

A JOURNAL OF HIGHWAY RESEARCH

UNITED STATES DEPARTMENT OF AGRICULTURE bureau of pubuc roads

VOL. 15, NO. 6
∇
AUGUST 1934

PUBLIC ROADS Highway Research

Issued by the
UNITED STATES DEPARTMENT OF AGRICULTURE

BUREAU OF PUBLIC ROADS

G. P. St. CLAIR, Editor

Volume 15, No. 6
August 1934

The reports of research published in this magazine are necessarily qualified by the conditions of the tests from which the data are obtained. Whenever ii is deemed possible to do so, generalizations are drawn from the results of the tests; and, unless this is done, the conclusions formulated must be considered as specifically pertinent only to described conditions

In This Issue

Page
A Study of Oil-Treated Roads in Colorado and Wyoming 137
Power-Shovel Operation in Highway Grading 147

THE BUREAU OF PUBLIC ROADS - . . Willard Building, Washington, D.C. REGIONAL HEADQUARTERS Mark Sheldon Building, San Francisco, Calif.

DISTRICT OFFICES

DISTRICT No. 1. Oregon, Washington, and Montana.
Post Office Building, Portland, Oreg
DISTRICT No. 2. California, Arizona, and Nevada.
Mark Sheldon Building. 461 Market St., San Francisco, Calif.
DISTRICT No, 3. Colorado, New Mexico, and Wyoming.
237 Custom House, Nineteenth and Stout Sts., Denver. Colo.
DISTRICT No. 4. Minnesota, North Dakota, South Dakota, and Wisconsin. 907 Post Office Building, St. Paul, Minn

DISTRICT No. 5. Iowa, Kansas, Missouri, and Nebraska.
Saunders-Kennedy Building, Omaha, Nebr.
DISTRICT No. 6. Arkansas, Louisiana, Oklahoma, and Texas.
Old Post Office Building. Fort Worth, Tex

DISTRICT No. 7. Illinois, Indiana, Kentucky, and Michigan.
South Chicago Post Office Building, Chicago, III.
DISTRICT No. 8. Alabama, Georgia, Florida, Mississippi, South Carolina, and Tennessee.

Federal Building, P.O. Box 60, Montgomery, Ala.
DISTRICT No. 9. Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, and Vermont. Federal Building. Troy, N,Y.
DISTRICT No. 10. Delaware, Maryland, North Carolina, Ohio, Pennsylvania, Virginia, and West. Virginia.

Willard Building, Washington, D.C.
DISTRICT No. 11. Alaska.
Room 419. Federal and Territorial Building, Juneau, Alaska.
DISTRICT No. 12. Idaho and Utah.
Federal Building, Ogden, Utah.

Because of the necessarily limited edition of this publication it is impossible to distribute it free to any person or institutions other than State and county officials actually engaged in planning or constructing public highways, instructors in highway engineering, and periodicals upon an exchange basis. At the present time additions to the free mailing list can be made only as vacancies occur. Those desiring to obtain Public Roads can do so by sending $\$ 1$ per year (foreign subscription $\$ 1.50$), or 10 cents per single copy, to the Superintendent of Documents, United States Government Printing Office, Washington, D.C.

A STUDY OF OIL-TREATED ROADS IN COLORADO AND WYOMING

BY THE DIVISION OF TESTS, U.S. BUREAU OF PUBLIC ROADS

Reported by C. A. CARPENTER, Assistant Civil Engineer, Bureau of Public Roads

IN JULY 1933 an inspection was made of approximately 150 miles of oil-processed roads in northern Colorado and southeastern Wyoming. Parts of U S 30, 40, 85, and 285, and Colorado 7 and 14 were included in the survey. The locations and mileages of the projects studied and the number of samples taken are given in the following tabulation:

Route	Location	Mile- age	
Colorado 7 Colorado 14 U S 30 US 40 N U S 85 U S 285	Boulder, Colo. 1 Fort Collins, Colo., to Ault, Colo Cheyenne, W yo., east Berthoud Pass, Colo Ault, Colo., to Cheyenne, W yo Fort Collins, Colo., to Laramie, W yo	$\begin{array}{r} 4 \\ 18 \\ 3 \\ 20 \\ 42 \\ 63 \end{array}$	$\begin{array}{r}6 \\ 2 \\ 1 \\ 3 \\ 7 \\ 23 \\ \hline\end{array}$
	Total.	150	42

${ }^{1}$ Survey covered portions of 2 principal streets surfaced with oil-processed gravel. Population of Boulder is approximately 12,000 .

STUDY MADE TO RELATE CHARACTERISTICS OF MIX TO PERFORMANCE IN SERVICE

The study was made to obtain data concerning the range in densities and in percentages of voids in trafficcompacted oil-mix surfaces which had been in service. In was also desired to determine, if possible, whether the percentage of voids in the mixtures in service has any definite bearing on their stability and durability.

All of the surfaces inspected were of the dense-graded mixed-oil-treatment type and were, in most cases, constructed on gravel or crushed-stone base courses.

In conducting the survey, each section of highway selected for study was first traversed by automobile to get a general idea of its condition and to decide upon locations for sampling. Points for sampling were located at failed areas and at adjacent areas in good condition in order that comparative studies might be made of good and bad areas in individual projects. Failed areas varied from a few square yards to occasional sections the full width of the pavement and a few hundred feet in length but were usually comparatively small.

Of the 150 miles of highway inspected there were only three cases where marked failure had occurred over an extended portion of a project. One of these was a section about a mile in length on U S 85 approximately 33 miles south of Cheyenne, where the surface, although having good riding qualities, appeared excessively rich and was very rubbery and unstable. Another was a 132 -mile section on U S 285 in and adjacent to the village of Laporte, Colo., where the surface was constructed on a fill composed largely of clay. The fill crosses a low, wet area where the old gravel road had always been subject to frost heaving in spring. The new fill is wet and a considerable amount of plastic clay was found in a layer between the base and the bituminous surface. This section of surfacing had been scarified and relaid a few days prior to the inspection and was already cracking, rutting, and shoving when the inspection was made.

A Smooth Riding Surface Between Fort Collins and Laramie Typical of Most of the Surfaces Inspected.

The third example of extensive failure noted was the oiled portion of the Berthoud Pass Road on the west side of the Pass. This section extends from the town of Frasier, Colo., eastward about 10 miles toward the Pass. About one-third of it is built across mountain meadows which are irrigated by flooding several times each summer. Frequent rains during the summer, heavy snow during the winter, and slush ice in the spring have added to the difficulties of building and maintaining the oil-mixed surface. Virtually the entire length of this 10 -mile section was cracked extensively. The condition varied from a network of hair cracks on some portions to extensive "alligator" cracking and shoving on others. Where shoving had occurred the oiled surfacing had separated from the base and the appearance of the underside of the mat indicated that considerable slippage of the mat on the base had occurred. At each of the test holes on this section the base was wet and a layer of plastic clay was found between the base course and the surface mixture.
The west 2.6 miles of this project represented by samples 40 , 41 , and 42 and the easterly 3 miles had been surfaced about a year at the time of the inspection. The central portion of approximately 4 miles was completed just prior to the inspection. Several short sections of the year-old surface had been scarified and

Table 1.-Results

relaid a few days prior to the inspection. These reworked portions showed a general tendency to develop cracks as soon as traffic had recompacted them. In general, the mixture on the entire project was rubbery and unstable and appeared to be excessively rich.
LIQUID CONTENT, TYPE OF FILLER AND DRAINAGE CONDITIONS APPEAR TO AFFECT SERVICE QUALITY

In addition to the three cases of extensive failure, which totaled approximately $12 \frac{1}{2}$ of the 150 miles of surfacing observed, there were numerous instances of local failure due to clay spots in the base, seepage of water, and local areas deficient in oil binder. Many
of these small local failures were not detrimental to the riding qualities of the road.

The bulk specific gravity or density of the compacted surface was determined in the field at all locations where samples were taken. For this purpose a special portable balance, sampling equipment, and a tank of water for immersing specimens were carried in the car. The balance was designed especially for the purpose. It was constructed with a demountable beam and was accurate to one-tenth gram. Besides the unbroken samples taken for gravity determinations, samples were taken from each test hole, sealed in metal buckets and shipped to the Arlington laboratory for further
of field observations

tests. Notes were kept on the type and condition of the base, drainage, and any visible peculiarities of the subgrade and appearance and condition of the surfacing mixture. As much information as could be obtained in the limited time available as to construction details and date of construction was included in the field notes. Table 1 is a summary of the field data on the surfaces represented by the 42 samples collected.

In the laboratory the samples were tested for specific gravity of the constituents of the mixture, water and oil contents, grading and type of aggregate, and type of filler. Portions of the samples passing the no. 8
sieve were tested for Hubbard-Field stability with the water content as received and also with the water removed by drying for 3 hours at $212^{\circ} \mathrm{F}$. Two HubbardField specimens of the water-free mortar from each sample were tested for swell in water over a period of 9 days.

The percentages of air and water voids in the compacted road surfaces were computed from the specific gravities as determined in the field and the specific gravities of the constituents as determined in the laboratory. Table 2 gives the results of laboratory tests on the 42 samples.
Table 2.-Results of laboratory tests of samples

The percentages of bituminous material required for the various gradings were calculated by the Stanton (Calif.) formula, ${ }^{1}$ the California surface area method, ${ }^{2}$ the Wyoming formula, ${ }^{3}$ and the McKesson-Frickstad formula. ${ }^{4}$ The results of these calculations are compared with the oil contents of the mixtures as determined by extraction in table 3. Some of the data from tables 1 and 2 are repeated in table 3 for convenience in making comparisons.

It will be noted that the percentages of oil calculated by the Stanton formula are in close agreement with the
as oil and water content, type of filler, type and condition of the base and subgrade drainage are of primary importance.

Evidence of failure noted in most surfaces having high LIQUID CONTENT
The sections of surfacing represented by the first 15 samples listed in table 3 and designated as group 1 showed evidence of failure of the type usually found in unstable mixtures containing excessive quantities of liquid binder, namely, shoving, corrugating, and

General View and Detail of a Surface of Group 1 Which Was Highly Unstable Due to a High Combined Oil and Water Content. Age Approximately One Year at Time of Inspection. Note Tire Marks and Foot Tracks on This Surface.
mean percentages given by the surface area method. The Wyoming formula indicates considerably higher percentages, agreeing closely with the maximum percentages given by the surface area method. The Mc-Kesson-Frickstad formula indicates lower percentages and agrees closely with the minimum percentages given by the surface area method. The average spread between the maximum and minimum as given by the surface area method is 1.4 percent.

Analysis of the data presented in table 3 indicates that the void content of a compacted mixture has relatively little bearing on its behavior and that such factors

[^0]rutting. Ten of them also showed extensive "alligator" cracking. The combined percentage of water and oil in these was, in all but one case (sample no. 14), considerably greater than the percentage of oil required by the Stanton formula, and all but three contained more total liquid than the percentage of oil required by the Wyoming formula. Considering oil alone, all but three of these mixtures contained less oil than is required by the Stanton formula. Nine of the 15 samples contained more than 2 percent water, the average water content for the 15 samples being 1.9 percent. These facts seem definitely to associate high liquid content with lack of stability. There are indications that high liquid content causes instability regardless of whether the liquid is principally oil or oil and water in various proportions.
The next 20 samples listed in table 3 and designated as group 2 are from sections which showed no visible evidence of failure. All but six of these contained less total liquid (oil and water) than the percentage of oil
Table 3．－Correlation of field and laboratory test data

			 	N－NOD0HOMmme OONOHONON 	स000NHT 	
	気		 	 	Nig88： 	
	$\begin{aligned} & \text { w్ } \\ & \text { ō } \\ & \text { B } \end{aligned}$		 \Rightarrow ले विने विनiñ riनi	 		
					スざさざごッ	$\mathfrak{\sim} \mathfrak{\sim}=$
				 		$\begin{aligned} & \text { Nom } \\ & \text { Sion } \end{aligned}$
			000000 H00000－10mn－ 	 	க்ธిษํํํํํํ	$\begin{aligned} & \text { mor. } \\ & \text { かisi } \end{aligned}$
			¿むーONH1000N00H0000 	 	$\rightarrow \infty$ Nmみみに 	
			 A． 8	 	 	$\begin{aligned} & 10710 \\ & 150 \\ & 150 \end{aligned}$
			 	 	$\begin{aligned} & \text { Solvong } \\ & \text { stimosintin } \end{aligned}$	$\infty+\infty$
	※	$\begin{aligned} & \text { 育品 } \\ & \text { 品品 } \end{aligned}$	20	 	－Nセゆにが 	
	흘뮴 ．	$\begin{aligned} & \text { 悲 } \\ & \text { 品 } \end{aligned}$		 	NomonNoty	－00\％
		家品	Q	 	$\infty \infty 000$ NIN 	$\infty\llcorner$
				 	$\underset{\sim}{+\infty} \underset{\sim}{\infty}$	
		$\begin{aligned} & \text { ay } \\ & \text { and } \\ & \text { and } \end{aligned}$		 	 1111111	
					$\begin{aligned} & \sim-10000 \\ & \hdashline 11 i= \end{aligned}$	
				HmNHOONOOOMOMNHOHm00 		－0゙メ
			\therefore HMNOROMNMHOOOHN 	 	のHOHmNo 	
	$\stackrel{\rightharpoonup}{\sigma}$			HCNNOOHOHMNMONON－HMN 	$\infty 0 \infty 0000$ 	$\begin{aligned} & 10100 \\ & \text { misjo } \end{aligned}$
		訔		 		＋om
$\begin{aligned} & \text { 20 } \\ & \text { g } \\ & 0.3 \\ & 0 \end{aligned}$			 	 	LMONONH 	
	身荡			 	लONmかにN 	$\begin{aligned} & \text { no } \\ & \text { nig } \end{aligned}$
				No evidence of failure		
宊禺足家						

[^1]

Typical Oil-Mix Surfaces Which Have Given Excellent Service. The Mix Shown on the Left Was Rich and Unstable the First Iear and Was Remixed with Additional Gravel. It Was Three Years Old at the Time of Inspection. The One on the Right Had Received No Maintenance of Any Kind Since Its Construction Four Iears Prior to the Inspection

Typical Examples of Raveling of Group 3 Surfaces Hayng a Low Oll Content and No Seal Coat or Surface Treatment to Prevent Loss of Aggregate.

Group 3 Surface Represented by Sample 9. Mixture Was Low in Oll Content and Had Been Sealed to Prevent Raveling. Picture Shows Local Area Where Seal Had Peeled and Raveling Followed. Sealed Portion Represented by Sample 8 Was in Excellent Condition.
required by the Stanton formula. Only two contained as much total liquid as the percentage of oil required by the Wyoming formula. Considering oil content alone all but six samples were fairly close to the minimum content required by the surface area method, the six exceptions having from 1 to 1.9 percent less oil than would be required by this minimum. Sample no. 8 , which had 1.9 percent less oil than the minimum by the surface area method, contained only 2 percent oil but the section represented by it had been given a seal treatment. This surface was in good condition except for a few small areas such as that represented by sample 9 and illustrated above, where the seal coat had peeled off allowing the mixture to ravel. None of the 20 mixtures contained as much as 2 percent water. The average water content was 1.1 percent.

These data indicate that stability and durability of the surface under traffic are definitely associated with comparatively low oil content and water content below 2 percent. Considering all the mixtures sampled, evidence of failure was noted in all but five instances where the total liquid content (oil and water) was greater than the oil requirement as calculated by the Stanton formula. In four of these exceptional cases the liquid content was only slightly greater than the percentage given by the formula. Not a single example of satisfactory service behavior was noted where the water content in the surface was as high as 2 percent.

The last seven samples listed in table 3 as group 3 are from sections of pavement which, although having adequate stability, showed raveling because of poor hond. These mixtures, without exception, contained less total liquid than the percentage of oil required by the Stanton formula. Their total liquid contents are in very close agreement with the oil requirements of the Mekesson-Frickstad formula and also with the mini-

Group 1 Surface Represented by Sample 5. The Base Was Moist Clay-Gravel. Surface Smooth and Firm but Badly Cracked.
mum percentages required by the surface area formula but, considering oil alone, they are all deficient in oil content as indicated by the formulas. The deficiency ranges from 0.3 to 1.4 percent and averages 0.9 percent on the basis of the minimum requirement by the surface area formula. Their water contents varied from 0.3 to 1.4 percent. The average water content was 0.9 percent.

LABORATORY STABILITY TESTS ON MORTAR SPECIMENS APPEAR TO INDICATE STABILITY OF MIXTURES IN SERVICE
Raveling and loss of surfacing material caused by poor bond are shown to be associated with lack of oil. The average water content of the seven lean mixtures was distinctly lower than that of the first group and slightly below that for the second group.

Although the unstable group has a slightly lower average void content than had the two stable groups, study of the data obtained on these surfaces indicates that there is little definite relation between the percentage of voids in the compacted mixtures and the service behavior of the pavement. In the case of the sections showing failure because of lack of stability the percentage of air-filled voids ranges from 0 to 3.5 , with an average of 1.3 . For the mixtures showing no evidence of failure the air-filled voids range from 0.5 to 9.2 percent with an average of 4.2. The mixtures showing failure caused by raveling had air-filled voids ranging from 2.3 to 11.2 percent and averaged 6 percent. These figures are all based on the percentage of airfilled voids in a given mixture. Any water present is considered as a part of the mixture.

Assuming all water to be evaporated from samples leaving additional air voids, the percentages of voids would be appreciably higher but there would still be no significant differences between groups. Considering group averages only, the voids increase by increments of approximately 1 percent from group to group but the range of voids is so great within each group that each group overlaps the others. The 15 mixtures failing on account of instability hare roids (air and water filled) ranging from 2.5 to 9.3 percent with an average of 5.7 . Those showing no failure have voids ranging from 3.3 to 10.8 percent and average 6.8. Those showing failure caused by raveling have voids

Typical Examples of Fallure Caused by High Moisture Contents in the Mixtures. These Group 1 Surfaces Are Two and Three Years Old.
between 5.5 and 12.4 percent with an average of 8.2 percent. These percentages are given in table 3 under the heading "Air and water-filled voids."

The Hubbard-Field stabilities of the mortars (oil coated material passing the no. 8 sieve) appear to have a general relation to the service stabilities of the mixtures. Although there is considerable variation in mortar stabilities within each group, the group averages show a tendency toward low mortar stabilities for the mixtures which failed because of excess oil or oil and water combined. Although the stability of mortar from the unstable mixtures with field water content is low, when the test is made on water-free specimens the stabilities are almost as high as the average for the other two groups. There is no appreciable difference in the average stabilities of either wet or water-free mortars representing the sound surfaces and the raveled surfaces. The arerage increase in mortar stability caused by the drying of the mortar is much less for groups 2 and 3 than for the unstable group 1.

The average stabilities by groups and the maximum and minimum stabilities by groups are summarized below.

Hubbard-Field stabitities of the mortar
[Passing no. 8 sieve]

	With water content as received			With water removed by drying		
	Minimum	$\begin{aligned} & \text { Aver- } \\ & \text { age } \end{aligned}$	$\begin{aligned} & \text { Maxi- } \\ & \text { mum } \end{aligned}$	Minimum	$\begin{aligned} & \text { Arer- } \\ & \text { age } \end{aligned}$	Max mum
Group 1 (failed because of instability)	475	1,535	2,525	1,050	2, 560	3,750
Group 2 (satisfactory service) --.	925	2, 295	3,625	1,500	2, 695	4,850 4,300
Group 3 (failed through raveling).	1,175	2,180	3,125	1,500	2,605	4,300

The relations shown above indicate that the stability of the mortar is appreciably reduced by the presence of water in the amounts found in these samples. It seems reasonable to conclude, from the behavior of the sections studied, that the stability of the surface is to some extent influenced by the stability of the mortar.

An Oil-Mix Surface in Boulder, Colo. Surface Has Carried Through Traffic for Three Years and Is in Excellent Condition Except for Occasional Small Cracked Areas.

The soil analyses of the mineral aggregates extracted from these samples indicate that all the filler materials used were comparatively low in clay content. The maximum percentage of clay in any of the samples,
based on the material passing the no. 40 sieve, was 23 percent (table 3) and the average for all samples was 15.4 percent.

FILLERS HAVING HIGH VOLUME CHANGE UNDESIRABLE

It was not possible to obtain sufficient filler from the samples to make other soil tests. However, swell measurements were made on molded specimens of the portion of the original mixtures passing the no. 8 sieve. After sieving, the mortar was oven-dried at $100^{\circ} \mathrm{C}$. to remove any water present, then molded into Hubbard-Field specimens and immersed in water for 9 days. Vertical swell was measured with an Ames dial gage at 1, 3, and 6 hours and at $1,2,3,7$, and 9 days. The percentages of swell of these specimens are given in table 3 .

Swell of such specimens in excess of about $2 \frac{1}{2}$ percent at 9 days may be considered to indicate inferior or questionable filler material. Att 3 days, 2 percent swell may be considered the critical value. The figures given in table 3 are based on the results at 9 days.

Results of the swell tests do not indicate that inferior filler contributed to the failure of the mixtures in group 1, with the possible exception of those represented by samples $13,20,28,32$, and 39 . In addition to having high percentages of swell, the mortar specimens from these five samples developed more or less cracking and disintegration during immersion. It is interesting to note that of the 15 mixtures in this unstable group, those containing fillers with high volume change and a tendency to disintegrate during immersion had, in general, the highest water contents regardless of whether the base course was wet, moist, or merely damp. The same relation is also noticeable to some degree in the other two groups and leads to the conclusion that fillers which have high volume change and show disintegration or slaking tend to retain moisture in the mix, once it has entered the surfacing. In the case of mixtures which are susceptible to loss of stability when wet, this tendency apparently prolongs the period of surface instability for some time after the base has dried.

In the swell test on the mortars of group 2, about half the materials showed considerable swell, and six developed cracking and disintegration during immersion. With only one exception, however, the surfaces from which these samples were taken were on dry or only slighlty damp bases, and the mixtures, without exception, contained only small amounts of moisture. This probably accounts for the fact that the surfaces represented were not affected by the questionable quality of the filler material.

Three of the mortars from the group 3 samples showed considerable volume change and two of them developed cracking and disintegration during immersion. Two of these were from surfaces which had dry bases and the other was from a surface having a moist base. All three mixtures had very low water contents and for this
reason the raveling of these surfaces in service is not believed to have any connection with the type of filler used.

CONCLUSIONS

The results of the observations and tests are briefly summarized as follows:

1. Instability of the oil-processed surfaces was caused by high liquid content. In some cases this high liquid content was made up principally of bituminous material with 1 percent or less of water but in 9 of the 15 cases of failure caused by instability, the mixtures contained water in excess of 2 percent. No mixtures in which the water content was 2 percent or more were found to give satisfactory service.
2. The mixtures which, after a year or more of service, contained percentages of bituminous material agreeing roughly with the minimum requirements of the California surface area formula, were sufficiently rich to prevent loss of aggregate by raveling. In order to account for normal losses during early service, it is assumed that the mixtures were somewhat richer when laid and for this reason it is believed that either the Stanton formula or the mean surface area formula is approximately correct for designing mixtures containing closegraded aggregate.
3. The mixtures which showed evidence of failure caused by raveling contained less oil than would be required by any formula now in use. These mixtures, however, were in no case lacking in stability and it is believed that surface treatment would give them satisfactory wearing qualities.
4. Clay spots and areas in the bases containing excessive proportions of clay were found to be the cause of numerous small local failures.
5. In several cases where a high moisture content was found in a mixture on a comparatively dry base, the filler material was found to have a tendency to swell and disintegrate in the swell test, thus indicating a relatively high colloidal content. Colloidal contents are believed to have been responsible for the retention of water in mixtures containing them.
6. Hubbard-Field stabilities of the mortars from the unstable mixtures were noticeably low when the mortars were tested with water contents as received. The stabilities were raised to very nearly the same values as those for the stable mixtures after the water had been dried out. This is interpreted to indicate that water destroyed the stability of these mixtures by reducing the stability of their mortars.
7. The relation between the percentage of voids in a mix and the service behavior of the surface is so indefinite for any one group of samples and the variation in voids between groups is so slight as to supply no basis for conclusions as to the effect of voids, or for designing oil-aggregate mixtures on the basis of void contents.

POWER-SHOVEL OPERATION IN HIGHWAY GRADING

BY THE DIVISION OF MANAGEMENT, BUREAU OF PUBLIC ROADS

Reported by T. WARREN ALLEN, Chief, Division of Management, and ANDREW P. ANDERSON, Highway Engineer

PART 1.-THE OPERATING CYCLE AND FACTORS AFFECTING THE RATE OF PRODUCTION

THE DAILY COST of operating a power-shovel grading outfit is very nearly fixed for any given set of conditions, regardless of whether the output is high or low. The most effective way, therefore, for a contractor to reduce his unit costs is to increase his rate of production. Some of the more important factors controlling rates of production and attainment of efficient and economical operation will be discussed in these articles.

HIGH DEGREE OF EFFICIENCY
ATTAINABLE IN SHOVEL OP. ATTAINABLE IN SHOVEL OP.
Efficient use of the power shovel in highway grading generally involves the proper coordination of at least three distinct operations: (1) Digging and loading, (2) hauling and dumping, (3) spreading and compacting. The material, except where it can be cast, must be dug and loaded into the hauling units at or near the maximum rate of production which can be attained by the shovel in that particular material. The hauling units must be sufficient to carry the output of the shovel and must be operated with almost clocklike precision, so that the loads may be received, transported to the place of disposal and dumped, turned to the shovel without delay to individual units or interruption to the steady operation of the shovel. At the fill or dump the material brought by the hauling units must be spread and compacted or otherwise cared for as may be required by specifications without interfering with the steady operation of hauling units.
If the material is too hard to be dug effectively with the shovel, drilling and blasting are necessary. These operations also must be carried on efficiently and without interfering with other work.

Aside from the management, efficiency in powershovel operation is largely dependent on the operator and on the shovel itself. A first-class operator may be able to obtain fair production with a poor shovel, but a poor operator is a heavy handicap, even with the best equipment. It is hoped that the data assembled in these papers will help contractors to increase their present rates of shovel production and power-shovel manufacturers to perfect their shovels so as to meet
still better those conditions which are prerequisite to high rates of production.

The shovel is the primary producer and all production is dependent on it. The shovel should be sturdy, powerful, dependable, fast, and easily operated. But no matter how good the shovel, a high grade of skill, intelligence, and endurance is required of the operator for a consistent high rate of production.

Efficient power-shovel operation, in the sense intended here, demands high production with a minimum use of labor and auxiliary equipment. This requires the synchronization and coordination of all operations so that the entire organization functions as a unit. Absolute perfection in all details is probably impossible. Nevertheless, extensive studies on a large number of projects operated under a great variety of conditions show conclusively that (1) a high degree of efficiency is possible of attainment, and (2) that, in general, the low production found on many projects is due to conditions over which the management has some control and which are

Abstract

When working in ordinary "common excavation'" where the material dumps freely from the bucket and is 4 or more feet in depth, a good power shovel can be operated so as to load vehicles at the rate of four dipper loads per minute, provided the vehicles are so placed that the average boom swing does not exceed 90°. A highly skilled operator can attain this rate for intermittent periods throughout the day. To do so, it is necessary to load the dipper in about $51 / 4$ seconds, to swing and spot the dipper in about 4 seconds, to dump it in $11 / 4$ seconds, and then return the dipper to the loading point in about $41 / 2$ seconds.

Many jobs have been found on which this rate has been maintained during intermittent periods of varying lengths under the conditions given above, and this may be taken, therefore, as about the maximum rate attainable with present-day power shovels under ordinarily favorable field conditions. Numerous jobs have been found on which the average rate of all-day shovel operation, in good common excavation, was at the rate of three or more dipper loads per minute; and this may be accepted as a criterion of good operation under normally favorable field conditions.

therefore to some extent remediable.

CHARACTER OF MATERIAL AFFECTS SIZE OF DIPPER LOAD

Under conditions to which each shovel size is adapted, shovels of all the sizes usually found in highway work can be operated at approximately the same cycle speed. In general, data for one size can be applied to any other size-at least within the range of shovels with capacities of from $5 / 8$ to 2 cubic yards. In making such comparisons we must remember, however, to extend data only to similar working conditions for each of the respective shovel sizes. Rock which would class as well blasted for a 2 -yard shovel might readily grade as poorly blasted for a smaller shovel. Wellblasted material should have very few pieces with any dimension much greater than about half the smallest inside dimension of the bucket. A large shovel may work readily in material which a small shovel could handle only with difficulty.

Figure 1.-Analysis of Time Study of 1,518 Dipper Loadings. Average Loading Time, 5.5 Seconds.

Figure 2.-Analysis of Time Study of 1,667 Dipper Loadingis. Average Loading Time, 6.4 Seconds.

TIME LOADING DIPPER - SECONDS
Figure 3.-Diagram Showing Percentage of Loading Operations Performed in Various Time Intervals. Based on 734 Loadings of $1 \frac{1}{1 / 8}$-Yard Shovel Working in $21 / 2$ to 7 Feet of Clay with a Few Boulders.

Figure 4.-Dragram Showing Percentage of Loading Operations Performed in Various Time Intervals. Based on 1,058 Loadings (18 Were Over 32 Seconds) of a $3 / 4$-Yard Dipper Working in 1 to 5 Feet of Sticky Clay. Average Time 10.29 Seconds.

Figure 5.-Diagram Showing Percentage of Loading Operations Performed in Various Time Intervals. Based on 658 Loadings (16 Were Over 32 Seconds) of a $3 / 4-$ Yard Shovel Working in 2 to 6 Feet of Sticky Clay. Average Time, 12.2 Seconds.
Output is the product of dipper loads and the average yardage per load. A good operator can combine speed and high average quantity of material per dipper load. In ordinary common excavation three or more feet in depth, the average dipper load in terms of cubic yards of material, as measured in place, may be expected to average about as shown in table 1 .

In some materials which heap up in the dipper and do not spill on the swing, the average load will sometimes equal the rated capacity. In poorly blasted rock or shale or in materials full of roots and stumps, the aver-

Table 1.-Average yardage per dipper load for different dipper sizes

Size of dip- per (rated capacity)	Material per dipper load
Cubic yards $3 / 1$	Cubic yards 0.50 1 $11 / 4$ $11 / 2$
.68	
1.10	

age dipper load may be 40 percent less than the average for ordinary common excavation or about 0.3 cubic yard for a $3 / 4$-yard dipper and 0.65 cubic yard for a $1 \frac{1}{2}$ yard dipper. Figures 1 to 5 and tables 7, 9, 10 and 11 are illustrative of the studies made, and show the rates at which dipper loads can be deposited in the hauling units with fast operation, and how a few operations increase the average time per cycle for the entire period. As the material changes from good common to other classifications, the digging and loading become slower and there is greater difficulty in obtaining a full dipper.

During the studies on which these articles are based many determinations were made as to the number of dipper loads and the quantity of material moved under various conditions. Quantities were usually determined by careful cross-sectioning and are believed to include sufficient volume and variety to represent a fair average of the more usual conditions met with in highway grading work. Table 2 gives the results obtained on a considerable number of jobs and illustrates how the size of the dipper load may vary from time to time and from job to job. The average dipper load of a so-called " $3 / 4$-yard dipper", having a capacity of approximately three-fourths of a cubic yard when struck in line with the top of the teeth and the top of the rear edge, may vary from 0.3 to 0.8 cubic yard, depending on the material and the skill of the operator. In fair to good common excavation with few roots and boulders, a good operator working under favorable conditions should move an average of 0.5 to 0.6 cubic yard per dipper load. In poorly blasted rock or shale, very rooty and stumpy soils, and in certain tough, moist clays, the average load may be only 0.3 to 0.35 cubic yard or even less in exceptional cases. The average dipper load is also likely to be low in shallow cuts. The same is true of materials which bulk considerably when broken up or which lack cohesion and will not heap up in the dipper.

TIME OF LOADING GREATLY INCREASED IN DIFFICULT MATERIAL

The material itself is responsible for much slow digging. Cuts usually classed as common excavation but which contain many medium-sized or large rocks embedded in stiff clay are particularly troublesome. The shovel operator cannot see such rocks until they are exposed, and when the dipper strikes one it may be necessary to draw back and try again. Often two or three passes, sometimes more, are made before either a load of loose material is obtained or the position of the rock defined so that it can be picked up.

Tables 3, 4, and 5 show the effect of the character of the material on the time required for filling the dipper. The tables do not all show the quantities moved per dipper load; but, in general, fast operation in good material is accompanied by large dipper loads. The size of the dipper load decreases with an increase in the difficulty of loading, and this decrease is at a somewhat faster rate than is indicated by the time factor.

Material Too Hard to Dig Readily Without Blasting.
Table 2.-Average size of dipper load under various conditions

Type of shovel	Rated capacity of dipper	Character of material	Dipper loads handled	Aver- age load per dip- per
	Cubic yards		Number	Cubic yard
Steam	${ }_{3}{ }_{4}$	Light moist clay, free from roots and stones.	147	0.39
Do	$3 / 4$	do	223	. 51
Do	$3 / 4$	do	170	50
Do	$3 / 4$	Light moist clay, with some shale	148	44
Do	34	Loamy clay, with 25 percent loose rock.	50	. 48
Do			156	. 40
Do.	34	Sand-clay	82	. 60
Do	$3 / 4$	do.	150	. 62
Do	34	Loamy to hard clay	85	. 58
Do	3	Loamy to sandy clay	111	. 35
Do	$3 / 4$	Loamy to clay.	157	. 38
Do	34	do.	72	53
Do	34	Gneiss-granite, poorly blasted	2,960	33
Do	34	Wet, sticky clay, with a few stumps	1,745	67
Do	$3 / 4$	Moist to wet sand-clay	1,825	80
Do	3.4	Sandstone, well blasted	632	. 35
Do	3	-..do .-...........	2,599	. 43
Do	3	Moist clay, with a few small surface boulde	794	. 65
Do	34	Very wet clay	990	. 59
Do	34	Wet clay, with small stumps-	210	. 48
Do	$3 / 4$	Sandy gravel, with some hard chunks of shale	4, 099	. 41
Do	3.4		-309	. 53
Do	34		71	. 41
Do	7/8	Granite-gneiss, poorly blasted	3,340	. 40
Gas	$3 / 4$	Loamy clay, moist, with a few roo	583	. 61
	11/2	Sandstone, blasted......	3,448	. 53
Do	$11 / 3$	Dry clay, with a few boulders.	2,892	. 53
Do	$13 / 2$	Dry clay, with surface boulders	-996	. 64
Do	11/8	70 percent large boulders and 30 percent dry clay --	667	. 57
Do	11/3	10 percent dry clay, 20 percent loose rock, 70 percent solid rock, blasted.	4,384	. 63
Do	11/8	Wet sticky clay, with a few surface boulders......-	2, 396	. 57
Do.	11/8	20 percent dry clay, with 80 percent sandstone, well blasted.	784	. 60
Steam	$3 / 4$	Sandy clay and clay loam, with some stone	3, 504	. 4.4
Gas	$3 / 4$	80 percent sandstone, poorly blasted, with 20 percent clay.	788	. 46
Do			6,646	. 46
Do.	11/4	Mostly earth, with about 25 percent fair to poorly blasted granite.	10, 254	88
Do	$11 / 4$	About 75 percent in poorly blasted granite.-.....-	4,485	. 61
Do.	11/4	Mostly shallow earth cuts with many boulders, some poorly blasted rock	8,778	. 68
Do	11/4	Mostly poorly blasted rock and shale .-............	39, 600	. 62
Do	$11 / 2$		29, 860	. 70
Do	$11 / 2$	Fairly well blasted rock and shale	53, 740	85
Do	$11 / 4$	do	88,600	74
Do	11/4	Deep cuts of well blasted shale and sandstone	78,300	. 80
Do	11/4	--.do.-.................-	58,000	. 87
Do	11/4	Good common	9,110	. 88
Do	$11 / 4$	Good common, fairly deep cuts	14,800	. 99
Do.	11/4		18,060	1.00

Large Boulders Are Hard on Equipment and Decrease the Rate of Production. They Should be Reduced by Blasting.

Figures 1 to 7 show graphically the number of dipper loadings performed in different time intervals on different jobs.

TABLE 3.-Effect of character of material on time required to load and dump dipper

Character of material

[^2]
CONDITIONS JUSTIFYING MORE THAN ONE PASS OF DIPPER ANALYZED

In general, operating speed should not be obtained at the sacrifice of size of dipper load. To sacrifice, say, 10 percent of the dipper load to increase the number of dippers by 10 percent results in a loss of amount of material dug and it frequently results, also, in smaller loads for the hauling units. The value of making additional passes to obtain a larger dipper load is dependent on the amount of material which such passes will add to the dipper load and the speed at which the shovel is operating. If a ${ }^{3 / 4}$-yard shovel is operating in fairly good common excavation in which the average dipper load is 0.5 cubic yard of material as measured in place, and the average operating cycle is 20 scoonds, then production is at an average rate of 0.025 cubic
yard per second. If a second pass to fill an occasional dipper is to be profitable, it must increase the dipper load at least at this rate, during time required to make the extra pass. If 6 seconds are required to make an

Table 4.-Effect of material on time required to load a 3/4-yard dipper as indicated by one-hour stop-watch studies with same operator throughout on each shovel

SHOVEL NO. 1

Kind and character of material	Time 10 load dipper	Height of face
Light sandy loam, free from roots	Seconds	Feet
Do.........-.............	3. 3	7.0
Loamy clay, free from roots and stones	1.5	6.5
Do.	4.7	6. 0
Do	4.8	10.0
Light clay and loam top soil, no roots or stones	4.9	2.0
Light clay with small amount of soft shale.	5.0	5.0
Loam.	5. 3	5. 0
Light clay, free from roots and stones	5.6	10.0
Light clay with small amount of shale	5. 7	10.0
Do.	5.8	4. 0
Light clay with increasing amount of shale	5.9	7.0
Loamy clay, with some roots	6.0	6. 5
Ordinary clay, free from roots and stones	6. 2	4.5
Loamy clay.	6.5	0.3-1.5
Light clay and soft shale	6. 6	8.0
Loamy clay with loose rock in old roadbed.	8.2	2.0
Clay with 50 percent loose shale.	10.7	6. 5
Hard clay with loose rock in old roadbed	15.9	0. $25-2.5$
Hard clay with loose rock	16.3	2.0

SHOVEL NO. 2

Light, loamy clay, no stones or roots.	5. 2	5.5
Light clay, free from stones or roots.	5.7	4.0
Light clay, practically free from roots and stones.	6.0	3.5
Light clay with old hard roadbed on one side	6. 7	6.0
Do...	6. 9	4.0
Light to medium clay	7.5	4.5
Clay and soft shale.	8.2	2.0
Light clay with small amount of rock, side hill cut	9.2	0-4. 0
Clay and soft shale.	9.4	7.0
Sandstone, soft enough to crumble in hand	11.0	11.0

Table 5.-Effect of material on average time required to load dipper. Number of 1-hour studies during which the dipper was loaded from the class of material indicated in the time shown in the first column

A verage time to load dipper (seconds)								
3 to 4	1							
4 to 5	7							
5 to 6	20	5						
6 to 7	10	20			6			
7 to 8		12	30		23			
8 to 9		5	11	12	27			
9 to 10			13	16	6			
10 to 11			26	16	2			
11 to 12				21	4			
12 to 13.				11	d	7		
13 to 14				-	5	14	3	
14 to 15					9	11	2	
15 to 16.					3	4	,	
16 to 17					2	7	1	
17 to 18						10		1
18 to 19.						7	4	
19 to 20						6		3
20 to 22.						1	2	9
22 to 24.								3
241026.							1	7
26 to 28.								
28 to 30.								1
30 to 35.								
35 to 40								2
Average time of loading in seconds	5.5	6.7	8.9	10.9	9.9	15.5	17.4	23.9

extra pass it is not warranted unless 0.15 cubic yard can be added to the load.

The less the time of loading the dipper as compared with the time of the entire cycle, the greater is the importance of obtaining a full dipper. Consequently, it is more important to try for a full dipper when the swing is long than when it is short.

The relation between size of dipper load, length of shovel cycle, and time required to make an additional pass with the dipper may be shown as follows:
Let
$C=$ shovel cycle, in seconds, when only one pass is made with dipper.
$W=$ dipper load, in cubic yards, when only one pass is made with dipper.
$Q=$ percentage by which dipper load is increased by each additional pass of the dipper.
$P=$ time, in seconds, required for making each additional pass with dipper.
Then
\underline{W} rate of production when using only $\bar{C}=$ one pass of the dipper.
and

$$
W+X Q W=\text { rate of production when using } X
$$

$$
C+X P=\quad \text { passes. }
$$

$$
\frac{W+X Q W}{C+X P}-\frac{W}{C}=\begin{gathered}
\text { increase in the rate of operation } \\
\text { over that of using only one } \\
\text { pass. }
\end{gathered}
$$

So long as $C Q$ is greater than P, additional passes of the dipper will result in increased production.

For example, an operator working on a 20 -second cycle occasionally finds that the $1 \frac{11}{4}$-yard dipper, with which he usually obtains 0.9 cubic yard per dipper load, is only about two-thirds filled by the first pass. He has found that it requires 6 seconds to make each additional pass. Would it pay to make one or more additional passes to obtain the usual dipper load of 0.9 cubic yard? The solution is as follows:

The load in the dipper from one pass is 0.6 cubic yard. To obtain 0.9 cubic yard an increase of 50 percent is necessary, and $20 \times 0.50=10$ seconds. Since each pass can be made in 6 seconds, a distinct gain will be registered if the dipper can be filled to normal in one additional pass, but a loss will result if two passes are used to obtain the normal load. Since the cycle is 20 seconds, and the time required to make the additional pass is 6 seconds, the additional pass will be justified if a partial load can be increased by $\cdot \% / 20$, or 30 percent.

If the normal cycle were 25 seconds, then even two additional passes at 6 seconds each to obtain the normal load would register a definite gain. Additional passes would be advantageous so long as each pass increased the part-load by 24 percent. This discussion also demonstrates the greater importance of securing a full dipper load when the swing is long, as the longer the swing the longer the operating cycle. Table of shows readings of the time required to make additional passes and the extent to which such extra passes may be expected to increase the average loading time for the dipper.

Several instances have been observed in which contractors in an effort to increase the yardage per dipper load have replaced regular $3 / 4$-yard dippers with $1 \frac{114}{4}$-yard dippers. This proved a decided handicap to production, except in extremely soft and easy digging, as the power of the shovel was insufficient to force the large dipper through the material at normal loading
speed. In addition to decreased normal production, time losses due to breakage and repairs were high. I dipper larger than that for which the shovel was designed is not recommended.
Table 6.-Effect of multiple passes on time of loading dipper TIME REQUIRED IN MAKING MULTIPLE PASSES IN LOADING A MOIST TO WET GRAVELLY CLAY

| Number of passes |
| :--- | :--- | :--- | :--- | :--- |

NUMBER OF PASSESREQUIRED WIFN WORKINGIN FAIR TO GOOD COMMON EXCAVATION. MOSTLY SHALLOW CUTS. 78-YARD SHOVEL IN GOOD CONDITION

It has been pointed out that the time required to load the dipper often varies considerably from the average. The manner of this variation and its extent are shown in figures 1 to 7 and in various tables. Each of the graphs shown covers a considerable number of observations and shows the number of times the dipper was loaded in any given number of seconds. It is clear that a few of the loading times took very much longer than the others and that the effect was to increase the average loading time materially.

Figure 1 is based on a job in earth and well-blasted shale where the shovel performance was excellent. A comparatively large number of dipper loads required only 4 seconds each. The average loading time was 5.5 seconds, and there were only a few dipper loads which required much time, none over 11 seconds-an indication that a good, consistent operator was handling the shovel.

Figures 1 and 6 show results obtained on jobs with good, consistent operation. Figure 5 shows time of loading dipper in tough and somewhat sticky clay in which it was hard to pick up a full load. In about 50 percent of the observations on this job, one pass of the dipper was made in an average of less than 7 seconds. In the remaining cases, 2 or 3 , or even 4 , passes were made to fill the dipper to the satisfaction of the shovel runner. Occasionally the time of filling the dipper was as much as a full minute. The average time of filling the dipper on this job was 12.2 seconds.
Figure 7 illustrates the loading time of a rather indifferent operator. Although working in light loam soil, his average loading time was 16.5 seconds, more than double what it should have been.

INSUFFICIENT BLASTING FOUND ON MANY PROJECTS

There is a rather general tendency among grading contractors to do too little blasting, as well as to slight the clearing and grubbing. Poor blasting usually

Improper Spacingand Loading of Drill Holes Resulted in Material Hard to Load.

Same Rock Ledge as Above, Well Broken by Proper Blasting.

Appearance of Ground After A Satisfactory Blast. Material Weli Broken but Not Scattered.

234556781010121314151617181920212223242526272829303132 TIME LOADING DIPPER - SECONDS
Figure 6.-Diagram Showing Percentage of Loading Operations Performed in Various Time Intervals. Based on 1.322 Loading (15 Were Over 32 Seconds) of a $11 / 3$-Yard Dipper Working in $11 / 2$ to 5 Feet of Clay and Loam witha Few Boulders. Average Time, 9.67 Seconds.
 TIME LOADING DIPPER - SECONDS
Figure 7.-Diagram Showing Percentage of Loading Operations Performed in Various Time Intervals. Based on 763 Loadings (21 Were Over 32 Seconds) of a $3 / 4$-Yard Dipper Working in 1 to $4 \frac{1}{2}$ Feet of Light Loam. Average Time, 16.5 Seconds.
means the presence of large rocks and also rery frequently some tight or even unbroken ground. Large rocks, tight ground, large roots and stumps can be handled only with difficulty and at a slow rate. Further delays are often imposerl on the shovel while large rocks are being "bulldozed" or while unbroken ground is being reblasted.

When blasting has been so thorough that the largest dimensions of the larger pieces do not exceed one-half of the smallest inside dimension of the dipper, the rate of operation can be practically the same as in good to fair common earth. The increase in the amount of material moved per dipper load with improved blasting is striking, especially with the smaller shovels. In poorly blasted rock, the average dipper load for a $3 / 4$-yard shovel is not likely to exceed 0.3 cubic yard and may readily be as low as 0.25 cubic yard, while in well-blasted rock the same shovel will generally average about 0.45 cubic yard per dipper load, or about 50 percent more material than in poorly blasted materials.

In poorly blasted material there is not only a large reduction in the amount of material handled by each dipper load but there is also a decided decrease in the rate at which the shovel can be operated. Poor blasting, consequently, is a serious handicap to production. Table 12 illustrates the increase in production which can sometimes be obtained by comparatively light blasting. In this case the material was hard caliche which the 1 -yard shovel could move at the rate of only 64 cubic yards per hour before it was blasted. After blasting, the same shovel moved the material at the rate of 151 cubic yards an hour. The net gain to the contractor after paying the cost of drilling and blasting was about $7 \frac{1}{2}$ cents per cubic yard in addition to the saving in wear and tear on his shovel.

It will generally pay to blast material which is too hard to dig readily with the shovel. In hard rock thorough blasting is a prerequisite to efficient shovel operation. Examples of the effect of poor blasting on production rates are given in tables 5, 11, and $12 .{ }^{1}$

best position for shovel depends on height of cut

The position of the shovel with reference to the face of cut is often responsible for the repeated passes some shovel operators make to fill the dipper. Aside from the swing, the dipper is actuated by two separate and distinct motions: One, known as the "hoist", tends to raise the dipper in a vertical circle about the point of intersection of the boom and the dipper stick, while the other, known as the "crowd", controls the radius of the are in which the "hoist" moves the dipper. The "crowd" is used to force the dipper against the face of the cut, and on the swing to spot the dipper correctlyover the hauling unit. When the dipper stick is vertical, the combined motion of the "crowd" and the "hoist" can drive the cutting edge of the dipper almost straight forward several feet. When the dipper stick is horizontal, the "crowd" holds the cutting edge of the dipper hard into the bank.

When loading a dipper in a bank less than 2 feet high, a direct forward thrust of the cutting edge into the bank is required. While on a bank 6 or more feet high the loading is generally best done by a longer swinging motion in which a slice is cut from the bank. For some reason it appears to be difficult to find operators who work equally well in both shallow and deep cuts. The shovel should stand close to a low bank with the boom somewhat lower than normal and must be moved forward frequently. This is because the forward thrust of the dipper resulting from the proper combination of "hoist" and the "crowd" only reaches a relatively short distance. Most of the cutting from a high bank is best done after the dipper has begun to turn upward in its swing. This requires the shovel to stand somewhat back from the bank with the boom relatively high. The superintendent who will drill his shovel operator: in the proper placing of the shovel for effective dipperloading should find the results gratifying.

If there is any considerable amount of shallow cutting, the contractor may well consider the advisability: of using some other method than operation of a power shovel to move that portion of the work. Various kinds of scrapers, and in very rough country even bulldozers, are frequently used to good advantage in conjunction with the shovel, first, to move short-haul material and make shallow cuts, and, second, to help the blade grader trim the cuts to exact grade after the shovel has passed through.

moving shovel consumes much time

The time spent in moving the shovel forward within a cut varies somewhat inversely as the depth of the cut. In shallow cuts careful attention must be given to the time required to make each forward move of the shovel. Table 7 gives a few observations of the time required for individual moves of two $1 \frac{1}{4}$-yard shovels working in earth and in well-blasted shale and schist. It will be noted that the time required for each move varies considerably under different conditions. The average time required to move the shovel which was in good condition was only half of that required to move the shovel in poor condition.

[^3]Table 7.-Length of time, in seconds, required to move shovel forward in cut
13-YARD SHOVEL, IN GOOD CONDITION, WORKING IN COMMON EXCAVATION

| Seconds |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | |
| 21 | 22 | 10 | 13 | 11 | 12 | 14 | |
| 12 | 10 | 11 | 10 | 12 | 12 | 14 | 33 |
| 11 | 11 | 15 | 31 | 11 | 10 | 12 | 12 |
| 12 | 12 | 16 | 24 | 15 | 10 | 10 | 13 |
| 12 | 10 | 20 | 13 | 10 | 22 | 35 | 14 |
| 15 | 11 | 11 | 12 | 11 | 11 | 25 | 14 |
| 17 | 12 | 18 | 12 | 11 | 14 | 11 | 16 |
| 9 | 10 | 10 | 11 | 27 | 28 | 10 | 11 |
| 12 | 17 | 13 | 12 | 41 | 15 | 12 | 14 |

Average time per move, 14.8 seconds.
114-YARD SHOVEL, IN POOR CONDITION, WORKING IN WELL BLASTED SHALE AND EARTH

| Seconds |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 35 | 27 | 28 | 28 | 15 | 34 | 35 | 40 | 26 | 32 |
| 46 | 28 | 22 | 10 | 21 | 41 | 48 | 26 | 33 | 26 |
| 33 | 28 | 39 | 38 | 37 | 41 | 44 | 21 | 26 | 30 |
| 50 | 22 | 23 | 35 | 14 | 30 | 45 | 40 | 20 | 27 |
| 37 | 23 | 35 | 51 | 16 | 34 | 31 | 45 | 34 | 31 |
| 41 | 32 | 26 | 54 | 17 | 26 | 31 | 82 | 45 | 16 |
| 42 | 20 | 30 | 31 | 40 | 13 | 23 | 54 | 31 | 23 |
| 36 | 25 | 29 | 28 | 58 | 34 | 61 | 81 | 25 | 28 |

Average time per move, 33.2 seconds.
Table 8.-Time consumed in moving 11/4-yard shovels forward in cuts of different depths and on different jobs
[Each entry is result of 1 or more hours of stop-watch study]

Job no. I		Job no. 2		Job no. 1		Job no. 2	
Depth of cut	Work- ing time con- sumed in mov- ing for- ward	Depth of cut	Work- ing time con- sumed in mov- ing for- ward	Depth of cut	Work- ing time con- sumed in mov- ing for- ward	Depth of cut	Work ing time sumed in mov ing forward
$\begin{array}{r} \text { Fcet } \\ 14 \\ 12 \\ 11 \\ 10 \\ 9 \\ 8 \\ 7 \end{array}$	$\begin{gathered} \text { Percent } \\ 2.5 \\ 4.0 \\ 1.3 \\ 1.3 \\ 3.8 \\ 2.0 \\ 2.7 \end{gathered}$	Feet 12 10 10 8 7 6 6	$\begin{gathered} \text { Percent } \\ 1.7 \\ 1.2 \\ 1.7 \\ 3.1 \\ 3.1 \\ 2.4 \\ 4.0 \end{gathered}$	$\begin{aligned} & \text { Feet } \\ & 6 \\ & 5 \\ & 3 \\ & 3 \\ & 21 / 2 \\ & 2 \\ & 1 \end{aligned}$	Percent 3.9 3.4 212.8 6.8 5.3 10.3	$\begin{array}{r} \text { Feet } \\ 6 \\ 6 \\ 4 \end{array}$	Percent 15.9 16.2 4.0 4.0 8.3

[Each entry is average time consumed throughout job]

On jobs mainly in- volving deep cuts	On inlobs mainly in- volving shallow cuts	On jobs mainly in- volving deep cuts	On jobs mainly in- volving shallow cuts
Percent	Percent	Percent	Percent
36.0	10.0	3.3	7.0
35.2	9.9	3.4	6.1
35.4	8.4	2.1	4.3
4.8	8.4	1.7	3.9
3.9	7.2		

1. Shovel operating in a cut composed mostly of fine, dry sand.

2 Slippery clay, difficult moving.
${ }^{3}$ Mostly rock work and many steep grades.
The moving time is affected by grade, soft or rough ground, condition of the moving mechanism, and ability of the operator. This is brought out more fully in tables 8 and 9. In general, the modern crawlertype shovel in good condition can be moved forward in about 15 seconds. If, under ordinary operating conditions, the average time required per move is more than 30 seconds, either the operator is unduly slow or the mechanism is in need of attention. The larger the shovel and the higher the rate of production, the more time will be required to move the shovel forward.

Table 9.-Working time lost by shovel in moving within cuts, because of shortage of hauling equipment, and total from all causes
[Each line represents a different job]

Moving within cuts	Shortage of hauling equipment	Total minor time losses from all causes	Moving within cuts	Shortage of hauling equipment	Total minor time losses from all causes
Percent	Percent	Percent	Percent	Percent	Percent
9.9	9.8	54.6	5.7	3.2	33.1
9.2	12.3	50.8	5.5	5.3	30.9
5.8	2.4	45.8	4.9	0.6	27.8
7.3	18.3	43.0	5.0	6.3	25.0
4.1	17.1	42.5	2.9	1.5	22.8
4.6	8.5	42.2	3.1	11.4	22.7
6.6	10.4	39.0	7.3	3.9	22.7
3.4	4.7	35.0	0.9	3.4	19.0
2.7	16.7	34.6	1.8	3.8	18.8
5.0	6.3	33.9	3.1	3.1	17.4
3.5	2.0	33.7			

The movement of the shovel within the cut to keep within easy reach of the face is a check on production which cannot be removed entirely. The best that can be done is to train the operator to make the moves as expeditiously as possible. In deep cuts the time required is small-sometimes little more than 1 percent (table 8). In shallow cuts the proportion mounts rapidly and cases where from 8 to 10 percent of the total time is used in moving the shovel are not uncommon, especially where the operator is slow or the mechanism in poor condition.

Because of generally insufficient hauling equipment, it has become a more or less accepted practice to consider the time required for moving the shovel as of no importance, since it can usually be done while waiting for wagons or trucks. This may seem like a good way of neutralizing an inherent shortcoming of the shovel, but it is one which absorbs profits which might otherwise be had from the job.

Moving shovel within the cuts consumes about 5 percent of the actual working time (table 9) and forms about 15 percent of the total minor time loss. Table 9 shows that the statement that moving the shovel is generally done while waiting for hauling equipment is not well founded. The 7 jobs with the highest waiting time for hauling units lost 6.1 percent of their working time in moving the shovel, while the 7 jobs with the lowest time loss from waiting for hauling units required 3.8 percent of the working time for moving the shovel. The 7 jobs having the highest moving time used 6.8 percent of the time, while the 7 lowest used 3.4 percent.

angle of swing greatly affects rate of production

When the dipper is loaded, the operator swings the shovel through the angle necessary to bring the dipper over the hauling unit, at the same time adjusting the height and reach of the dipper, dumps the load and returns the dipper for another load. Figures 8 to 11 show the time required to swing and return the dipper through various angles on four jobs. The time required to complete a swing and return movement does not depend entirely upon the angle through which the movement is made. Time is required for the operator to react and start the mechanism. The mechanism requires time to function, while still more time is required to accelerate, and at the end of the swing to decelerate, the large mass of the load and shovel. The time actually required to get a swing under way and later stopped varies with the operator, the load, type of shovel, and its mechanical condition. With some operators and under some conditions this

Figure 8.-Influence of Angle of Swing on Time of Swing and Return Based on 506 Operations of a $3 / 4$-Yard Shovel Handling Poorly Blasted Rock. Note that the Points Located for Time of Swing Are Much More Irregular Than Those for Time of Return. This is Explained in Part by the Extra Care Required in Handling Boulders. Average Rate of Swing, 32° per Second. Average Rate of Return, 46° per Second.

Figure 9.-Influence of Angle of Swing on Time of Swing and Return Based on 2,069 Operations of a $3 / 4$-Yard Shovel Working in Clayey Gravel. Average Rate of Swing, 37.5° per Second. Average Rate of Return, 46° per Second.
time may be as much as 3 or 4 seconds and is rarely less than 1 second.

The return swing involves much the same process as the loaded swing, except that the dipper, instead of simply being stopped at the completion of the swing, must also be lowered into position for beginning a new cycle. It appears that some shovels with slow swing speed have quick starting and stopping, so that the time required for the swing and return, as shown in table 10 , is often as short as, or shorter than, for the slow-speed types so long as the angle of swing is small. On longer swings, the higher speed types are considerably faster.

Figure 10.-Influence of Angle of Swing on Time of Swing and Return Based on 1,788 Operations of a $3 / 4-$ Yard Shovel Working in Gravel and Loose and Blasted Shale. Average Rate of Swing, 18° per Second. Average Rate of Return, 22° per Second.

Figure 11.-Relation Between Angle of Swing and Time of Swing and Return. 7/s-Yard Shovelin Good Condition.

Table 10.-Comparison of combined swing and return time for various types of power shovels
〔Values are averages from a large number of field studies under actual operating conditions]

Angle of swing	Shovels			
	No. 1	No. 2	No. 3	No. 4
	Seconds	Seconds	Seconds	Seconds
30°	8. 2	8.0	8.2	5.7
60°	10.4	9. 0	9.9	8.4
90°	12.5	10.0	11.5	11.2
120°	14. 6	11.0	13. 2	13.9
180°	19.0	12.9	16.5	19.3
240°	23.4	14.9	19.8	24. 8
270°	25.5	15.9	21.5	27.5

Examples of Correct "Spotting" of Trucks for Loading with Short Swing of Shovel.

The portion of the swing and return time required for the operator to actuate the controls and for the machine to accelerate and decelerate is designated as "lag." It is difficult to separate the "lag" into personal and mechanical components but the studies show that the personal time element is sufficiently large to warrant careful consideration because of its effect on the rate of production. For a good operator the reaction lags are small-generally not more than 1 second. For a slow operator they may run 2 seconds or even more. The difference of 1 or 2 seconds seems a trifling matter, but an operator who takes 18 seconds where only 15 are necessary, reduces the rate of production almost 17 percent. To change an operator making a load every 18 seconds for a man who takes 20 seconds reduces the rate of output about 10 percent. With efficient operation otherwise, this can easily reduce the value of the output from $\$ 20$ to $\$ 25$ a day-about twice the ordinary wage of a firstclass operator. It never pays to hire cheap, poorly trained operators on any work requiring fast, uniform, consistent operation, and nowhere in highway work is this more true than on power shovels.

In good common excavation and under favorable conditions, a 90° swing (loading at the side of the shovel) can be performed in 15 seconds. An extension of the swing to 180° (loading back of the shovel) ordinarily increases the cycle by from 4 to 8 seconds, depending on the type of shovel used and the skill of the
operator. As a general average it may be said that loading behind the shovel instead of at the side extends a 15 -second cycle to at least 20 seconds and thereby reduces the attainable rate of output 25 percent. There is, of course, much work where loading at the side of the shovel is impossible. However, there are many more situations where side loading is practicable but is not employed.

Extending the average swing to 270° is the worst possible practice, especially with a slow-swing shovel. This extends a normal 15 -second cycle to 25 seconds or more and correspondingly reduces the rate of output. Such operation may be caused by a cab arrangement that makes it hard for the operator to see out of one side. To avoid swinging the dipper over objects he cannot see clearly and thus running the risk of accidents, the longer swing is sometimes used. Poor vision also interferes with spotting the dipper exactly before dropping the load. Hauling units are usually placed for swings over the side or rear of the vehicles. This is important if rock is being handled. A good operator seldom drops any material, but a relatively small rock may scriously injure a man or an animal. Erery effort should be made to keep the average swing from exceeding 90°, and, in general, a swing of over 180° is the result of improper equipment or of faulty operating methods.

Figures 12 and 13 show the average time used in loading, swinging, dumping, and returning the dipper on jobs where the swings ranged from 45° to 90°.

Figure 12.-Percentage of Operations of Swinging,
Dumping, and Returning Performed in Various Time Intervals. Based on 1,058 Cycles of a $3 / 4$-Yard Shovel Working in Sticky Clay with an Angle of Swing of From 45° to 90°. Average Time of Swing 4.42 Seconds. Average Time of Dumping, 4.31 Seconds. Average Time of Return, 4.86 Seconds.

Figure 14 shows similar averages for swings of 150° to 180°. When the point of loading and the point of dumping are within the operator's vision at the same time, he can keep his mind far enough ahead of his work to react quickly and plan his operations with confidence. As he digs his load he decides where he will dump and plans the manipulations necessary in the process. As he drops his load, he determines where he will get the next bite, and so on. The saving in time is small per load, but it is enough to make considerable difference in a day's run.

DUMPING THE DIPPER LOAD

Dumping or discharging the dipper load requires great skill if done rapidly. The load must not be dropped from too great a height or the truck or wagon may be damaged. It must not be dropped too soon or too late or much of it will fall outside of the vehicle. If the load is composed of materials which dump freely, an experienced shovel operator will drop it just as the swing ends and be ready to start the return as soon as the dipper comes to a stop. In such material the fast operator really takes no time to drop the load, the time consumed being only that needed to stop the dip-

Figure 13.-Percentage of Operations of Swinging, Dumping, and Returning Performed in Various Time Intervals. Based on 1,322 Cycles of a $11 / 8$-Yard Shovel Working in Clay with Some Boulders with an Angle of Swing Varying from 45° to 90°. Average Time of Swing, 4.62 Seconds. Average Time of Dumping, 2.23 Seconds. Average Time of Return 5.49 Seconds.
per and then start it on the return swing. Ordinarily this can be done in 1 second. Wet, sticky clay and other adhesive materials often require considerable shaking or jarring to force them out of the dipper. With such materials, the time required depends on the skill of the operator and the amount of shaking and jarring necessary to empty the dipper.

For materials which clear the dipper freely, dumping time should not exceed an average of about 1 second. Sticky, adhesive materials and large rocks require much skill if average dumping time is to be held below 2 or 3 seconds, especially when small-capacity hauling units are used. A slow, inexperienced operator may readily consume 2 or 3 times the normal average time per dipper load. Because of the time required to empty the dipper, daily production in rery sticky or adhesive materials may be as low as that in poorly blasted rock.

It is not unusual to find the dumping time in sticky materials running as high as 5 or 6 seconds regularly. In handling large rocks considerable care must be taken by the operator to prevent injury to the wagons or trucks. This naturally slows down the rate of operation. Large chunks often hang to or wedge in the dipper and require manipulation before they are released. Roots and stumps are often troublesome in this respect.

Figure 14.-Percentage of Operations of Swinging, Dumping, and Returning Performed in Various Time Intervals. Based on 658 Cycles of a $3 / 4$-Yard Shovel Working in Sticky Clay with an Angle of Swing of from 150° to 180°. Average Time of Swing, 6.23 Seconds. Average Time of Dumping, 4.33 Seconds. Average Time of Return, 6.10 Seconds.

Figure 15.-Number of Dumping Operations Performed in Various Time Intervals in Different Kinds of Material. Based on 10,200 Observations on 13 Different Jobs.

Tables 3, 11, and 12 show how average dumping time is affected by the kind and character of the materials. Figures 12, 13, and 14 also show the time used in emptying material from the dipper into the wagons or trucks under typical conditions. Figure 15 shows the average dumping time for a number of classes of material as
 TIME OF CYCLE - SECONDS
Frgure 16.-Diagram Showing Percentage of Shovel Cycles Performed in Various Time Intervals. Based on 383 Complete Cycles (4 Greater Than 40 Seconds) of a $3 / 4$-Yard Shovel Working in an $81 / 2$-Foot Cut of Blasted Shale and Loading Trucks at Side. Average Time per Cycle, 18.9 Seconds.
 TIME OF CYCLE-SECONDS
Figure 17.-Diagram Showing Percentage of Shovel Cycles Performed in Various Time Intervals. Based on 204 Complete Cycles (5 Were Over 40 Seconds and Not Shown) of a $3 / 4$-Yard Shovel Working in from 8 Inches to 2 Feet of Loamy Clay with an Angle of Swing of from 45° to 90°. Average Time per Cycle, 20 Seconds.

Figure 18.-Diagram Showing Percentage of Shovel Cycles Performed in Various Time Intervals. Based on 734 Complete Cycles (3 Were Over 40 Seconds and Not Shown) of a $11 / 8$-Yard Shovel Working in 2 to 6 Feet of Clay With a Few Boulders. Length of Swing, 45° to 90°. Average Time per Cycle, 20.3 Seconds.
found from the analysis of 10,200 readings on 13 different jobs with various grades of operators and 6 different makes of shovels. It will be noted that many of the operations were performed very rapidly in all but the most difficult materials.

LOW PRODUCTION FREQUENTLY CAUSED BY INSUFFICIENT HAULING EQUIPMENT

On the jobs studied an inadequate supply or poor operation of the hauling equipment, or both, caused the largest and most frequent time losses.

If the highest possible production is to be obtained the hauling vehicles must be exchanged within the time required to handle 1 dipper load, or in about 15 to 18

Figure 19.-Diagram Showing Percentage of Shovel Cycles Performed in Various Time Intervals. Based on 1,322 Complete Cycles (20 Were Over 40 Seconds and Not Shown) of a $11 / 8$-Yard Shovel Working in From 1 to 6 Feet of Clay with a Few Boulders With a Swing of From 45° to 90°. Average Time per Cicle, 22 Seconds.
seconds in good common excavation. Operation of hauling equipment to meet this requirement is practical under ordinary field conditions, provided each vehicle can carry two or more dipper loads. Except under very unusual conditions, it has not beenfound possible to synchronize the operation of the hauling equipment for consistent maximum shovel production if only one dipperful is carried per load.
The adequacy of the hauling equipment has a decided effect on production. The number of hauling units of any given kind required to maintain full shovel production varies more or less directly as the length of haul which generally fluctuates between rather wide limits and often at frequent but irregular intervals. The characteristics which affect the rate at which material can be dug by the shovel sometimes change also with unexpected frequency.
In practice, it is usually found inadvisable to attempt to maintain an exact balance between hauling equipment and the maximum possible rate of shovel production. In many instances a definite number of hauling units is maintained on the job until grading is completed. On short hauls some of the equipment is idle or working at a slow rate, while on long hauls not enough equipment is available to keep the shovel working at full production. The question is one of determining what hauling equipment should be maintained on the job in order to complete the grading at the lowest possible cost. This question will be discussed more fully in a following article.

use of shovel for fine grading generally unprofitable

Trimming to grade and dressing slopes were prolific causes of extending the time per dipper load. While more accurate trimming of slopes has been required in many States during recent years, the loss in shovel time from this cause does not seem to have changed greatly. This is probably due to greater use of special mechanical equipment or hand labor for these operations.

Using the shovel for fine trimming of slopes and grade usually means practically stopping yardage production while these operations are being performed. From time to time during the day equipment worth $\$ 20,000$ to $\$ 30,000$, and especially adapted to function as a unit in the production of pay yardage, is diverted to performing a task for which it is but poorly adapted and to which only the shovel can contribute useful work.

On the average job the hauling units and the equipment on the dump are entirely unproductive when the shovel is dressing or trimming slopes. Some contractors condone a certain amount of shortage in hauling equipment because the resulting delays impressed on the shovel are used in trimming or dressing slopes. This may be good in theory but in practice it is found that slopes must be trimmed about as often when hauling units are on hand as when the shovel is waiting for hauling units.

complete shovel cycle discussed

Under ordinary field conditions the fastest operation possible in good, common excavation with present shovels is in the neighborhood of 15 seconds per dipper load when the swing is 90°. The importance of approaching this limit as closely as possible can hardly be overstated. A 15 -second cycle, consistently maintained, will yield the large output of 240 dipper loads an hour. To attain a 15 -second cycle it is necessary to load the dipper regularly in about 5 seconds, to swing it over the wagon in about 4 seconds, to dump it in 1 to $1 \frac{1 / 2}{2}$ seconds, and return it again to loading position in 4 to 5 seconds. Lengthening the cycle time to 20 seconds drops the output to 180 dipper loads an hour-a reduction of 25 percent. If the cycle is lengthened to 25 seconds, the best the shovel can turn out is 144 dipper loads an hour, while if a 30 -second cycle obtains the output cannot exceed 120 dipper loads.

The difference between operation on a 15 -second cycle and on a 20 -second cycle is often a matter of a second or so in loading, a slight hesitation during the swing, with perhaps a bit of delay in spotting over the wagon-delays which may not be noticed except with the aid of extended stop-watch readings. It is not surprising to find that slow operators are sometimes rated as fast because there is nothing definite with which to compare their work, and to find that fast operators are sometimes being discredited because job conditions or methods of job management over which they have no control hold down the output. Examples of the full operating-cycle time where loading was at the side of the shovel are shown in figures 16 to 19.

Tables 11 and 12 show in detail the average operating characteristics found under normal working conditions on 14 rather large, well-managed jobs. The effect of the character of the material on production is very marked. The production of similar shovels varies from an average of 38 cubic yards an hour in poorly blasted granite to 168 cubic yards in good earth. Not all but most of this difference in production was due to a difference in the material. Table 12 shows that the production in hard caliche was only 64 cubic yards per hour. When the caliche had been blasted, the same shovel produced 151 cubic yards an hour.

MAJOR TIME LOSSES ANALYZED

As the successive shovel operations are repeated over and over again throughout the day, it is clear that if a few seconds, or even fractions of a second, are regularly lost on any one operation, the total loss during the course of the day will be large. If an operator working consistently on a 20 -second cycle slows up only just enough regularly to add 1 second to each of the major operations, the output will be cut from 3 to $2 \frac{1}{2}$ dippers per minute. If the regular unhampered output is 50 loads per hour, and the drivers of the hauling units in getting into place to be

Table 11.-Average rates of power-shovel operation as observed on typical jobs

Size of shovel, cubic yards.
Condition of shovel
Shovel cycle:
Load, seconds
Dump, seconds.
Return, seconds
A verage shovel cycle, seconds.
A verage angle of swing, degrees
A verage load per dipper, cubic yards
A verage rate of production, cubic yards per working hour-
Time lost in moving shovel, percentage of working time.-
Total minor time losses, including all stops of less than 15 minutes in duration, percentage of working time.-
Total major time losses, including all stops of 15 minutes or more in duration, percentage of available time
Total yardage moved during study, cubic yards.

$\begin{aligned} & \text { Job } \\ & \text { no. 1, } \\ & \text { earth } \\ & \text { and } \\ & \text { poorly } \\ & \text { blasted } \\ & \text { rock } \end{aligned}$	Job no. 2, poorly blasted granite	Job no. 3, earth with many boulders	$\begin{gathered} \text { Job } \\ \text { no. 4, } \\ \text { fairly } \\ \text { well- } \\ \text { blasted } \\ \text { rock } \end{gathered}$	Job no. 5, wellblasted rock and earth	Job no. 6, fairly well- blasted rock	Job no. 7, soft rock, blasted	Job no. 8 , well- blasted sandstone and shale	Job no. 9, wellblasted shale and sandstone	Job по. 10, well- blasted shale and sand- stone	Job no. 11, fair to hard earth	$\begin{aligned} & \text { Job } \\ & \text { no. } 12 \text {, } \\ & \text { good } \\ & \text { earth } \end{aligned}$	$\begin{aligned} & \text { Job } \\ & \text { no. } 13 \text {, } \\ & \text { earth } \\ & \text { with } 12 \\ & \text { to } 18 \\ & \text { inches } \\ & \text { of frost } \end{aligned}$
$\begin{aligned} & 11 / 4 \\ & \text { New } \end{aligned}$	$\left\{\begin{array}{l}\text { Very } \\ \text { good } \\ \text { god }\end{array}\right.$	$)^{11 / 4}$	Fair	$\left\{\begin{array}{l} 11 / 2 \\ \text { Very } \\ \text { good } \end{array}\right.$		New ${ }^{11 / 4}$	$\begin{gathered} 11 / 4 \\ \text { Good } \end{gathered}$	$\left\{\begin{array}{l} \quad 11 / 4 \\ \text { Very } \\ \text { good } \end{array}\right.$	$\begin{gathered} 11 / 4 \\ \text { Good } \end{gathered}$	$\begin{gathered} 11 / 4 \\ \text { Good } \end{gathered}$	$\begin{gathered} 11 / 4 \\ \text { Good } \end{gathered}$	$\begin{array}{r} 11 / 4 \\ \text { Good } \end{array}$
11.5	16. 7	11.0	9.6	7.1	8.5	7.9	7.5	7.0	7.4	8.3	5.6	9. 0
6.0	8.6	6.8	7.6	5.9	8.0	4.9	4.1	3.5	4.9	5. 1	4.7	4.7
2.0	3.5	1.6	1.7	1.6	1. 6	1. 0	1. 5	1.3	1. 1	1. 3	1.0	1.8
6. 6	9.1	7.3	8.2	6. 2	7.9	4. 7	4.5	4.3	5.2	5.1	4. 6	5.7
26.1	37.9	26.7	27.1	20.8	26.0	18.5	17.6	16.1	18.6	19.8	15.9	21.2
85	130	129	138	103	136	111	96	83	47	76	50	63
0.88	0.61	0.68	0.62	0.70	0.85	0.74	0.80	0.87	0.88	1. 60	0.96	0.99
71.4	38.0	42.8	69.0	97.0	98.0	128	128	150	130	133	168	110
7.2	5.2	7.0	1.7	3.3	4.8	2.1	3.4	5.4	3.9	6.1	9.9	5.5
41.2	35.5	54.0	14.8	20.1	17.6	13.4	22.1	23.3	25.0	25.2	23.1	24.4
21.0	15.5	33.9	12.9	13.8	16.1	11.0	5. 7	10.9	8. 4	6.1	11.0	11.0
8,900	2, 800	5,950	24,560	20, 900	45,680	65,420	62,650	50, 400	8,036	18,060	104, 680	14,700

Table 12.-Effect of material on length of shovel cycle
[1-yard shovel in good condition. Hauling done with light trucks. Management good. Materials, very dry]

	Good common excavation	Hard caliche	Blasted caliche	$\begin{gathered} \text { Blasted } \\ \text { rock } \end{gathered}$
Percentage total excavation on job.	26	38	15	21
Load dipper-...-.-......-------seconds--	6.5	10.3	5. 8	8.5
	5.2	6.1	5.5	6.4
	0.8	0.9	0.9	1.1
Return---------------------------- ${ }^{\text {do }}$ -	5.1	6.0	5.4	6.1
A verage angle of swing.-.----.-. - degrees.-	152	148	157	156
A verage cycle-...-...-.....---- seconds.-	17.6	23.3	17.6	22.1
A verage dipper load...-...--cubic yards.-	0.84	0.65	0.90	0.65
A verage production per hour......-do.---	137	64	151	97
Minor time iosses percentage of working tme lost				Percent

Major mechanical repairs, shovel and ca
Light trucks, operation characteristics:
Average speed, loaded, in reverse, 448 feet per minute
A verage speed, return, forward, 690 feet per minute.
loaded delay the shovel only 18 seconds on each load, the output will be cut to 40 loads per hour.

Definite stops are obvious time losses and every contractor makes efforts to eliminate or reduce them. But a shovel outfit may operate all day without a definite stop and yet produce less than half the yardage it is capable of producing, simply because the management is not aware of the effect on production of the constant loss of seconds, or even fractions of seconds, in the repetitive operations.

Table 13.-Major time losses (delays of 15 minutes or more) on power-shovel grading jobs. Average values for more than 100 jobs

| Cause | | Percent-
 age of
 available
 time lost |
| :--- | :--- | ---: | ---: |
| Rain and wet ground | | |

Large Dipper Loads Are Necessary for High Production Rates.
Field studies on more than a hundred jobs have shown that no contractor succeeds in maintaining capacity production all the time. Many were able to keep the shovel at work less than half of the available working hours. Table 13 gives the average percentage of the normally available working hours lost from various causes.

MINOR TIME DELAYS CONSIDERABLE IN EXTENT

These definite stops, each of 15 minutes or more in duration, do not comprise the entire time loss. Stopwatch studies on the same jobs showed that an average of 38.8 percent of the remaining time during which the crew was on the job was lost in minor stops and interruptions, each less than 15 minutes in duration. Many of the delays were only a second or so in duration but were repeated at more or less regular intervals, so that their accumulated totals often assumed surprising proportions. The average percentages of the normal working time consumed by these minor delays or interruptions to continuous operation and the causes to which they were due are given in table 14.
No matter how excellent the shovel and its supporting equipment, a high degree of efficiency can be obtained only through the proper coordination of all elements in the moving of material from cut to fill. Aside from management, the first and most important element in this combination is the operator. The ideal operator is gifted with quick reaction, a true eye, good judgment, great endurance, and a high degree of

Table 14.-Minor time losses (less than 15 minutes duration) on power-shovel grading jobs. Average values for more than 100 jobs

Cause	Percent age of actual working time ${ }^{1}$ lost
Insufficient hauling equipment	11. 7
Improper operation of hauling equipment	7.7
Moving shovel within cuts.	4.7
Handling large rocks, boulders, stumps, e	3.6
Minor shovel repairs, adjustments, etc	3.3
Shovel operator	1.6
Taking on fuel or water	1.0
Blasting boulders, rocks, etc.	6
Checking grade...--	
Miscellaneous causes..	4. 2
Total	38.8

${ }^{1}$ Actual working time is available working time less major delays.
skill and experience. He should know the possiblities and limitations of the shovel and be able to maintain it in first-class condition.

Except in casting, the operator can dig no more material than can be hauled away, and he can dig only when hauling units are in place for loading. If the supply of wagons or trucks is inadequate for full production, or if their operation is such as to interfere with the steady operation of the shovel, the fault lies with the management.

The management is frequently at fault in failing to maintain and replace equipment. High rates of production cannot be obtained from equipment in poor mechanical condition; yet the field studies give abundant evidence that proper maintenance of both the shovel and the hauling equipment is frequently neglected.

CARE OF EQUIPMENT IMPORTANT

Operating conditions in highway grading work are severe on equipment, and neglect soon proves costly. Many contractors using two or more shovels have found it economical to provide a shop and a good mechanic and helper. A particularly satisfactory arrangement
was one in which the mechanic was made responsible for the regular inspection and maintenance of all equipment. Frequently he was also made responsible for the proper oiling and greasing of the hauling units, tractors, compressors, and similar equipment. In making repairs on the shovel the shovel operator usually acted as helper.

If no mechanic is employed the contractor must be certain that the shovel operator is competent to make all ordinary adjustments and repairs to the shovel. Unless a good mechanic is on the job or especially highgrade drivers are employed, the contractor should assign some one, such as the shovel foreman, to be personally responsible for seeing that the hauling units, tractors, and other pieces of equipment are inspected at frequent intervals and greased, oiled, adjusted, and repaired as may be found necessary.
Equipment should be given a general overhauling at the time of storing. All parts should be thoroughly inspected, repaired if necessary, and then greased, oiled, or painted as may be proper. Effective protection from the elements should be provided. If the storage is on the job or in an isolated location, all indicators, valves, brasses, and other small parts should be removed, labeled, boxed, and placed in safe custody. The contractor can then be sure his equipment will be ready when work is resumed.

In too many cases, equipment is left in such shape that deterioration during so-called storage is as great as, or at times even greater than, if it had been in use for the same period. Deterioration of the equipment is a big drain on the profits of any going power-shovel grading job. To permit this drain to continue after the job has been closed down or completed seems inexcusable. The duty of the management does not end with the movement of the last dipper load of excavation. Management is not fully efficient until it extends to every source through which profits may be lost as well as to every source through which profits may be made. The storage and protection of the equipment during idle periods is one of the most important of the sources of profits.
CURRENT STATUS OF U．S．PUBLIC WORKS ROAD CONSTRUCTION

CLASS I－PROJECTS ON THE FEDERAL－AID HIGHWAY SYSTEM
OUTSIDE OF MUNICIPALITIES

									mも ํㅜㅇ 	\%							$\begin{aligned} & =6 x \\ & \text { 式呂 } \\ & \text { injo } \end{aligned}$	－	
	$\frac{\text { U }}{\frac{4}{2}}$	우웅	$\stackrel{\circ}{\circ}$	Mo	\#゙̈	$\stackrel{\circ}{\circ} \mathrm{O}$	～o	¢0．	jn	\cdots		mor	Non	※゙ธ	＊＊		ヘロッ	$\overline{7}$	－
									らすう ธi영品知	の8ま ベッグ		Ma 8 主志家 5\％웅			nom宽灾 ตํㅡํ	25 5安家客 R루			E \％ 0 0 0 0
	$\begin{aligned} & \text { 免 } \\ & \stackrel{y}{2} \end{aligned}$	$$	nor	$$		-on					Ono				Fun N	ตำํ		$\bar{\sim}$	m
		$\begin{aligned} & \text { no } \\ & \text { in } 10 . \end{aligned}$		$\begin{aligned} & \text { O응 } \\ & \text { Nisis } \end{aligned}$	$\begin{aligned} & \text { orm } \\ & \text { iting } \end{aligned}$	$\begin{gathered} \text { N. } \\ \text { sig } \\ \text { Sig } \end{gathered}$	$\dot{\text { min }}$			$\stackrel{\sim}{\sim}$		$\begin{aligned} & \text { ton } \\ & \text { insion } \end{aligned}$	ninis	$\begin{aligned} & \text { mon } \\ & \text { gitivin } \end{aligned}$	\dot{A}	-்o	Rutio	$\stackrel{\circ}{\dot{m}}$	\％
			ケூ家 ${ }^{\circ}$ 250			$\begin{aligned} & \text { E } \\ & \text { \& } \\ & =\mathbf{m} \\ & = \end{aligned}$		$\begin{aligned} & 088 \\ & \text { iob } \\ & \text { in } \\ & \text { min } \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{N}} \\ & \underset{\sim}{\mathrm{~m}} \\ & \end{aligned}$		む路8 ถix in －xim	$\begin{aligned} & \text { on } \\ & \text { on } \\ & \text { on } \end{aligned}$		$\begin{aligned} & \bar{m} \\ & \text { 言 } \\ & \text { 售 } \end{aligned}$		$\begin{aligned} & 8 \text { n } \\ & 80 \\ & 80 \\ & =60 \end{aligned}$	$\begin{aligned} & \text { \% } \\ & \text { 就 } \\ & \text { N } \end{aligned}$	
			ま゙ご゚ ま쑹 플						… －둘 ベゥํㅜㅇ ベทํ	\therefore				$\underset{\sim}{\sim}$					
								\％ 8家苞 으웅 －じー					～～む 뚜ํㅜํ ベ～						
								Amin	rion	$\begin{aligned} & \text { "oの } \\ & \text { 就总 } \end{aligned}$	Non		No	Mun		－¢ 5	mong NiE	$\stackrel{\square}{\circ}$	－
				$\begin{aligned} & \approx \\ & \text { N } \\ & \text { N } \end{aligned}$						$\begin{aligned} & 8 \\ & \hline \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	8 8 8 9					$\begin{aligned} & \text { Riw } \\ & \text { io } \\ & \text { Kim } \end{aligned}$	$\begin{aligned} & 88 \\ & \text { 88 } \\ & \text { Not } \\ & \text { Nig } \end{aligned}$		읓
						$\ddot{\sim}$	$\begin{aligned} & \mathbb{N} \\ & \text { No } \\ & \text { No } \\ & \end{aligned}$		ถู๊ㅇํ 宗宛熍 Bine \therefore		あ ぁぁ 三「5 $-$				がき 京筑志 ごこ	NR5 ช่ํํ ํ きin \therefore	nes గ్రిస్ 우ㄴㅜㅜ	$\begin{aligned} & \text { K } \\ & \text { © } \\ & \text { in } \end{aligned}$	※ W W \％ \％ \％
			Ting 等䒠緟 ूัં ェー												ทnma ๙่రీః シート－	88き กี่า． 重兑			
									$\begin{aligned} & 888 \\ & \text { min } \\ & \text { NiN } \\ & \text { Wind } \\ & \text { mind } \end{aligned}$									$\begin{aligned} & 8 \\ & \stackrel{\circ}{6} \\ & \stackrel{1}{6} \\ & \text { 50 } \\ & \hline \end{aligned}$	\％
																			管

CURRENT STATUS OF U．S．PUBLIC WORKS ROAD CONSTRUCTION
LOF X
CLASS III－PROJECTS ON SECONDARY OR FEEDER ROADS
AS OF JULY 31,1934

																			¢
						$$				$\begin{aligned} & \text { ?om } \\ & \text { mix } \\ & \text { six } \\ & \text { Nip } \end{aligned}$			$\begin{gathered} \circ \\ \stackrel{\circ}{ \pm} \\ \stackrel{y}{\ddagger} \\ \hline \end{gathered}$						\％
	咙	\bigcirc		ann	$\stackrel{9}{\ddagger}$	$\begin{aligned} & n n-u n \\ & \dot{\oplus}=\dot{n} \end{aligned}$	ํ． 0	こヘ	$\underset{\sim}{\infty}$	\＃̇		ํ.ñ	꿍	Nom	$\begin{aligned} & \text { ning } \\ & \dot{x} \text { Ni } \end{aligned}$	mo			\％
					$\begin{aligned} & \ddagger \\ & \dot{\bar{\circ}} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	8？8 足家8 No			288 等 ${ }^{\circ} \mathrm{N}$				28% Nั มู ジํN						
	\％		$\begin{aligned} & 6 r_{n} \\ & \text { pyini } \end{aligned}$	-60	Non	$\begin{aligned} & \text { ogom } \\ & \text { సí } \end{aligned}$	mom							区.			웅․	\＃\％	N
	磭	Now	Mo		$\begin{aligned} & \text { ano } \\ & \text { Sivis } \end{aligned}$	$\begin{aligned} & \text { inn } \\ & \text { £ं } \end{aligned}$		N－			oor	$\begin{aligned} & \text { yoo } \\ & \text { Siñ } \end{aligned}$	$\min \dot{x}$	nnou どぎき	Fisg	$\begin{aligned} & \text { nnow } \\ & \text { inn } \end{aligned}$	Nu	No	־ّ
					可路击 － ชิํํ 30					2N5 ๗ivin気解が \because						๗゙ロニ 쏭 	$\begin{aligned} & =\frac{28}{0} \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		\％
				$\begin{aligned} & 8 \mathrm{~m} \\ & \text { 8. } \\ & \text { Bow } \\ & \text { Now } \\ & \text { Not } \end{aligned}$					중․ －mix 	\because								$\begin{aligned} & \text { RO } \\ & \text { No } \\ & =0 \\ & \text { NE } \end{aligned}$	
$\begin{aligned} & \text { 曷 } \\ & \text { 崫 } \\ & \text { 号 } \\ & \hline 8 \end{aligned}$	少	－imo	Mox	ธัષ	~n in	$$	an ベํา	0		moin セٌロ்	$\stackrel{\sim}{\sim}$	$\begin{aligned} & \text { OMin } \\ & \text { if= } \end{aligned}$	$\begin{aligned} & \text { Cin } \\ & =\text { Nin } \end{aligned}$		$\underset{\sim}{\infty}$		roo	¢	¢
								$\begin{aligned} & 88 \\ & 80 \\ & 80 \\ & 0.5 \end{aligned}$		ワーム ヘั่ กั่ Wix				589 上ig 家					
								$\begin{aligned} & 8 \% \\ & 8_{0}^{\circ} \\ & 0 \\ & \text { on } \end{aligned}$		ワーロー ベท 等式			品录 Nis $-$		光まし ：ioㅇo欳気 ヘ		Ξ	$\begin{aligned} & \text { \& } \\ & \dot{8} \\ & \text { ै } \end{aligned}$	
																		$\begin{aligned} & 88 \\ & \text { 忘 } \\ & \text { ory } \\ & \text { on } \end{aligned}$	\％
$\stackrel{\text { EH}}{\stackrel{E}{E}}$																			－

PUBLICATIONS of the BUREAU OF PUBLIC ROADS

Any of the following publications may be purchased from the Superintendent of Documents, Government Printing Office, Washington, D.C. As his office is not connected with the department and as the department does not sell publications, please send no remittance to the United States Department of Agriculture.

ANNUAL REPORTS

Report of the Chief of the Bureau of Public Roads, 1924. 5 cents.
Report of the Chief of the Bureau of Public Roads, 1927. 5 cents.
Report of the Chief of the Bureau of Public Roads, 1928. 5 cents.
Report of the Chief of the Bureau of Public Roads, 1929. 10 cents.
Report of the Chief of the Bureau of Public Roads, 1931. 10 cents.
Report of the Chief of the Bureau of Public Roads, 1932. 10 cents.

DEPARTMENT BULLETINS

No. 136D . . Highway Bonds. 20 cents.
No. 347D . . Methods for the Determination of the Physical Properties of Road-Building Rock. 10 cents.
No. 532D . . The Expansion and Contraction of Concrete and Concrete Roads. 10 cents.
No. 583D . . Reports on Experimental Convict Road Camp, Fulton County, Ga. 25 cents.
No. 660D . . Highway Cost Keeping. 10 cents.
No. 1279D . . Rural Highway Mileage, Income, and Expenditures, 1921 and 1922. 15 cents.

TECHNICAL BULLETINS

No. 55 T . . Highway Bridge Surveys. 20 cents.
No. 265 T . . Electrical Equipment on Movable Bridges. 35 cents.

MISCELLANEOUS CIRCULARS

No. 62MC . . Standards Governing Plants, Specifications, Contract Forms, and Estimates for FederalAid Highway Projects. 5 cents.
No. 93 MC . . Direct Production Costs of Broken Stone. 25 cents.

MISCELLANEOUS PUBLICATIONS

No. 76MP . . The results of Physical Tests of Road-Building Rock. 25 cents.
No. - . . Federal Legislation and Regulations Relating to Highway Construction. 10 cents.
No. 191 . . Roadside Improvement. 10 cents.

REPRINT FROM PUBLIC ROADS

Reports on Subgrade Soil Studies. 40 cents.

Single copies of the following publications may be obtained from the Bureau of Public Roads upon request. They can not be purchased from the Superintendent of Documents.

SEPARATE REPRINT FROM THE YEARBOOK

No. 1036Y . . Road Work on Farm Outlets Needs Skill and Right Equipment.

TRANSPORTATION SURVEY REPORTS

Report of a Survey of Transportation on the State Highway System of Ohio. (1927.)
Report of a Survey of Transportation on the State Highways of Vermont. (1927.)

Report of a Survey of Transportation on the State Highways of New Hampshire. (1927.)
Report of a Plan of Highway Improvement in the Regional Area of Cleveland, Ohio. (1928.)
Report of a Survey of Transportation on the State Highways of Pennsylvania. (1928.)
Report of a survey of Traffic on the Federal-Aid Highway Systems of Eleven Western States. (1930.)

A complete list of the publications of the Bureau of Public Roads, classified according to subject and including the more important articles in PUBLIC ROADS, may be obtained upon request addressed to the U.S. Bureau of Public Roads, Willard Building, Washington, D.C.
CURRENT STATUS OF U.S. PUBLIC WORKS ROAD CONSTRUCTION
LJV x $\underset{G}{ }$
SUMMARY OF CLASSES I, II, AND III
AS OF JULY 31,1934

[^0]: ${ }^{1} P=0.02 a+0.045 b+0.18 c$.
 Where $P=$ percentage of oil in mix by weight.
 $a=$ percentage of aggregate retained on no. 10 sieve.
 $b=$ percentage of aggregate passing no. 10 and retained on no. 200 sieve. $c=$ percentage of aggregate passing no. 200 sieve.
 For coarse mixtures (50 percent or less passing $1 / 4$-inch screen) increase coefficient of c to 0.20 . For fine mixtures (100 percent passing $1 / 4$-inch screen) reduce coefficient of c to 0.15.
 ${ }^{2}$ Amount of oil determined from surface area constants of the different fractions of aggregate. Method of application described in Pacific Constructor for June 1, 1932.
 ${ }_{3} P=1.4(0.015 a+0.03 b+0.17 \mathrm{c})$. Symbols the same as in note 1 .

 - $P=0.015 a+0.03 b+0.17 \mathrm{c}$. Symbols the same as in note 1 .

[^1]: 1Bases were described as＂dry＂when they would powder or dust；＂
 by pressing in the hands and＂wet＂when sticky or wet to the touch，

[^2]: Loam and light clay
 Loamy clay and soft shale
 Soft shale
 Sandy clay
 Light clay, wet and gummy.
 Clay and surface loam.-
 Sandy clay, moist to wet-
 Well blasted sandstone with 20 percent light clay
 Clay with a few boulders....
 Heavy clay, wet and gummy-..
 Loam with loose rock and loose shale
 Loam with
 Clay-gravel
 Heavy clay, wet and sticky
 Seventy-five percent loose shale with 25 percent clay
 Heavy clay with a few boulders
 We clay 30 sercent lose
 Koam with 30 percent loose rock
 Rock, well blasted
 IIard shale, well blasted
 Gneiss, poorly blasted
 Fifty percent loose rock with 50 percent unblasted shale rock....

[^3]: ${ }^{1}$ For more definite data on this question the reader is referred to Some Studies of
 Drilling and Blasting in Highway Grading, published in Public Roads, February 1932.

