance and corresponding quantity the number of hauling units which would probably be necessary to maintain the shovel at full production at this haul distance. Numbers of trucks are computed with formula 2 , using values for T, t, and S based on experience and judgment. The indicated number of vehicles will, in general, be a mixed number and should be entered to at least one decimal place. Two places are used in this example.

There was then entered in the following columns the time in hours required to complete each set of quantities with the number of trucks indicated. Whenever the number of hauling units is equal to or greater than that required to maintain the shovel at full production, the time required to perform the work will be determined by the shovel. When the number of hauling units is less than that required to maintain the shovel at full production, the time will be determined by the hauling equipment. This new or increased time figure will have the same ratio to the time required for completion, as given in column 3 , as the required number of hauling units, as given in column 4 , has to the number of hauling units which is actually to be used. The computations are simple and can be made quickly on the slide rule. The column totals give the number of hours that will be required to complete the job, when hauling equipment is supplied to the shovel exactly as needed (column 3), and when each of the assumed hauling supplies is employed continuously with the shovel until the job is completed. In this example all hauling units have been assumed to be of the same size and speed. If vehicles of different sizes and speeds are to be used the computations are more extended.

The final step in making this table was to compute the operating cost when each of the assumed hauling supplies was used for the corresponding period required to complete the job. In accordance with general experience it was assumed that the hourly rental value of the shovel and the equipment on the dump would be practically constant, regardless of the average rate of production within the limits of this particular job. The same assumption was made with regard to the personnel employed with the shovel and on the dump. The total cost per operating hour of the equipment and personnel at the shovel and dump was then estimated for the conditions which would most probably exist on the proposed job. To this was added the estimated hourly or daily rental value of the given number of hauling units with their drivers. In computing table

19, the estimated operating cost of shovel and dump Was assumed for purposes of illustration at $\$ 10$ per hour. The hauling equipment was assumed as heary trucks at $\$ 3$ per hour with driver. The hourly cost of operation is therefore $\$ 16$ when using only 2 trucks and $\$ 25$ per hour when using 5 trucks.

Completing the indicated multiplications, we find that it would cost the contractor $\$ 3,141$ to complete the job with 4 trucks. Any other number of trucks, if kept out on the job throughout, would result in a higher cost. However, if trucks could have been employed and paid for only during such time as they were needed to lieep the shovel at full capacity, the cost of completing the job would have been but slightly more than $\$ 2,900$. The variable haul distances increased the cost of the earthwork on this job by at least $\$ 240$, or nearly δ percent-an item worth consideration by both the contractor and the designing engineer.

Occasionally the extreme hauls are localized to a certain portion of the job. In such cases the project should be divided into sections and a solution made for each. Having determined the most economical number of trucks for each section, the contractor can plan to increase or decrease the number of hauling units by the determined number when the proper points are reached.

STANDARDIZATION OF EQUIPMENT AIDS EFFICIENCY

The use of a variety of different kinds of equipment has a tendency to increase time losses and decrease production. Equipment is subjected to extremely hard usage and mechanical troubles invariably occur from time to time. It is much cheaper and less difficult to keep an adequate supply of spare parts on hand when the equipment is closely standardized than when a variety of different kinds and sizes of equipment is used. Standardization of hauling units permits interchange of parts and one line of spare parts will suffice for all the hauling equipment. If more than one shovel is employed, there is the same advantage in having them alike. This will permit not only the carrying of a smaller investment in repair parts but operators can be shifted from one piece of equipment to another without impairment of efficiency. Repair men will become more expert in making repairs as well as in
diagnosing trouble and in the routine care of the equipment.

Equipment earns no profit except when working. Anything which helps to keep and continue the equipment in working order is therefore of definite value to the contractor. Standardization of equipment so as to permit a wide interchangeability of parts usually requires no outlay and only a little definite plamming and forethought, and should be embraced by all contractors to whatever extent their lines of work will permit.

The most striking fact brought out by these studies is that power-shovel grading work is more a problem of transportation than of excavation. If the hauling equipment is insufficient or is not operated with precision, the shovel is handicapped, production is relatively low, and unit costs are high. On the other hand, if too many hauling units are used, unit production costs are unnecessarily increased while the problem of proper operation of the hauling units still remains. Therefore control and operation of the hauling equipment requires the constant and most painstaking attention of the management.

This attention to the hauling should not be given at the expense of an almost equally vigilant attention to all other parts of the job. The contractor can never afford to forget that the shovel is the key item of equipment. It must be constantly maintained in proper condition and operated with a high degree of skill and judgment. Operations on the dump must not be allowed to hamper or interfere with the rapid and orderly movement of the hauling units. If the ground is too hard to dig readily, drilling and blasting must also be carried on with efficiency and dispatch.

But, even all this is not sufficient. Real efficiency is attained only when all operations are performed efficiently and at the same time so coordinated and synchronized that all of these several operations proceed methodically and without interference as a definite part of one single process. To attain such a degree of efficiency in power-shovel grading work requires the constant attention of managerial ability of the highest order. Howerer, the rewards to be gained from such management are such that no grading contractor can afford to be without it.
MOTOR－VEHICLE REGISTRATIONS， 1933

$\begin{aligned} & \leq \frac{0}{c} \\ & \text { ey ex } \end{aligned}$	范	$\stackrel{\text { \％if }}{\substack{\text { en }}}$
	药	等

state	1933 registered motor vehicles－private and commercial ${ }^{2}$					Other registered rehicles		T＇ax－exempt official motor vehicles and motoreycles ${ }^{3}$			Licenses，permits，and certificates of title		
	Grand total registered motor cars． trucks		$\underset{\substack{\text { Private } \\ \text { passenger } \\ \text { cars }^{5}}}{ }$	$\begin{gathered} \text { Public } \\ \text { passenger } \\ \text { pehicles } \end{gathered}$	Total freight fehicles． trucks．and tractors t	Trailers and sem trallers	$\begin{aligned} & \text { Motor- } \\ & \text { cycles } \end{aligned}$	$\begin{gathered} \text { Cnited } \\ \text { siates } \\ \text { cars, etct. } \end{gathered}$	State and local vehicles s	$\begin{aligned} & \text { Motor- } \\ & \text { cycles } \\ & \text { (official) } \end{aligned}$	Dealer＇s licenses	Operators and chautifurs permits	$\begin{aligned} & \text { Certificates } \\ & \text { of title in } \end{aligned}$
Alabama	（1）		175．4×3	（04）						16			
Arizona－－	＋9，496，	－74．927			14,569 32.980	－					${ }^{11} 145$	（11，312	
California	1，95\％\％80，	1，73s， 720			220，087	69， 987	8，134	2， 502	34，56， 5	924	3， 143	590． 1047	
Colorado－	26f6． 491	239， 15.58			－ 27.48 .438	883	1．485	$\begin{aligned} & 521 \\ & 733 \end{aligned}$	2，910		2， 232	417， 4388	${ }_{(12)}^{96,243}$
Delaware	51， 099	1422． 614			148，485	912	318	149	493	91	$5!2$	69．149	23， 345
Florida．	279， 2165				45．019	． 567	$\begin{aligned} & 834 \\ & 056 \\ & 056 \end{aligned}$	596 698	${ }_{(3,365}^{(13)}$		2．${ }_{\text {2，}}^{1,802}$	¢，2， 731 5,1091 1	
Ceorgia	$\begin{array}{r}330,147 \\ 96 \% \\ \hline\end{array}$	278,935 81,371	81， 2×2	89	51,212 14,884	$\begin{array}{r}5,386 \\ 10,039 \\ \hline 18\end{array}$		${ }_{6}^{6,98}$	${ }_{1}^{1,156}$	5	1．883	$\begin{array}{r} 5,0,019 \\ 254 \end{array}$	$\frac{1,026}{(15)}$
Illinois	1，4363， 050	1，276，86， 6			＋186， 186	9， 228	4， 959	1，810	（13）		2， 2,922	66， 659 S94， 939	251． 057
Indiana	770，071	653， 710	652，800	910	${ }^{116,361} 6$	27.996 2．416 3	1， 671	424	4，369	48	11，565		251，057
Kansas．	517， 987	${ }_{1} 4445,583$			${ }^{14} 72.404$	3，847	${ }^{7} 9$	338	114.000		1，153	43，934	
Kentucky	294， 547	26.2 .436	261,006	1：1，430	1． 32,111		822	466	2.914	67	${ }^{678}$	8，077	（12）
Maisia	－	190， 132.901	189， 13,768	（111， 1137	35，${ }^{42,071}$	$\stackrel{6}{5,893}$	1，001	${ }_{229}$	1，960	92	1， 10 fi	215， 513	
Maryland	313， 274	278， 546			34， 728	1，383	1，485	1， 018	1．4100		5， 228	71.732	224， 362
Massachusetts	789，788	6899． 934	686， 249	3，685	49， 4.54	$\begin{array}{r}\text { \％} \\ \hline 8.958 \\ \hline 8.988\end{array}$	－948	1,301 ， 866 868	2，${ }_{\text {2 }}(1300$	1500	\％，${ }_{\text {2，}}^{1,384}$		${ }_{418,1226}$
Michigeanta	－ $1,0779,243$	5580，113	579，908	205	－99，130	19，648	1，687	644	3． 109	78	1， 872	48，	1，140
Mississip	164， 688	131， 763			32，924		199	24，	2， 0 00	1	1		600
Missouri	698,3 3．2	18594， 567			（103， 793	13， 110	1，492	842 6.31	1，300	2			
Nebraska	390， 651	336， 704	336，437	267	53.947	14，727	988	278	1，488		3，795	2， 324	11． 522
Nevara－－．		22， 397				${ }^{6.31}$		116	${ }_{61} 1$			129， 750	
New Hampshic	107，${ }_{845,731}$	723， 506	－8714， 358	219， 148	192，${ }^{1922}$	3，1， 1622	5， 268	872	8， 901	787	2， 427	1，043， 185	200， 000
New Mexico	76， 643	53	1，065		15． 290		263	410	39				
New York	2，240，757	1，942， 249	1，905．733	${ }^{23} 36,516$	${ }^{24} 2988.508$	${ }_{13,545}$	12， 723	3， 563	21， 609 8,878	1，063	${ }_{11}^{4} 573$	3，201， 357	
North Carolina	382,308 153,889	14 $\begin{array}{r}3328,648 \\ 1284 \\ \hline\end{array}$	327， 816	4，832	－ 49 4，660	${ }^{13,012} 143$	1,151 204 1	${ }_{1}^{563} 1$	8，878		${ }_{283}$		31， 373
Ohio	1，554， 314	1，396， 125			${ }^{14} 158.189$	61，156	5． 940	1， 664	14，074	353	3， 131	26， 240	
Oklahom	451，712	385，755			65，957	4， 184	${ }^{11} 700$	${ }^{742}$	${ }_{3}^{2}$			106	
Oregon ${ }^{25}$	－ $\begin{array}{r}239,410 \\ 1,635,019\end{array}$	1，415，522	1，409，708	${ }^{30} 5,814$	2\％ 219,497	10， 139	1,21 11,436	1，816	15，589	1，315	23，718	2，112， 195	881， 133
Rhode Island	136， 261	118．296	117， 161	${ }^{31} 1,135$	17．975			189	1．141	72	${ }^{11} 273$	＋170．509	
South Carolina	162.735 169.249 18.	144,94 146.45 185	1446，	176	${ }_{22,764}$	9， 693	${ }_{287}^{444}$	342	2， 922	$\begin{array}{r} 1.57 \\ 10 \end{array}$	${ }_{11}^{11} 3644$	259，535	28， 000
Tennessee	312，180	278，332	276，76i2	${ }^{33} 1,570$	33， 848	2．982	1．064	415	2，500		${ }^{11} 348$		
Texas	1， 201,762	1，013， 086	1，0	671	188， 67	36，073	3， 3145	1，729	8，530	232	－12，440	1156,730 30 30	
an－	100． 368	84，014			10.34	483	453	${ }_{128}$	11400		272	${ }_{92} .675$	
Virginia	－ 344.704	288，048	285， 497	2，551	56， 5 556	1，845					112，300	1112，077	144，314
Washingt	427， 404	3644,85	363， 706	334，1．152	62.548	4,849	1，629	1，220	6． 786	175	， 6 fi	410，860	40，838
West Virg	226，9x，	193.57	192．343	${ }^{35} 1,177$	33， 41.5	2． 2.094	1，164	162	${ }^{3} 5 \times 178$		5， 1.645	69.218 60.517	4，941
Wisconsin		5666,450 41,917	566， 04.5		104,347 10,643	2.565 1120 120	2，${ }_{121}$	$\begin{array}{r}514 \\ 132 \\ \hline\end{array}$	5，817			60,517	
District of Conlumbia	149，790	133，0148	125． 373	${ }^{36} 7.675$	16，742	1，112	808	1，8，54	2， 7×9	110	2，2533	76． 444	70， 1777
Total	23，827， 290	20，600，543	${ }^{(35)}$	${ }^{(37)}$	3，226， 747	472， 78.9	91， 987	36，475	193，26i2	6,845	94，504	12，214， 764	3，503，3612

 No record of number issued as no eharge is made．
Nominal fee paid on official vehieles and they are included with registered motor vehicles．
22 Number of title papers recorded from hills of sule
Includes 1,024 taxis．
Trailers included with trucks．
 2．Includes 11,700 light－delivery cars，and excludes 1,750 trailers（estimated）reported with trucks hy state Approximate number estimated from data for previous year．
Busses only reported；approximately 3,000 taxis not reported with public passenger vehicles ${ }_{24}$ Approxir This table lists only the number of registrations，icenses，and permits，
2 The first 5 columns show regularly registered motor cars，busses，and trucks，with reregistrations，nonresident．
registrations，tax－exempt vehicles，etc，eliminated whenever possible．
3 These official cars are exempted from paying regular registration fees and are excluded from＂registered motor vehicles．＂ Data shown here only where private passenger cars can be segregated rom panic passenger ve ines．for hire as taxis，U－I）rive－It cars，livery cars，ambulances，hearses，and husses（not tax－exempt），where the informa－ to．，areeration is made as between freight and passenger trailers． state． Official cars which are exempt from full fees．$\quad 10$ Both original certificates and transfers are shown．
in Revised figures resulting from the 1932 speceial survey， 12 None issued．
13 Included with registered motor vehicles as full fees are paid．
i4 Busses reported as registered with trucks and are so included．

竍

$\begin{aligned} & 0 \\ & 0 \end{aligned}$	毕然	
	事象	
	$\begin{aligned} & \text { en } \\ & 0 \\ & 0 \end{aligned}$	

[^2][^3]\[

$$
\begin{gathered}
\text { el by } \mathrm{Sta} \\
\text { trucks. } \\
\text { ty fund } \\
\text { fote der } \\
\text { for misce }
\end{gathered}
$$
\]

$$
\begin{aligned}
& \text { ipated } \\
& \text { ayment } \\
& \text { larges, } \\
& \text { lent fun } \\
& \text { me } 30,1 \\
& \text { State as }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ruck report } \\
& \text { nd added th } \\
& \text { state highw } \\
& 235 \text { paid on }
\end{aligned}
$$

$$
\begin{aligned}
& \text { harges, due to reduction in fees. } \\
& \text { ment fund, not used for highway } \\
& \text { Jnne } 30, \text {, } 933 \text {. } \\
& \text { y State as passenger vehicles. Es }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ng June } 30,1933 \text {. } \\
& \text { ity State as passenger vehicles. Estimated fees for these trucks deducted } \\
& \text { trucks. }
\end{aligned}
$$

for
towns.
Oct 31 due to change in registration year.

$$
\text { of } \$ 463,024 \text { due to reduction of registration fees }
$$

$$
\begin{aligned}
& \text { 1. Excludes refunds on licenses of } \$ 463,024 \text { due to reduction of registration lees. } \\
& \text { 49 Payments on county road bonds, } \\
& 50 \text { Allotment to counties in lieu of personal property taxes on motor vehicles, used to lower county taxes. } \\
& 51 \text { Includes } \$ 75,473 \text { for street signals; the remainder for streets as appropriated hy Congress. } \\
& 52 \text { Total not shown as less than half the States do not segregate private and public vehicles. }
\end{aligned}
$$

CURRENT STATUS OF UNITED STATES PUBLIC WORKS ROAD CONSTRUCTION

CLASS 1．－PROJECTS ON THE FEDERAL－AID HIGHWAY SYSTEM OUTSIDE OF MUNICIPALITIES
AS OF AUGUST 31， 1934

			$\begin{aligned} & \text { ow } \\ & \text { ow } \\ & \text { \&in } \\ & \text { min } \end{aligned}$				$\begin{aligned} & \text { 帚 } \\ & \text { nis } \\ & \text { nis } \end{aligned}$	$$			$\begin{aligned} & \text { Re } \\ & \text { siw } \\ & \end{aligned}$			$\begin{aligned} & \text { E } \\ & \text { 菏 } \\ & \underset{\sim}{2} \end{aligned}$					
		$\begin{aligned} & \text { No it } \\ & \text { sin min } \end{aligned}$				$\begin{array}{ll} 8 & \stackrel{0}{0} \\ 0 & 0 \\ \text { N } & \\ \hline \end{array}$				¢ \％						$\begin{aligned} & \text { öb } \\ & \text { in w } \\ & \end{aligned}$		－	～
	$\frac{\stackrel{y y y y}{0}}{\frac{5}{z}}$	$\overline{\mathrm{x}} \times$	$\stackrel{\circ}{\dot{\sigma}}$	$\begin{aligned} & -17 \\ & \pm \\ & \vdots \end{aligned}$		$\begin{aligned} & \sim \\ & \ddagger=0 \\ & =\sim \end{aligned}$	$\bigcirc \stackrel{\infty}{\square}$			$\stackrel{\text { ºs }}{\substack{\text {－}}}$	๗o	$\begin{aligned} & \circ \circ \\ & \text { N- } \\ & \text { Ni } \end{aligned}$	$\mathfrak{6}$	内ั\％	∞	minó		\bar{j}	O
			$\begin{gathered} \text { is } \\ \text { in } \\ \text { in } \end{gathered}$	$\begin{aligned} & \text { İ } \\ & \stackrel{y}{\bullet} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \tilde{0} \\ & \stackrel{\circ}{\Xi} \end{aligned}$		$$		$\begin{aligned} & \overline{\mathrm{N}} \\ & \bar{n} \end{aligned}$						8 8 \vdots	管	ㅇ．		F $\stackrel{\text { \％}}{\text { ¢ }}$ in in
			㟋				$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{\sim} \end{aligned}$	$\begin{aligned} & 80 \underset{~ B ~}{8} \\ & \text { Sin } \end{aligned}$	$\begin{aligned} & \text { eis } \\ & \text { an } \\ & \text { anjo } \end{aligned}$	280	隠		กํㅜㅇ ジジన		送葆	우우웅 ○゙ぶレ゙		$\begin{aligned} & \text { K } \\ & \text { 咅 } \end{aligned}$	0 0 0 0 0 j
	$\frac{\text { 芘 }}{\frac{\pi}{\Sigma}}$	$\underset{\sim}{\sim}$	$\underset{\sim}{n \rightarrow \infty}$		$\dot{M i n g}$	$\underset{\sim j n i}{\min -1}$				$\begin{aligned} & \text { Ninn } \\ & \text { gisi } \end{aligned}$			$\begin{aligned} & \text { мmin } \\ & \text { minin } \end{aligned}$					$\bar{\sim}$	\＃
		1									8－						20		気
							 㧱吽		NㅜNㅜㅇ พิํํ ベッ									$\stackrel{n}{\sim}$	No
																		$\begin{aligned} & \text { 을 } \\ & \text { 츨 } \end{aligned}$	N
			ค～～～ ＝		$\begin{aligned} & \text { min } \\ & \underset{\sim}{\dot{N}}=\dot{x} \end{aligned}$	Nom	$\begin{aligned} & \operatorname{mn} \infty \\ & \mathcal{B} \in= \end{aligned}$		ain		$\stackrel{\text { O웅 }}{\underset{\sim}{\circ} \dot{\sim}}$	$\begin{aligned} & 0-\infty \\ & \dot{0} 8 \mathbf{8} 8 \\ & \hline-\infty \end{aligned}$		のi申	rou	$\begin{aligned} & \text { mio } \\ & \text { =ion } \end{aligned}$		กั	
			2 藏う min						ํㅐํํㅇㅇ กัฐin $-\mathrm{m}$	 ตix $\stackrel{-}{2}$					Fもすご玉isin － $0^{\circ}=$			$\begin{aligned} & \text { O} \\ & \text { i } \end{aligned}$	¢
	$\begin{aligned} & \text { 高 } \\ & \text { 范 } \\ & \end{aligned}$				สัㅡㅒㅇ ～ํํ웅 こ													$\begin{aligned} & \cong \\ & \vdots \\ & \sigma \end{aligned}$	
			$\dot{m}-$		$\begin{aligned} & \text { 웋 } \\ & =0 \\ & =0 \\ & =0 \end{aligned}$				$\begin{aligned} & 0.0 \\ & 0.0 \\ & \text { on } \\ & \text { ON } \\ & \text { NNN } \end{aligned}$					$\begin{aligned} & \text { E } \\ & \text { N } \\ & \stackrel{0}{\mathbf{N}} \\ & = \end{aligned}$					
				素응 宛示年 \qquad									が紫す 8\％\％ig finio			吉帛 \％iํํ		\％ ¢ ¢ -	N
	$\stackrel{\text { M }}{\stackrel{y}{4}}$																		

n25．654．0n	$628 \cdot 792 \cdot 1$	0.801	199＊¢11＇1	$552 \cdot 029 \cdot 1$	2．518	00\％\dagger \％	268.599^{\prime}＇ 9	$971 \cdot 126.99$	\＄＊206		058 ${ }^{\circ} 959 \cdot 2 \varepsilon$	$1 \pi 2^{\circ} 056 \cdot 85$	585＇612． 3%	928 $100 \cdot 911$	STVIOL
952×921	$651 / 9$	6.1	182 ¢9\％		5.1		\＄00＇\＆\％	820.0 m	C^{\prime} ¢		250 0¢¢	250 ＇0¢ ${ }^{\text {a }}$	185．685	¢¢2．656	
	918.28 212.9%	$\begin{aligned} & 1 . \\ & 6 . \end{aligned}$	$58 \pi^{\circ} \mathrm{K}$	$\begin{aligned} & 178 \times 8 \\ & 295 \cdot 901 \end{aligned}$	$\begin{aligned} & \zeta . G 1 \\ & 8.11 \\ & 5.51 \end{aligned}$				$\begin{aligned} & \pi \cdot 8 \\ & 0 . \pi / \pi \\ & i . \pi \end{aligned}$		\＃20＇2пस 85か．1611 $890^{\circ} 691$		$\begin{aligned} & 826 \cdot 125 \\ & 65 \pi^{\circ} 5522^{\prime} \\ & 580.015 \end{aligned}$	012 ＇2れ反＇1	
	$995 \cdot 1 \varepsilon$ $885^{\circ} 051$	8.1 8.2	815.82	SL6＇SL2	O．${ }^{\circ}$		$\begin{aligned} & 666^{\circ} \mathrm{ULK} \\ & 68.091 \\ & 1 \varepsilon 0^{\circ} 692 \end{aligned}$	766.12ε 269．076 898.982	$\begin{aligned} & \pi \cdot 62 \\ & \pi \cdot 02 \\ & 8.9 \end{aligned}$		$\begin{aligned} & 001.199 \cdot 1 \\ & 102.198 \\ & 21 \eta^{\prime} 1182 \end{aligned}$			09 ＇$^{1116.1}$ $85^{2}+800^{\prime} \mathrm{C}$ 605．005	
89§＇2ट5 061 ＇して1＂！	$\begin{aligned} & 16 £ .911 \\ & 991.69 \% \\ & 501.121 \end{aligned}$	$\begin{aligned} & 5 \cdot 1 \\ & G \cdot G \\ & 2.4 \end{aligned}$	508.01		$\begin{aligned} & 8 \cdot 2 \\ & 1 \cdot 1 反 \\ & \xi \cdot 8 \end{aligned}$			$\begin{aligned} & 90^{\circ}{ }^{\circ}+1 / 161 \cdot \varepsilon \\ & 88 \pi \pi^{\prime} 6699 \end{aligned}$	$\begin{aligned} & 0 . \pi 1 \\ & 6 . \pi \\ & 0.51 \end{aligned}$		$\begin{aligned} & 2100^{\circ} 209 \\ & 119.090^{\circ} 2 \\ & 999^{\circ}+166^{2} \end{aligned}$	$\begin{aligned} & 20.819 \\ & \left\{0^{\circ} 1.161^{\prime 2} 2\right. \\ & 508^{\circ} \pi 26 \end{aligned}$	$\begin{aligned} & \varepsilon L 1 \cdot \varepsilon \llbracket \varsigma \\ & 06 L \cdot 121 \cdot । \end{aligned}$		
8 21 ＇269	506． 12 \＆ 9にL＇己 เฉ 18\＆＇8反	$\begin{aligned} & \pi \cdot 2 \\ & 9-1 \end{aligned}$			$\begin{aligned} & 8 \cdot 12 \\ & 9 \cdot 26 \\ & 4 \cdot 2 \end{aligned}$				$\begin{aligned} & 9.91 \\ & 5.91 \\ & 0.5 \end{aligned}$			9โ己＇حโ̧ Gç．gSz 29「＂90を	851.269		
	$96+: 12$ $987{ }^{\prime} 691$	$\begin{aligned} & z \cdot 1 \\ & 9 \cdot \varepsilon \\ & 1 \cdot 1 \end{aligned}$			$\begin{aligned} & 5 \cdot 12 \\ & 1 \cdot \frac{\pi 1}{1} \end{aligned}$		$\begin{aligned} & 1 \Sigma \pi^{\prime} G 2 \Sigma^{\prime} 2 \\ & 198^{\circ} 69_{8} \\ & 0 \pi 反 .11 e^{\prime} . \end{aligned}$		$\begin{aligned} & 1 \cdot 1 \varepsilon \\ & \frac{1 \varepsilon}{2} \cdot \frac{\xi 1}{2} \cdot 61 \end{aligned}$		＋20．696．1 O25．854 §6\％＇91L				
 		$\begin{aligned} & 5.61 \\ & 0.9 \end{aligned}$		$\begin{aligned} & 682 \cdot \varepsilon L \pi \\ & \pi 0 \Sigma \cdot \Sigma \Sigma \pi \end{aligned}$	$\begin{aligned} & 9 \cdot 1 \zeta \\ & 9 \cdot \varsigma 1 \\ & 4.92 \end{aligned}$			$086^{\circ} 616^{\circ} \mathrm{C}$ 9 92＂91反 128.019	$\begin{aligned} & 9 \cdot 12 \\ & 8 \cdot 12 \\ & 5 \cdot 1 \pi \end{aligned}$		$\begin{aligned} & 100{ }^{\circ} 189^{\circ}{ }^{\circ} \\ & \varepsilon 1 G^{\circ} 81 G \\ & 980^{\circ} 102^{\circ} \end{aligned}$				
		$S_{L} \cdot \hbar$	000＇699		$\begin{aligned} & 4.5 \pi \\ & 5.8 \\ & 1.81 \end{aligned}$	Ootin＊			$\begin{aligned} & 0.21 \\ & 9 \cdot \pi z \\ & 2 \cdot \pi \end{aligned}$				$\begin{aligned} & 000 \cdot\{02 \cdot \pi \\ & 52 \pi \cdot G \Omega 1 \end{aligned}$		
$\begin{aligned} & 998: 2 n z \\ & 000.001 \end{aligned}$ $160^{\circ} 166$	Hして「これ 1120.61 	${ }_{2}{ }^{\text {a }}$			$\begin{aligned} & 1.1 \\ & 1 . \xi \\ & 0 . \xi_{1} \end{aligned}$		902．00ई SLL． $65\{$ 		$\begin{aligned} & 6.2 \\ & 5 \cdot 2 \\ & 0.02 \end{aligned}$				$\begin{aligned} & 99 \varepsilon \cdot 2 \pi z \\ & 000 \cdot 012 \\ & 160 \cdot 166 \end{aligned}$	$\begin{aligned} & 0+9.901 \\ & 150.005 \end{aligned}$ $0 \pi c \cdot 156 \cdot 1$	
$\begin{aligned} & 260 \cdot\{11 \\ & 062.8 \pi{ }^{\prime} \cdot 1 \\ & 150 \cdot 588 \end{aligned}$	$\begin{aligned} & 02 \pi \cdot 1 \\ & 20 L^{\circ} 119 \\ & 8 \pi L^{\prime}+099 \end{aligned}$	$\begin{aligned} & 8 \cdot \frac{5}{5} \\ & 5.5 \\ & 5 . \pi \end{aligned}$	St1．96	$\begin{aligned} & 811.5 H \\ & 008.202 \\ & \xi \sum 1 .\{11 \end{aligned}$	$\begin{aligned} & \xi \cdot 11 \\ & 8 \cdot \pi z \\ & 8 \cdot 82 \end{aligned}$				$\begin{aligned} & 8 \cdot 02 \\ & 9 \cdot 0 \varepsilon \\ & \pi \cdot 9 \end{aligned}$		$\begin{aligned} & 128 \cdot n 89 \\ & 149.156 \\ & 100 \cdot 821 \end{aligned}$	$\begin{aligned} & 128^{\circ}+189 \\ & 690^{\circ} \mathrm{G} 86 \\ & \varepsilon 9 t^{\circ} 061 \end{aligned}$			
$\begin{aligned} & \pi 6 \pi^{\prime} \cdot 6 \pi^{\prime} \cdot 1 \\ & 2 \pi \cdot \varepsilon 1 \theta^{\prime} \cdot 1 \end{aligned}$	$\begin{aligned} & \begin{array}{c} 16 \cdot 1+1 \\ 19+9 \\ 1969^{\circ} \cdot 611 \end{array} \end{aligned}$	¢．		$\begin{aligned} & 855.62 \\ & 059.12 \\ & 880^{\circ} .121 \end{aligned}$	$\begin{aligned} & 0.62 \\ & 2.2 \pi \\ & 8.21 \end{aligned}$		280 ${ }^{\circ}$ 〔こち．1 0L9＇2LL＇ \＃2n＇219＇n	$455^{\circ} 885^{\circ} \cdot 1$ $025 \cdot 222^{\circ} \mathrm{C}$ $007.169^{\prime \prime} \pi$	$\begin{aligned} & \Sigma \cdot 12 \\ & 2 \cdot 6 \\ & 8 \cdot \frac{£}{反} \end{aligned}$		$\begin{aligned} & 262 \cdot n 29 \cdot 1 \\ & 000 \cdot 269 \\ & 166 \cdot 18 \end{aligned}$	$\begin{aligned} & 159 \cdot 9 \xi 9 \cdot 1 \\ & 000 \cdot 269 \\ & 9 \varepsilon 9.621 \end{aligned}$			
	$\begin{aligned} & 5899^{n} \pi 2 \\ & 886 \cdot ₹ 2 \end{aligned}$	$\begin{aligned} & \pi^{\circ} \\ & 0.1 \end{aligned}$		$\begin{aligned} & 000 \text { '892 } \\ & 81 \pi^{\prime} \times \pi \end{aligned}$	$\begin{aligned} & 9 \cdot \varepsilon \\ & 1 \cdot 1 \\ & 6 \cdot 51 \end{aligned}$				$\begin{aligned} & 9.0 \\ & 9.6 \\ & 1 \cdot 01 \end{aligned}$				$\begin{aligned} & \pi / S^{\circ} 2 S_{n} \pi \\ & 5 \pi 0 \end{aligned}$	$\begin{aligned} & 2\{1 \cdot 168 \\ & 818.606 \\ & 8 \pi^{\prime} .15 \xi^{\prime}+1 \end{aligned}$	
	$\begin{aligned} & 61 \pi^{\prime} 181 \\ & 020^{\prime} 5 \pi \pi \end{aligned}$	$\begin{aligned} & 6.2 \\ & \pi \cdot 5 \end{aligned}$	${ }^{159}{ }^{\text {O22 }}$	$\begin{aligned} & 96 \pi ' 8 \varepsilon \pi \\ & 282 \\ & 009 \cdot 〔 \Sigma \varepsilon \end{aligned}$	$\begin{aligned} & 2 \cdot 81 \\ & 2 \cdot 5 \\ & 1 \cdot 11 \end{aligned}$			$\begin{aligned} & 528 \cdot+186 \\ & 9266988 \\ & 85 \pi+490^{\prime \prime} \end{aligned}$	$\begin{aligned} & 2 \cdot 01 \\ & 6 \cdot 1 \varepsilon \\ & 9 \cdot 2 \varepsilon \end{aligned}$			$\begin{aligned} & 8+99^{\circ} 668 \\ & 00 \pi^{\prime} 208.1 \\ & 0 L^{\prime} 980^{\circ} .1 \end{aligned}$	$\begin{aligned} & 815^{\circ}+56 \\ & 61+6612 \cdot 1 \\ & 000^{\prime} 11 \varepsilon^{\prime} \cdot 1 \end{aligned}$		
¢¢8．515＇2	$\begin{aligned} & 111 L^{\circ}\{9 \varepsilon \\ & 298^{9} 911 \\ & \varepsilon 21.69 \end{aligned}$	$\begin{aligned} & \varepsilon \cdot 8 \\ & \pi \cdot 1 \\ & \frac{\pi}{1} \cdot \end{aligned}$	¢ +9.2	$\begin{aligned} & 851.188 \\ & 16.2 \mathrm{hm} \end{aligned}$	$\begin{aligned} & \varepsilon . \varepsilon G \\ & 9 . \pi \\ & 0.1 \end{aligned}$				$\begin{aligned} & c \cdot 11 \\ & \xi=\varsigma z \\ & \xi=11 \end{aligned}$		$\begin{aligned} & 108.21 / 2 \\ & 255.898^{1.1} \\ & 61.919 \end{aligned}$	$\begin{aligned} & 588 \cdot 66 \pi \\ & 218.658^{\prime \prime} \\ & 01.129 \end{aligned}$ $911 \cdot L 25$	$\begin{aligned} & 5\left\{8^{\circ} G_{14}{ }^{2}\right. \\ & 921.12\} \end{aligned}$	$\begin{aligned} & 159.919^{\circ}+ \\ & 668.812 \\ & 628.161^{2} .1 \end{aligned}$	
		$\begin{aligned} & 1.1 \\ & 8 . \\ & 1 . \end{aligned}$	¢12 $8{ }^{\text {\％}}$	$\begin{aligned} & 5\left\{8^{\prime} \pi \varepsilon^{\prime} \pi\right. \\ & 19\{\cdot 8 \end{aligned}$	$\begin{aligned} & 11.1+ \\ & 0.01 \\ & 0.9 \end{aligned}$				$\begin{aligned} & 2 . द g_{2} \\ & 1.8 \\ & \pi \cdot 1 \end{aligned}$			$\begin{aligned} & 51 \pi^{\circ} \mathrm{SOG} \\ & 628.069 \\ & 1 \pi 1.151 \end{aligned}$			
	$\begin{aligned} & 210.1 \\ & 150.69 \end{aligned}$	${ }^{\prime}$		618.02	$\begin{aligned} & 8 \cdot \pi \\ & 8 \cdot 2 \\ & 9 \cdot 61 \end{aligned}$		$885^{\circ} \mathrm{H} 58^{\prime} 1$	$980.6 \pi \xi$ 84G＇292．2	$\begin{aligned} & \pi \cdot G \\ & i \cdot L \varepsilon \\ & i \cdot \varepsilon 反 \end{aligned}$		$9 \pi^{2} 5^{\prime} 062^{\prime 2}$	$288.488 \cdot 1$ $992 .+69^{\circ} \mathrm{C}$	$\begin{aligned} & 005 \cdot 92 \pi \\ & 105 \cdot 1 / 18 \\ & 250 \cdot £ 86^{\circ} \cdot \end{aligned}$		
$\begin{aligned} & 161^{\circ} \mathrm{YOK} \\ & 196^{\prime}+90^{\prime} 1 \end{aligned}$	〔乌६ $11 \pi^{\circ} 09$ ${ }^{2} \approx \cdot 1 \varepsilon_{\$}$	$\begin{aligned} & \varepsilon \cdot 1 \\ & \varepsilon \cdot{ }^{2} . \end{aligned}$		$\begin{aligned} & 22 L \text { '00 } \\ & 112 . .851 \\ & 66 S^{2} 162 \end{aligned}$	$\begin{aligned} & 1 \cdot \zeta_{2} \\ & 1 \cdot 2 \cdot{ }_{2} \end{aligned}$				$\begin{aligned} & 6.91 \\ & 8.01 \\ & 7.6 \end{aligned}$			866° L约 tro $\cdot 82 \pi$ $891.56{ }^{2}$	$\begin{aligned} & 161^{\circ} 500^{\prime} \\ & 196^{\circ}+90^{\circ}{ }^{\prime} \end{aligned}$	π โc． $688 \cdot 1$ $286 \cdot 108$ 001＇GL1＇ट	
		2801： 1							280ı19			${ }^{380}{ }^{181} 1$			atvis
		NOILOMALSNOS yod Ganouddy			NOILJח4LSNOO yGan				G32ETawo				SINAWNOILYOddY		

\begin{tabular}{|c|}
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& $$
\begin{aligned}
& \text { た } \\
& \text { §̈ }
\end{aligned}
$$ \& \& \& \& 듲 \& \％
N
N

\hline \& \& \& \& \& $$
\begin{gathered}
\infty \\
\stackrel{0}{2} \\
\hline 8
\end{gathered}
$$ \& $$
\underset{\omega}{\omega}
$$ \& 눙ํㅇ 웅 \& $$
\begin{aligned}
& \text { 事志 } \\
& \text { ※o }
\end{aligned}
$$ \& \& \& \& \& \& $$
\begin{array}{cc}
\overline{0} & 0 \\
\vec{~} \\
\stackrel{\rightharpoonup}{\sim} & 0
\end{array}
$$ \& \& \& \& \& \bar{N}
∞

\pm

\hline \multirow[t]{3}{*}{} \& \& $\stackrel{\sim}{\sim}$ \& \bigcirc \& $\bar{\sim} \bar{\sim}$ \& $\xrightarrow{\text { د゙m }}$ \& \& $\stackrel{\circ}{\sim}$ \& \because \& \[
\tilde{\sim} \tilde{\sim}

\] \& \[

$$
\begin{aligned}
& \text { no } \\
& \dot{\omega} \mathrm{m}
\end{aligned}
$$

\] \& $\stackrel{\text { m }}{ }$ \& \[

\overline{\dot{i}} \stackrel{in}{n}

\] \& \ddagger－ \& \[

\stackrel{N}{N}

\] \& \[

\underset{\infty}{\infty} .
\] \& m．ma \& $\stackrel{\sim}{n-N}$ \& \％ \& $\stackrel{\text { ¢ }}{\text { ¢ }}$

\hline \& \& \& \& $$
\begin{aligned}
& \stackrel{2}{2} \\
& \dot{8} \\
& \hline
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 8 \\
& i n
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 8 \\
& \ddagger \\
& \ddagger
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \frac{\omega}{\infty} \\
& \stackrel{\infty}{\vdots}
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& \text { N } \\
& \stackrel{\text { N}}{N}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathbf{8}_{8}^{\infty} \\
& \text { Ho }
\end{aligned}
$$

\] \& \& \& \& \& \[

$$
\begin{aligned}
& ⿳ \stackrel{N}{6} \\
& \stackrel{1}{\vdots}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\mathbb{N}_{0}^{N} \\
\text { in }
\end{gathered}
$$

\] \& ～～ \& \[

$$
\begin{gathered}
\text { 克 } \\
\text { Nin }
\end{gathered}
$$
\] \&

\hline \& \& \& $$
\stackrel{\stackrel{4}{\stackrel{1}{*}}}{\stackrel{1}{2}}
$$ \& \[

$$
\begin{array}{cc}
\tilde{N} \\
\tilde{\omega} \\
\underset{\omega}{*} & \stackrel{\sim}{0}
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& \text { © } \\
& \stackrel{N}{\mathrm{~N}} \\
& \hline
\end{aligned}
$$

\] \& \& \& \[

$$
\begin{aligned}
& 88 \\
& \substack{8 \\
0 \\
\text { nin }}
\end{aligned}
$$

\] \& \& \[

\] \& \& \& \& \& \& \[

$$
\begin{gathered}
\sim N \\
\text { No } \\
\dot{\sin }
\end{gathered}
$$
\] \& \& \& ¢

\hline \multirow{4}{*}{} \& $$
\begin{aligned}
& \frac{\ddot{U}}{\stackrel{4}{4}} \\
& \frac{\pi}{2}
\end{aligned}
$$ \& \& Mnin \& ごぎずす \& \& \[

\dot{\sim} \dot{\sim} \dot{\sim}

\] \& \[

\stackrel{-\pi n}{\dot{m}} \underset{m}{j}

\] \& \[

\dot{\sigma \infty} \dot{\sigma} \dot{\sigma}

\] \& 뚠․ \& \[

$$
\begin{aligned}
& \infty-0 \\
& \text { きֹin }
\end{aligned}
$$
\] \& ∞

∞
0 \& \& \& A゙すㅁ․ \& \& \& \& mis \& －

\hline \& \& \& \& \& \& \& \& \& \& \& \％ \& \& \& \& \& \& \& \& 8

\hline \& \& \& \& \& \& \& \& \& | べかす |
| :--- |
| ธiñ | \& \& \& \& \& \& \& \[

$$
\begin{aligned}
& \text { 오№ } \\
& \text { sion } \\
& \text { inng }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { simm } \\
& \text { Nin } \\
& \text { Nin }
\end{aligned}
$$
\] \& \& $\underset{\sim}{\text { ¢ }}$

\hline \& \& \& $$
\begin{aligned}
& \text { min } \\
& \text { ono } \\
& \text { mos } \\
&
\end{aligned}
$$ \& \& \& NㅗN영 우웅 シ～ \& \& \& \& \[

$$
\begin{aligned}
& \text { mow } \\
& \text { Now } \\
& \text { Nin } \\
&
\end{aligned}
$$

\] \& \& \& \& \& \& \& \[

$$
\begin{aligned}
& \text { Nig } \\
& \text { Nin } \\
& \text { Nin N }
\end{aligned}
$$

\] \& \[

\] \& ¢

\hline \multirow{4}{*}{$$
\begin{aligned}
& \text { 曷 } \\
& \text { 炭 } \\
& \text { O } \\
& 0
\end{aligned}
$$} \& \[

$$
\begin{aligned}
& \text { 兑 } \\
& \stackrel{y}{x}
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& \circ \\
& \mathfrak{y y} \\
& \cline { 1 - 2 }
\end{aligned}
$$

\] \& \[

\underset{m}{2}

\] \& $\stackrel{\sim}{\dot{\circ}}$ \& 096 ஸ்่ํํ \& \& \& \& تּ̈ \& \& -ing \& \[

\stackrel{\sim}{\sim}

\] \& \[

$$
\begin{aligned}
& \infty \sim N \\
& \\
&
\end{aligned}
$$

\] \& \[

\stackrel{m-n}{\substack{0
 \sim}}

\] \& | ～～O |
| :--- |
| ทธ่ | \& \& $\stackrel{N}{\sim}$ \&

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \& \& \& $$
\begin{aligned}
& \text { no } \\
& \text { on } \\
& \text { in } \\
& \vdots=\#
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { nion } \\
& \text { in } \\
& \text { in }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { Bõ } \\
& \dot{\vdots}=0 \\
& \dot{\Phi} \%
\end{aligned}
$$

\] \& \& \& \& \& \& \& \& \& \[

$$
\begin{aligned}
& \text { Not } \\
& \text { Nog } \\
& \text { So }
\end{aligned}
$$

\] \& \& \& \& \[

$$
\begin{aligned}
& \text { \%in } \\
& \stackrel{\circ}{\square}
\end{aligned}
$$
\] \&

\hline \& $$
\begin{aligned}
& \text { 落 } \\
& \frac{\bar{W}}{6} \\
&
\end{aligned}
$$ \& \& \& \& \[

$$
\begin{aligned}
& \text { むo } \\
& \text { No } \\
& \text { No } \\
& \text { no }
\end{aligned}
$$

\] \& \& \& \& \& \[

$$
\begin{aligned}
& \text { =ng } \\
& \text { Mo } \\
& \text { Sision }
\end{aligned}
$$

\] \& \& \& \& \& 元㤩気 80\％ \& \& \& \[

$$
\begin{aligned}
& \text { in } \\
& \stackrel{n}{6} \\
& \vdots
\end{aligned}
$$
\] \&

\hline \multirow[t]{2}{*}{} \& \& \& \& \& $$
\begin{aligned}
& \text { RiN } \\
& \text { Nin } \\
& \text { in } \\
& \text { min }
\end{aligned}
$$ \& \& \& \& \& \[

$$
\begin{aligned}
& \text { sioud } \\
& \text { 耳iN } \\
& \text { jiN }
\end{aligned}
$$

\] \& \& \& \& \[

$$
\begin{aligned}
& \text { N్ల } \\
& \text { ®ĩ }
\end{aligned}
$$

\] \& \& \& \& \[

$$
\begin{aligned}
& \text { N} \\
& \text { n } \\
& \text { 款 }
\end{aligned}
$$
\] \& N

\hline \& \& \& \& | ～ |
| :--- |
| 声品登 \therefore | \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& $\tilde{\sim}$

\sim
\sim
\sim
\sim

\hline \& $$
\stackrel{\text { H }}{\stackrel{y}{6}}
$$ \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \％

\hline
\end{tabular}

SUMMARY OF CLASSES 1,2 , AND 3
AS OF AUGUST 31, 1934

Staite	APPORTIONMENTS		COMPLETED				UNDER CONSTRUCTION				APPROVED FOR CONSTRUCTION			BALANCE OF FUNDS AVAILABLE FOR NEW PROJECTS	
	$\begin{aligned} & \text { Sec. } 204 \text { of the Act } \\ & \text { of June 16, 19333 } \\ & \text { (1934 Fund) } \end{aligned}$	$\begin{gathered} \text { Act of } \\ \text { June 18, } 1934 \\ \text { (1935 Fund) } \end{gathered}$	Total Cost	$\begin{aligned} & 1934 \\ & \text { Public Works } \\ & \text { Funds } \end{aligned}$	$\begin{aligned} & 1935 \\ & \text { Public Works } \\ & \text { Funds } \end{aligned}$	Mileage	Estimated Total Cost	$\begin{aligned} & 1934 \\ & \text { Public Works } \\ & \text { Funds } \end{aligned}$	$\begin{aligned} & 1935 \\ & \text { Public Works } \\ & \text { Funds } \end{aligned}$	Milcage	$\begin{aligned} & 1934 \\ & \text { Public Works } \\ & \text { Funds } \end{aligned}$	$\begin{aligned} & 1935 \\ & \text { Public Works } \\ & \text { Funds } \end{aligned}$	Mileage	$\begin{aligned} & 1934 \\ & \text { Public Works } \\ & \text { Funds } \end{aligned}$	$\begin{gathered} 1935 \\ \text { Public Works } \\ \text { Funds } \end{gathered}$
Alabama Arizona Arkansas	$\begin{array}{r} 8,370,133 \\ 5,211,960 \\ 6,748,335 \end{array}$	$\begin{array}{r} \$ 4.259,842 \\ 2.641,935 \\ 3.428,049 \end{array}$	$\begin{aligned} & \$ 2,843,981 \\ & 3.010 .351 \\ & 1.553,471 \end{aligned}$	$\begin{array}{r} \$ 1,790,151 \\ 2,693,956 \\ 1,395.000 \\ \hline \end{array}$		$\begin{array}{r} 115.6 \\ 193.6 \\ 75.4 \\ \hline \end{array}$	$\begin{array}{r} 7.082 .489 \\ 2,599.424 \\ 4.977 .366 \end{array}$	$\begin{array}{r} \$ 5.253,043 \\ 2,022,142 \\ 4.476 .662 \\ \hline \end{array}$		$\begin{aligned} & 408.3 \\ & 156.3 \\ & 283.1 \end{aligned}$	$\begin{array}{r} \$ 91.916 \\ 138.121 \\ 500.604 \\ \hline \end{array}$		$\begin{array}{r} 70.4 \\ .2 \\ 8.1 \end{array}$	$\begin{aligned} & \$ 364,424 \\ & 87.742 \\ & 376.069 \\ & \hline \end{aligned}$	$\begin{array}{r} \$ 4,29,842 \\ 2,641.935 \\ 3,428,049 \end{array}$
California Colorado Connecticut \qquad	$\begin{array}{r} 15,607.354 \\ 6,874,530 \\ 2,865.740 \end{array}$	7.932.206 3.486,006 1,454,868	9,078, 746 $5.270,445$ 645,265	$\begin{array}{r} 7,265,810 \\ 5.170,380 \\ 645.265 \end{array}$		$\begin{array}{r} 250.7 \\ 29.6 \\ 8.4 \end{array}$	$\begin{array}{r} 10,943,494 \\ 1,865,455 \\ 2,399,105 \end{array}$	7.965, 856 1.616.402 2,218,819		$\begin{array}{r} 295.0 \\ 73.0 \\ 47.1 \end{array}$	$\begin{array}{r} 11,205 \\ 20.319 \\ 584 \\ \hline 88 \end{array}$	*239,657	$\begin{array}{r} .7 \\ 19.2 \end{array}$	$\begin{array}{r} 304,483 \\ 67,428 \\ 1,072 \end{array}$	7.932,206 3.245,349 1.454,868
Delaware Florida. Georgia	$\begin{array}{r} 1,519,088 \\ 5,231,834 \\ 10,091,185 \\ \hline \end{array}$	$\begin{array}{r} 923,395 \\ 2,661,343 \\ 5,113,491 \end{array}$	$\begin{array}{r} 499.558 \\ 3.713 .700 \\ 2.893 .146 \end{array}$	$\begin{array}{r} 481,183 \\ 2,82,863 \\ 2,880,909 \end{array}$		$\begin{array}{r} 8.7 \\ 127.7 \\ 182.7 \end{array}$	$\begin{aligned} & 1,058,367 \\ & 2,408,831 \\ & 4,242.024 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,058,367 \\ & 2,266,570 \\ & 4,227.050 \end{aligned}$		$\begin{array}{r} 25.8 \\ 81.6 \\ 260.2 \end{array}$	$\begin{array}{r} 93,632 \\ 28,546 \\ 543.975 \end{array}$	543.305	$\begin{array}{r} 44.2 \\ 1.4 \\ 32.6 \\ \hline \end{array}$	$\begin{array}{r} 185.906 \\ 106.855 \\ 2.439 .251 \\ \hline \end{array}$	$\begin{array}{r} 380.090 \\ 2.661 .34 \\ 5.113 .494 \end{array}$
Idaho. Illinois. Indiana	$\begin{array}{r} 4.486,249 \\ 17.570770 \\ 10,037,843 \end{array}$	$\begin{aligned} & 2,277,486 \\ & 8,921,40 \\ & 5,088,963 \end{aligned}$	$2,533,588$ $3.352,316$ $1,008,464$	$\begin{aligned} & 2,406.472 \\ & 3,350,910 \\ & 1,006,879 \end{aligned}$		$\begin{array}{r} 242.0 \\ 117.0 \\ 37.0 \end{array}$	$\begin{array}{r} 1,941,524 \\ 12,787,474 \\ 7,078,928 \end{array}$	$\begin{aligned} & 1,899.245 \\ & 12.7877 .474 \\ & 7.078,928 \end{aligned}$		$\begin{array}{r} 93.5 \\ 323.6 \\ 221.6 \end{array}$	$\begin{array}{r} 5.180 \\ 1.223 .720 \\ 1.252 .689 \end{array}$	187.665	$\begin{aligned} & 27.4 \\ & 10.6 \\ & 22.3 \end{aligned}$	$\begin{aligned} & 175.352 \\ & 208.666 \\ & 699.347 \end{aligned}$	2.089,521 $8,921,401$ $5,083,963$ 5,088,963
Iowa Kansas Kentucky	$\begin{array}{r} 10.055,660 \\ 10.089,604 \\ 7.517 .359 \end{array}$	$\begin{aligned} & 5,118,361 \\ & 5,117,675 \\ & 3,813,311 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.731,730 \\ & 5.803,946 \\ & 3.62,105 \end{aligned}$	$\begin{aligned} & 3.593,845 \\ & 5.795 .453 \\ & 3.599 .651 \end{aligned}$		$\begin{aligned} & 245.4 \\ & 455.4 \\ & 317.1 \end{aligned}$	$\begin{aligned} & 6.336,927 \\ & 4,689.988 \\ & 3.143 .523 \end{aligned}$	$\begin{aligned} & 5,615,920 \\ & 4,270,952 \\ & 2.978,572 \end{aligned}$		$\begin{aligned} & 391.6 \\ & 142.4 \\ & 172.3 \end{aligned}$	$\begin{array}{r} 370.350 \\ 23.199 \\ 745.763 \end{array}$	$\begin{array}{r} 204,200 \\ 7.212 \end{array}$	$\begin{array}{r} 115.4 \\ 6.3 \\ 12.0 \end{array}$	$\begin{aligned} & 475.545 \\ & 223.372 \end{aligned}$	$\begin{aligned} & 4.914,161 \\ & 5.110,463 \\ & 3.818 .311 \end{aligned}$
Louisiana Maine Maryland	5.828.591 3.369.917 3,564,527	2.963 .932 1.711.586 1,810.058	1.327.306 1,931,863 544, 724	$\begin{array}{r} 1.326,073 \\ 1.893 .780 \\ 530,925 \end{array}$		$\begin{array}{r} 48.7 \\ 110.9 \\ 33.2 \end{array}$	$\begin{aligned} & 4,470,089 \\ & 1.373,510 \\ & 1,788,789 \end{aligned}$	$\begin{aligned} & 3,936,845 \\ & 1.286,093 \\ & 1.774 .863 \end{aligned}$		$\begin{array}{r} 101.7 \\ 30.5 \\ 51.7 \\ \hline \end{array}$	$\begin{array}{r} 162,118 \\ 946,272 \end{array}$	295.928	14.7 23.9	$\begin{aligned} & 403,556 \\ & 190.044 \\ & 312,467 \end{aligned}$	$\begin{aligned} & 2,963,932 \\ & 1,711,586 \\ & 1,514,130 \end{aligned}$
	$\begin{array}{r} 6.597,100 \\ 12,736,227 \\ 10,656.569 \end{array}$	3.350.474 $6.452,568$ 5.425 .551 5.425.551	$\begin{array}{r} 950,346 \\ 2,022,600 \\ 5,672,142 \end{array}$	726,610 2,022,600 $5,605,815$		$\begin{array}{r} 27.9 \\ 82.5 \\ 825.2 \end{array}$	$\begin{array}{r} 5.763,673 \\ 10,323,375 \\ 4,427,985 \end{array}$	$\begin{array}{r} 5.527 .937 \\ 10,244,825 \\ 4,383.949 \\ \hline \end{array}$		$\begin{aligned} & 41.6 \\ & 43.7 \\ & 264.0 \end{aligned}$	$\begin{array}{r} 127.088 \\ 93,850 \\ 42,130 \end{array}$		1.1 2.0	$\begin{aligned} & 215,465 \\ & 374,952 \\ & 624,676 \end{aligned}$	$\begin{aligned} & 3.350,474 \\ & 6,452,568 \\ & 5.425 .551 \end{aligned}$
Mississippi Missouri Montana	$\begin{array}{r} 6,978,675 \\ 12,180,306 \\ 7.439 .748 \\ \hline \end{array}$	$\begin{aligned} & \begin{array}{l} 340.527 \\ 6.173 .740 \\ 3.769 .734 \end{array} \\ & 3.730 \end{aligned}$	1.514 .635 4,110,341 5.647 .171	$\begin{array}{r} 870,329 \\ 3.750,299 \\ 5,460,622 \end{array}$		$\begin{array}{r} 75.3 \\ 453.1 \\ 434.1 \\ \hline 44.2 \end{array}$	$\begin{aligned} & 5,924,267 \\ & 7,834,853 \\ & 2,428,203 \end{aligned}$	$\begin{aligned} & 4,174,727 \\ & 7.188,29 \\ & 1.911,408 \end{aligned}$		$\begin{aligned} & 361.2 \\ & 304.9 \\ & 174.7 \end{aligned}$	$\begin{array}{r} 555,453 \\ 349,378 \\ 45.118 \end{array}$	818.779	$\begin{array}{r} 62.1 \\ 125.3 \\ 3.3 \\ \hline \end{array}$	$1.348,167$ 892,414 22,600	$\begin{aligned} & 3.540,227 \\ & 5.354,961 \\ & 3.769 .734 \end{aligned}$
Nebraska Nevada. New Hampshire	$\begin{aligned} & 7,328,961 \\ & 4,545,917 \\ & 1,909,839 \end{aligned}$	$\begin{aligned} & 3,964,364 \\ & 2,302,56 \\ & 269,462 \\ & 969,462 \end{aligned}$	4.463 .369 2, 836,437 $1,288,119$ 1.28 .119	$\begin{aligned} & 3,717,162 \\ & 2,836,437 \\ & 1,225,275 \end{aligned}$		$\begin{array}{r} 388.8 \\ 297.9 \\ 31.3 \end{array}$	4.456,310 1. 649,794	4.016.143 1.582. 345 642,214		$\begin{gathered} 284.1 \\ 80.3 \\ 21.2 \end{gathered}$	$\begin{aligned} & 35.183 \\ & 67.544 \end{aligned}$	$\begin{aligned} & 156.007 \\ & 204.673 \end{aligned}$	103.1 44.4	$\begin{aligned} & 60,472 \\ & 59,0,02 \\ & 42,350 \end{aligned}$	$\begin{array}{r} 3,808,357 \\ 2,097,683 \\ 969,462 \end{array}$
New Jersey New Mexico New York	$\begin{array}{r} 6,346,039 \\ 5,792,935 \\ 22,330,101 \end{array}$	$\begin{array}{r} 3.220,879 \\ 2.941,700 \\ 11.327 .921 \\ \hline \end{array}$	$\begin{array}{r} 506,416 \\ 3.947,780 \\ 5.175 .169 \\ \hline \end{array}$	$\begin{array}{r} 506,416 \\ 3.803 .351 \\ 4.546 .328 \end{array}$		$\begin{array}{r} 12.2 \\ 409.5 \\ 99.9 \end{array}$	$\begin{array}{r} 5,886,418 \\ 1,650,497 \\ 20,061,928 \end{array}$	$\begin{array}{r} 5.677 .364 \\ 17.650 .497 \\ 17.061 .361 \end{array}$	*207.000	$\begin{array}{r} 58.2 \\ 195.8 \\ 312.9 \\ \hline \end{array}$	$\begin{array}{r} 3.846 \\ 759,947 \\ 554,106 \\ \hline \end{array}$	$\begin{array}{r} 111.645 \\ 5.058 .705 \end{array}$	$\begin{aligned} & 34.5 \\ & 85.7 \end{aligned}$	$\begin{aligned} & 158,413 \\ & 262,640 \\ & 168,307 \end{aligned}$	$\begin{aligned} & 3,220,879 \\ & 2,830,055 \\ & 6,062,216 \end{aligned}$
North Carolina North Dakota Ohio \qquad	$\begin{array}{r} 9.522,293 \\ 5.804 .448 \\ 15.484 .592 \end{array}$	$\begin{aligned} & 4,840,941 \\ & 2,938,967 \\ & 7,865,012 \end{aligned}$	$\begin{aligned} & 4,121,307 \\ & 2,807,387 \\ & 7,172,775 \end{aligned}$	3.661,011 $2,660,442$ $6,875,282$		$\begin{aligned} & 295.6 \\ & 842.4 \\ & 374.5 \end{aligned}$	$\begin{aligned} & 4,387,789 \\ & 1.706,049 \\ & 9.443 .958 \end{aligned}$	$\begin{aligned} & 4,146,765 \\ & 1.448,927 \\ & 8,475.578 \end{aligned}$		$\begin{aligned} & 593.9 \\ & 292.5 \\ & 182.3 \end{aligned}$	$\begin{aligned} & 985,492 \\ & 944,483 \end{aligned}$		$\begin{array}{r} 50.1 \\ 176.0 \end{array}$	$\begin{aligned} & 729,026 \\ & 750.596 \\ & 133.732 \end{aligned}$	$\begin{aligned} & 4,340,941 \\ & 2,938.967 \\ & 7,865,012 \end{aligned}$
Oklahoma Oregon. Pennsylvania	$\begin{array}{r} 9,216,798 \\ 6,106,896 \\ 18,891,004 \\ \hline \end{array}$	$\begin{aligned} & 4,685,180 \\ & 3.097 .814 \\ & 9.590 .788 \end{aligned}$	3.389 .279 $3,757,918$ $5.582,279$	$\begin{aligned} & 3,362,057 \\ & 3,418,21 \\ & 5.527 .399 \end{aligned}$		$\begin{aligned} & 244.5 \\ & 200.7 \\ & 303.1 \end{aligned}$	$\begin{array}{r} 5.081 .969 \\ 2.738 .025 \\ 12.990 .596 \\ \hline \end{array}$	$\begin{array}{r} 5,009,579 \\ 2,541,078 \\ 12,533,469 \end{array}$		$\begin{aligned} & 364.4 \\ & 99.0 \\ & 540.5 \end{aligned}$	$\begin{array}{r} 371,113 \\ 56,302 \\ 360,001 \end{array}$		$\begin{array}{r} 13.3 \\ .7 \\ 6.9 \end{array}$	$\begin{aligned} & 474,049 \\ & 90,804 \\ & 470,137 \end{aligned}$	4.685.180 3.097.814 9.590 .788
Rhode Island South Carolina South Dakota.	1.998.708 5.459 .165 6,011,479	$\begin{aligned} & 1.014 .572 \\ & 2.710,954 \\ & 3.047 .643 \end{aligned}$	$\begin{array}{r} 761,008 \\ 847,335 \\ 2,526,813 \\ \hline \end{array}$	$\begin{array}{r} 761,008 \\ 877.35 \\ 2.431 .504 \\ \hline \end{array}$		$\begin{array}{r} 22.3 \\ 58.3 \\ 48.1 \end{array}$	$\begin{aligned} & 1,188,731 \\ & 4,009,371 \\ & 2,700,298 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,125,864 \\ & 4,006,237 \\ & 2,371,623 \end{aligned}$		$\begin{array}{r} 38.8 \\ 350.3 \\ 379.5 \end{array}$	$\begin{array}{r} 290,554 \\ 637.579 \end{array}$		$\begin{array}{r} 16.6 \\ 185.9 \\ \hline \end{array}$	$\begin{aligned} & 111,836 \\ & 3150040 \\ & 570.712 \end{aligned}$	$\begin{aligned} & 1.014 .572 \\ & 2.770,954 \\ & 3.047 .643 \end{aligned}$
Tennessee Texas Utah.	$\begin{array}{r} 8,492,619 \\ 24,244,024 \\ 4,194,708 \end{array}$	$\begin{array}{r} 4,302,991 \\ 12,291,253 \\ 2,132,691 \end{array}$	$\begin{array}{r} 3,964,301 \\ 13,234,859 \\ 2,950,983 \end{array}$	$\begin{array}{r} 3,572 ; 240 \\ 11,621.687 \\ 2,871.460 \\ 2,81.40 \end{array}$		$\begin{array}{r} 175.1 \\ 1.327 .1 \\ 296.2 \end{array}$	$\begin{array}{r} 4,065,323 \\ 10,365,448 \\ 1,268,272 \end{array}$	3.882.511 9.963.071 1,162,905		$\begin{array}{r} 172.3 \\ 561.7 \\ 83.0 \\ \hline \end{array}$	$\begin{array}{r} 605.160 \\ 1.308,075 \end{array}$	818.417	$\begin{array}{r} 19.4 \\ 11.0 \\ 136.2 \end{array}$	$\begin{array}{r} 432,708 \\ 1.351 .191 \\ 160.342 \end{array}$	$\begin{array}{r} 4,302,991 \\ 12,291,253 \\ 1.314,274 \end{array}$
Vermont Virginia Washington	$\begin{aligned} & 1.367 .573 \\ & 7.416 .757 \\ & 6.115 .867 \end{aligned}$	$\begin{aligned} & 948.007 \\ & 3.785 .387 \\ & 3.106 .412 \end{aligned}$	$\begin{array}{r} 538,943 \\ 3.989 .9719 \\ 3.919 .526 \end{array}$	$\begin{array}{r} 528.649 \\ 3.869 .703 \\ 3.887 .057 \end{array}$		$\begin{array}{r} 25.8 \\ 258.1 \\ 188.4 \end{array}$	$\begin{aligned} & 1,421,939 \\ & 3, .01,284 \\ & 2,117,456 \end{aligned}$	1.328.254 $2,752,266$ $2,117,456$ 2.117,456		$\begin{array}{r} 70.3 \\ 10.2 \\ 63.4 \end{array}$	$\begin{array}{r} 10,670 \\ 400,812 \\ 43,657 \end{array}$	$\begin{array}{r} 87.128 \\ 381.804 \end{array}$	$\begin{array}{r} 7.1 \\ 11.7 \\ 15.5 \end{array}$	$\begin{array}{r} 393.976 \\ 67.696 \end{array}$	$\begin{array}{r} 860,879 \\ 3,765.387 \\ 2,724,608 \end{array}$
West Virginia Wisconsin Wyoming	$\begin{aligned} & 4,474,234 \\ & 9,724,881 \\ & 4,501,327 \end{aligned}$	$\begin{aligned} & 2,280,335 \\ & 4,941,837 \\ & 2,287,712 \end{aligned}$	$\begin{aligned} & 1.027 .685 \\ & 5.140 .688 \\ & 2.647 .805 \end{aligned}$	1.027.685 5.035 .325 2.441 .044		$\begin{array}{r} 34.2 \\ 236.2 \\ 429.0 \\ \hline \end{array}$	$\begin{aligned} & 3.062,753 \\ & 4,481,503 \\ & 2.293 .954 \end{aligned}$	3.032.407 $4,311,908$ $1.958,240$ 1.958.240	240.571	$\begin{aligned} & 108.3 \\ & 212.0 \\ & 250.0 \end{aligned}$	$\begin{array}{r} 205.516 \\ 144,113 \\ 81,126 \\ \hline \end{array}$	412.278	$\begin{array}{r} 4.1 \\ 7.4 \\ 73.4 \\ \hline \end{array}$	$\begin{array}{r} 208.626 \\ 233.535 \\ 20.920 \end{array}$	$\begin{aligned} & 2,280,335 \\ & 4,941,837 \\ & 1.634,863 \end{aligned}$
District of Columbia Hawaii	$\begin{aligned} & 1,918,469 \\ & 1,871,062 \\ & \hline \end{aligned}$	$\begin{array}{r} 973,842 \\ 949,778 \\ \hline \end{array}$	$\begin{array}{r} 931.610 \\ 196.115 \\ \hline \end{array}$	$\begin{array}{r} 931,609 \\ 144,003 \\ \hline \end{array}$		$\begin{array}{r} 7.4 \\ 10.4 \\ \hline \end{array}$	$\begin{array}{r} 997,499 \\ 1,902,048 \\ \hline \end{array}$	$\begin{array}{r} 980.515 \\ 1.567,433 \\ \hline \end{array}$		$\begin{array}{r} 5.1 \\ 29.9 \\ \hline \end{array}$	144,921	422.485	$\begin{aligned} & 2.9 \\ & 4.1 \\ & \hline \end{aligned}$	$\begin{array}{r} 6.344 \\ 14,705 \\ \hline \end{array}$	$\begin{array}{r} 551.357 \\ 949.778 \\ \hline \end{array}$
TOTALS.	394,000,000	200,000,000	160,986,065	149,442,935		11.775 .0	231.553 .794	$211.512,054$	447.571	10,219.7	15.597.909	9.949, 388	1,613.7	17.447.102	189.602.541

PUBLICATIONS of the BUREAU OF PUBLIC ROADS

Any of the following publications may be purchased from the Superintendent of Documents, Government Printing Office, Washington, D.C. As his office is not connected with the Department and as the Department does not sell publications, please send no remittance to the United States Department of Agriculture.

ANNUAL REPORTS

Report of the Chief of the Bureau of Public Roads, 1924. 5 cents.
Report of the Chief of the Bureau of Public Roads, 1927. 5 cents.
Report of the Chief of the Bureau of Public Roads, 1928. 5 cents.
Report of the Chief of the Bureau of Public Roads, 1929. 10 cents.
Report of the Chief of the Bureau of Public Roads, 1931. 10 cents.
Report of the Chief of the Bureau of Public Roads, 1932. 10 cents.

DEPARTMENT BULLETINS

No. 136D . . Highway Bonds. 20 cents.
No. 347D . . Methods for the Determination of the Physical Properties of Road-Building Rock. 10 cents.
No. 532D . . The Expansion and Contraction of Concrete and Concrete Roads. 10 cents.
No. 583D . . Reports on Experimental Convict Road Camp, Fulton County, Ga. 25 cents.
No. 660D . . Highway Cost Keeping. 10 cents.
No. 1279D . . Rural Highway Mileage, Income, and Expenditures, 1921 and 1922. 15 cents.

TECHNICAL BULLETINS

No. 55 T . . Highway Bridge Surveys. 20 cents.
No. 265 T . . Electrical Equipment on Movable Bridges. 35 cents.

MISCELLANEOUS CIRCULARS

No. 62MC . . Standards Coverning Plans, Specifications, Contract Forms, and Estimates for FederalAid Highway Projects. 5 cents.
No. 93MC . . Direct Production Costs of Broken Stone. 25 cents.

MISCELLANEOUS PUBLICATIONS

No. 76MP . . The results of Physical Tests of Road-Building Rock. 25 cents.
No. - . . Federal Legislation and Regulations Relating to Highway Construction. 10 cents.
No. 191 . . . Roadside Improvement. 10 cents.

REPRINT FROM PUBLIC ROADS

Reports on Subgrade Soil Studies. 40 cents.

Single copies of the following publications may be obtained from the Bureau of Public Roads upon request. They cannot be purchased from the Superintendent of Documents.

SEPARATE REPRINT FROM THE YEARBOOK

No. 1036Y . . Road Work on Farm Outlets Needs Skill and Right Equipment.

TRANSPORTATION SURVEY REPORTS

Report of a Survey of Transportation on the State Highway System of Ohio (1927).
Report of a Survey of Transportation on the State Highways of Vermont (1927).
Report of a Survey of Transportation on the State Highways of New Hampshire (1927).
Report of a Plan of Highway Improvement in the Regional Area of Cleveland, Ohio (1928).
Report of a Survey of Transportation on the State Highways of Pennsylvania (1928).
Report of a Survey of Traffic on the Federal-Aid Highway Systems of Eleven Western States (1930).

A complete list of the publications of the Bureau of Public Roads, classified according to subject and including the more important articles in PUBLIC ROADS, may be obtained upon request addressed to the U.S. Bureau of Public Roads, Willard Building, Washington, D.C.

[^0]: ${ }_{1}$ For additional data on hauling with teams and wagons, see Public Roads, March 1928.
 ${ }_{2}$ Power Shovel Operation in Highway Grading, Public Roads, February, March,
 and April 1928 .

[^1]: ${ }^{3}$ For a brief discussion of the mass diagram and a method of taking off the fuantities to be hauled any given distance, see Pt'blic RoAns, March 192x, jI). Is and 19.

[^2]: ${ }^{2}$ Only repistration fees are shown，except that in 3 states（as noted）certain special taxes are patid in lied of
 registration fees and in succh cases the special taxes are here includded．
 3 Reports from certain States do mot segregate passenger vehicle fees．In such cases apmoximations have
 heept made as noted －Many states do not segregate pmblic vehicles for hire，from brivately owned masenger cars and returns

[^3]:
 11 Payments on state highway bond obligations，except as noted．

