

A JOURNAL OF HIGHWAY RESEARCH

UNITED STATES DEPARTMENT OF AGRICULTURE bureau of puble roads

VOL. 15 , NO. 5

PUBLIC ROADS
 \rightarrow A Journal of Highway Research

Issued by the

UNITED STATES DEPARTMENT OF AGRICULTURE BUREAU OF PUBLIC ROADS

G. P. St. CLAIR, Editor

Volume 15, No. 5
July 1934
The reports of research published in this magazine are necessarily qualified by the conditions of the tests from which the data are obtained. Whenever it is deemed possible to do so, generalizations are drawn from the results of the tests; and, unless this is done, the conclusions formulated must be considered as specifically pertinent only to described conditions

In This Issue

Some Aspects of Portland Cement Concrete Pavement Construction
State Gasoline Taxes 1933 132

THE BUREAU OF PUBLIC ROADS Willard Building, Washington, D.C. REGIONAL HEADQUARTERS Mark Sheldon Building, San Francisco, Calif.

DISTRICT OFFICES

DISTRICT No. 1. Oregon, Washington, and Montana.
Post Office Building, Portland, Oreg.
DISTRICT No. 2. California, Arizona, and Nevada.
Mark Sheldon Building, 461 Market St., San Francisco, Calif.
DISTRICT No. 3. Colorado, New Mexico, and Wyoming.
237 Custom House, Nineteenth and Stout Sts., Denver, Co.lo.
DISTRICT No. 4. Minnesota, North Dakota, South Dakota, and Wisconsin. 907 Post Office Building. St. Paul, Minn.

DISTRICT No. 5. Iowa, Kansas, Missouri, and Nebraska.
Saunders-Kennedy Building. Omaha, Nebr.
DISTRICT No. 6. Arkansas, Louisiana, Oklahoma, and Texas.
Old Post Office Building, Fort Worth, Tex,

DISTRICT No. 7. Illinois, Indiana, Kentucky, and Michigan.
South Chicago Post Office Building, Chicago, III
DISTRICT No. 8. Alabama, Georgia, Florida, Mississippi, South Carolina, and Tennessee.

Federal Building, P.O. Box 60, Montgomery, Ala.
DISTRICT No. 9. Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, and Vermont. Federal Building, Troy, N.Y.
DISTRICT No. 10. Delaware, Maryland, North Carolina, Ohio, Pennsylvania, Virginia, and West Virginia.

Willard Building, Washington, D.C.
DISTRICT No. 11. Alaska.
Rom 419. Federal and Territorial Building, Juneau, Alaska. DISTRICT No. 12. Idaho and Utah.

Federal Building, Ogden, Utah.

Because of the necessarily limited edition of this publication it is impossible to distribute it free to any person or institutions other than State and county officials actually engaged in planning or constructing public highways, instructors in highway engineering, and periodicals upon an exchange basis. At the present time additions to the free mailing list can be made only as vacancies occur. Those desiring to obtain Public Roads can do so by sending $\$ 1$ per year (foreign subscription $\$ 1.50$), or 10 cents per single copy, to the Superintendent of Documents, United States Government Printing Office, Washington, D.C.

SOME ASPECTS OF PORTLAND CEMENT CONCRETE PAVEMENT CONSTRUCTION

BY THE DIVISION OF MANAGEMENT, UNITED STATES BUREAU OF PUBLIC ROADS

Reported by William A. BLANCHETTE, Highway Engineer

STUDIES of production in highway construction have been made by the Division of Management of the Bureau of Public Roads from 1923 to the present year. These studies have included grading and surfacing of nearly all types of highways in practically all sections of the United States.

The number and mileages of concrete roads constructed and the magnitude of the funds invested in them justify considerable study. During 1930 approximately 10,000 miles of portland cement concrete pavements were laid on rural highways of which 8,500 miles were on State systems. In 1930 the average cost per mile of a 20 -foot concrete surface, exclusive of engineering, drainage structures, and rough grading, was about $\$ 22,500$, a total cost of approximately $\$ 225,000,000$ for the year. A greater efficiency in such large-scale production will result in correspondingly lessened costs to the public.

In the studies here reported, data were collected relative to personnel, equipment, and efficiency of operation. The causes of efficiency on certain projects were analyzed. Between 1923 and 1929 numerous changes were made in types and sizes of equipment used and in methods of construction. From 1929 to June 1934 changes have not been so extensive. This discussion is based upon investigations made during the latter period.

EFFICIENCY IN CONSTRUCTION GREATLY IMPROVED IN RECENT YEARS

The following observations and conclusions are a result of these studies:

1. The equipment used in concrete surfacing is reasonably well standardized as to type, capacity, and number of units.
2. The number of men employed on a concrete paving job varies between wide limits. The average personnel, exclusive of truck drivers, on the 34 projects analyzed numbered 68 men with a minimum of 42 and a maximum of 98 .
3. The combination of personnel and equipment on concrete paving projects observed was usually adequate to the handling of the maximum possible production of the key equipment.
4. There is considerable difference in the over-all efficiency with which different contractors operate the major or key equipment. The average over-all efficiency of operation of key equipment on projects studied in 1929 and 1930 was 78 percent, with a minimum of 47 percent and a maximum of 97 percent. The average efficiency of operation of key equipment on 10 projects studied between 1923 and 1928 was 55 percent, with a minimum of 42 percent and a maximum of 66 percent. There appears to have been an increase in efficiency in recent years.
5. The efficiency of operation of major equipment is a reasonably accurate measure of the efficiency with which the entire paving organization is operated. It is an indication of the type of supervision employed.
6. Unnecessary interference by inspectors tends to lower operating efficiency and to discourage employment of adequate supervision.
7. About 30 percent of the total cost of a concrete pavement is for cement delivered to the project. Twenty-nine percent is for aggregates delivered to the project. Thirty-seven percent of the cost of cement and aggregates delivered is for transportation. The equipment cost is 9 percent and the labor cost is 11 percent of the total cost of a concrete pavement (exclusive of rough grading, etc.) The daily cost for labor and equipment is almost constant regardless of quantity of production. The unit cost for these two items varies almost inversely with the efficiency of operation.

8: The cement factors used on the projects analyzed varied from 1.23 to 2.10 barrels of cement per cubic yard of concrete.
9. The present method of combining the cement, aggregates, and water into concrete does not produce a homogeneous mass in which these ingredients are uniformly distributed throughout the mass.
10. Present methods of placing and finishing the concrete require fairly wet mixtures, resulting in excess water which decreases the potential strength of the concrete.

personnel and equipment described

The construction of a concrete pavement requires several separate operations. The subgrade must be prepared. The forms must be set in place. Cement, fine and coarse aggregate and water must be delivered to the paver and mixed. The mixed concrete must be deposited on the subgrade, spread, finished, and cured. These major operations are performed on all concrete paving projects.

Minor operations such as the delivery and placing of reinforcing steel, joints, etc., must be performed also. Each operation requires certain pieces of equipment. Table 1 shows the equipment used on 38 concrete paving projects studied during 1929 and 1930. These projects were located in 18 States and represent nearly every section of the United States. The equipment listed in table 1 is typical of equipment used generally in concrete paving. This table shows the average length of haul from the material yard to the paver in miles during the period of the production study.

Trucks were used for hauling batches except on one project where an industrial railway was used. Singlebatch trucks were used on 12 projects; 2-batch trucks on 13 projects; 3 -batch trucks on 12 projects, and 4batch trucks on 2 projects on which 2 - and 3 -batch trucks were also used.

The mixing on all of the projects was done in standard pavers of the 27-E type. A finishing machine was used on all but 5 projects. On these 5 projects, 4 in 1 State and 1 in another, all finishing was done by hand.

Table 2 shows the personnel employed on the 38 projects. On 34 of them the mixing was done by one 27 -E paver. On the remaining 4 projects, two $27-\mathrm{E}$

Table 1.-Summary of equipment used on projects studied in 1929 and 1930

pavers were used either parallel or in tandem. Table 2 shows a wide variation between projects both as to the total number of men employed and the number employed to perform various operations. The major operations are relisted in table 3 which gives, for purposes of comparison, analyses of the numbers of men required for each operation on 34 paving projects using a single paver and those required on 4 projects using 2 pavers each.

The size of the crew necessary for fine grading is affected by several factors: The amount and character of the material to be moved, the amount and kind of equipment used, the efficiency of operation, and the rate at which pavement is being laid. The fine-grading
crew varies considerably from job to job as is shown in table 2 , with a minimum of 3 men on one project and a maximum of 23 men on another project. The average number of men on all 34 projects was 13.

The handling and setting of forms consists in removing the forms from the finished and hardened pavement, transporting and distributing them where they are to be reset, shaping the form trench, setting, lining up and pinning the forms to the subgrade, and, finally, checking the form line. The number of men used to perform this operation varies considerably, although the methods are more or less standardized. The average number of men required was 11 . The chief reasons for variation in the number of men employed are the

Table 1.-Summary of equipment used on projects studied in 1929 and 1930 - Continued

method used in trenching, the accuracy with which form trenching is done, the rate at which forms must be set to keep pace with paving, the character of the soil, and the efficiency of form-handling and setting operations.
The average number of men employed in handling materials is 14 . This includes the men operating the water-supply system.
The number of men, including truck drivers, truck checkers, dumpers, and turntable operators employed to deliver batches to the paver ranged from 5 to 30 . Reasons for this wide variation are length of haul, condition of hauling road, condition and capacity of
hauling equipment, rate of paver operation, and efficiency of hauling equipment operation. On an average, 15 men were employed in hauling batches on the 34 projects on which the average length of haul during the period of study varied from 0.9 mile on one project to 10 miles on another, and on which $1-, 2-, 3$-, and 4batch trucks were used.

The men connected with the mixing operation are the foreman, who usually has charge of mixing, placing, finishing, and curing, and the paver operator.

The men employed in finishing, which in this summary includes puddlers, spaders, finishing machine operators, strikeboard laborers, hand finishers on slab
Table 2．－Summary of personnel on 38 concrete paving projects，1929－30

［ ou valiose ¢fnos	$\rightarrow-\square: 9$	$\stackrel{\sim}{\sim}$	＋80 \％		$\rightarrow \mathrm{NH}$ OOC：	－		\sim	－－	
\％$\%$＇ou tmosstin	－amer fry	\bigcirc	$\rightarrow \infty$	9 11		\oplus	$-\infty \text { Na }$	9	$\square{ }^{-4}$	\cdots
I＇ou byseiqan	\rightarrow－rnctac	\cdots	lon	\pm	ran :l:l\|lan-	$\stackrel{ }{-}$		\＆	\cdots	－
z I Oom stoultil	$\square: न-\sigma^{9}$	$\stackrel{\infty}{\sim}$	¢ 0 ：	\bigcirc	ーーツ：のー：ーNmel	\bigcirc	$\infty \times \infty$	9	ma	\checkmark
I ou uisuoosim	rant 0 Con	$\stackrel{\infty}{7}$	जनN	\bigcirc		$\stackrel{9}{7}$	$0: 17$	Ξ	－r	\cdots
¢－ou uolsu！use M ．		ϱ	－antr－	∞	ースーー mーーN゙！	$\stackrel{1}{\sim}$	$\because:$	$\underset{\sim}{9}$	－－	a
	ーーース：○か	\pm	∞	∞		∞	$0: 1=$	$\bar{\square}$	$\cdots-$	ब
	ーームーヅッハ	9	\rightarrow－atirn	∞		$\stackrel{\sim}{2}$		\exists	－－	－
з OU प078uluse M	ーーーーーサッ	－		∞	$\begin{array}{l:l:l} -\infty-\infty & \infty & -\infty \end{array}$	$=$	$\stackrel{\otimes}{9}$	\pm	\rightarrow－	\sim
	－n－cmict	10	－N－	\leqslant	$\square-N N m:-\infty-\square$	$\stackrel{12}{\sim}$	$10: 1$	\bigcirc	－	\cdots
飞 OU SBXə ${ }_{\text {L }}$	-बल-	－		\bigcirc	ー－metra	\cdots	シーーか	9	$\square-$	\cdots
I 0u Sbxel		～		∞		\pm		\cdots	$\square \square$	\sim
8 ＇0u əəssəuuə ${ }^{\text {d }}$	－ームーmon	$\stackrel{\square}{\sim}$		$\stackrel{\infty}{\sim}$	サーーलハハーーツザ	9	$9: 17$	こ	ーい	ल
4 ＇ou əassəutal		$\stackrel{1}{2}$	$\begin{array}{ll:l} -\pi \infty & -\infty \\ \hline \end{array}$	$\stackrel{\sim}{\sim}$		$\stackrel{\text { ® }}{\sim}$	$1 \infty: 1-$	\bigcirc	\rightarrow－	N
	ल－TCN：L5C	\cdots		∞		$\stackrel{18}{-1}$		\bigcirc	$\square \rightarrow$	a
¢｀0u əəssəu4ə」	－ーーム ${ }^{\infty}$	\pm	$\rightarrow+\infty$	$\stackrel{1}{\sim}$	－TーNmmーーc：r	9	$12:-1-$	\cong	－r	N
¢＇0u əassəutə	ーッース！	$\stackrel{0}{2}$	－000N	$\stackrel{\square}{-}$		\cdots	\cdots	\bigcirc	$\square-1$	\cdots
¢＇0山 əəssəuuə		ミ	ーサलa｜	\pm		9	O－CN－	\pm	\rightarrow－	a
	ーーナー：${ }^{\text {a }}$	$\stackrel{\square}{\sim}$	ーサッパけ	\pm	ーーナmmmーーN：ー	\bigcirc	\square^{-1}	$\stackrel{9}{2}$	－ー	\cdots
［＇0u əəssəuta ${ }_{\text {L }}$	ーサーム：ra	$\stackrel{0}{7}$	$\rightarrow \infty \text { Nみ }$	\bigcirc	ーーーmemorlmu	\cdots	ご吅	$\stackrel{9}{2}$	－	\cdots
I OU U082． 0	ーーーロ	＋	－N－$-\infty$	r		12		\bigcirc	$\square-$	\cdots
1 I OU OTप 0	ーーーム：0か	\pm	नललख－	∞		9	नल్త:	$\stackrel{ }{-}$	$\sim \infty$	\cdots
I OULAEsia M M	ーーース：co	\bigcirc	ーサल ーか	$\stackrel{9}{2}$		\pm		∞	－－	∞
I＇out ！nosst L	ーベーかo	9		क		\bigcirc	INーNー	－	－7－	\cdots
	－r－mm ${ }^{\infty}$	$\underset{\sim}{\square}$	ーーーー！	15	ーーーツめN：－	$\stackrel{\sim}{\sim}$	こ：${ }^{\text {a }}$	$\stackrel{9}{9}$	の－	\cdots
I OU כuİEL		$\stackrel{\infty}{\sim}$		\sim		Ξ	$\begin{array}{l:l} \infty & \infty \\ \hline \end{array}$	\bigcirc	$\square \square$	al
\％ou rurtsinor	ーワームのバ	\bigcirc	$+\infty \quad \square$	$\stackrel{\text { ald }}{\sim}$		9		a	\rightarrow－	ल
ε ou eubismort	ワームーバッか	\pm		क		－	$: 90-C N-$	\pm	－－	ल
ъ OU EUEISTMOT		N	नलल	\pm		$=$	年：	R	$\rightarrow \square$	a
I OU Bubisminor		\pm	$\infty:^{\infty 0 \infty}$	0	$: \infty, a \infty \quad \square \quad a$	$=$	8^{-1}	$\bar{\infty}$	－T	\cdots
［ OU BMOI	－ーTーN゙M	$\stackrel{\square}{7}$		त	-c-a c cm:a	9	$\cdots-\cdots-$	$\stackrel{\square}{\square}$	－-	－1
I ou opesoros		च		N		$\stackrel{\infty}{0}$	\cdots－$-\sqrt{1-4}$	ลิ	ー－	Col
19 Ou bịuonybo	－लm－aco	\checkmark	-लN:-9	$\stackrel{C}{\circ}$	- बNन Nmen	∞	$\overbrace{\infty}^{\infty}$	8	$\square \times$	\cdots
	－AT－TMO	$\stackrel{\cong}{9}$	$\rightarrow \infty \cdots$－$-\infty$	$\stackrel{\square}{\bullet}$	ーーロ!以サーー! !ल	ϱ	－－	๕	\checkmark－	c
\＆OU e！		\cdots		4		Ξ		13	$\square \square$	N
๕ ou eluajurp	$\rightarrow \mathrm{M}-$－rmon	＝		$\stackrel{8}{\text { ® }}$	$\because \because \square: \infty \infty$	$\stackrel{9}{9}$		©	$\square \square$	a
I OU BITMOJ！${ }^{\text {P }}$		\cdots	－लल	$\stackrel{\sim}{\sim}$	चーल	\bigcirc	$-10:-1$	\bigcirc	－T	\cdots
I＇ou sesury．ty	ーーーーセめ	\pm	－mma	9		\pm	ミーーー	¢	－T－	c

Finishing: Foremen Puddlers Spaders \qquad Finishing-machine operators Strikeboard laborers Finishers, floating slab Finishers, joints and edging	${ }_{2}^{4}$	$\begin{array}{r}3 \\ 2 \\ 2 \\ 4 \\ 4 \\ \hline\end{array}$	5 1 9 9	5 2 4 4 3	4 1 1 10 7	5 2 2 6 6		1	4 1 1 2 3	7	3 1 2	3	3 1 2		5 1 4	1	$\stackrel{2}{2}$	$\begin{array}{r}5 \\ 1 \\ -1 \\ 4 \\ \hline\end{array}$	$\begin{array}{r}5 \\ 2 \\ 2 \\ \hline 2 \\ 3 \\ \hline\end{array}$	2	1	4	4 1 4	3 1 4	${ }_{1}^{4}$	3 1 4	3 1 4	$\begin{aligned} & 2 \\ & 2 \\ & 1 \\ & 2 \\ & 5 \end{aligned}$	$\begin{array}{ll} 2 \\ 2 & 2 \\ 2 & 1 \\ 2 & 6 \\ 4 \end{array}$	$\left.\begin{array}{r} 1 \\ 4 \\ 2 \\ 1 \\ -2 \\ 2 \\ 1 \end{array} \right\rvert\,$	$\begin{array}{r} 7 \\ \hdashline 1 \\ -4 \\ 4 \\ 2 \end{array}$	2 4 2 2	2 7 2	$\begin{aligned} & 2 \\ & 5 \\ & 2 \end{aligned}$	3 1 4 2 2	2 7 2	3 1 4 4 4	6 1 2 1 1	1 4 6	6 6 1 4 6 1	5 1 1 2 3
Total	12	16	19	14	23	21		9	10	10	6	8			10	8	9	10	14	11		9	9	8	10	8	8	12	17	11	15	13	14	13	12	14	12	11	13	24	11
Setting steel: Laborers, reinforcement Laborers, longitudinal joints	2	3		2	5	7			1	2		2			4		1	2		4		2	2	2	2	1	2		2	1	3 1						2	1	1	2	
Total	2	3	4	2	5	7			1	2	2	2	2		4	4	1	2	2	4		2	2	2	2	1	2	1	2	3	4						5	1	1	2	\cdots
uring Foremen Laborers on burlap Laborers, covering and sprinkling	$\stackrel{2}{8}$	$\stackrel{2}{5}$	${ }_{9}^{2}$	$\stackrel{2}{5}$	1 2	1 2 9			12	2	2	${ }_{5}^{2}$	4		1	3	2	1	${ }_{2}^{2}$	${ }_{3}^{2}$		1 2 12	1 2 2 2	$\stackrel{2}{9}$	5	$\begin{aligned} & 2 \\ & 6 \end{aligned}$	${ }_{11}^{2}$	$\begin{aligned} & 1 \\ & 2 \\ & 4 \end{aligned}$	1 2 3		$\begin{array}{r} 3 \\ 9 \end{array}$	r ${ }^{2}$	2	${ }_{3}^{2}$	2	3	5	$\frac{1}{2}$	3	2	$\stackrel{2}{8}$
Total	10	8	11	7	13	12	13		14	- 4	4	7	6		2	5	2	1	7	5		15	5	11	7	8	13	7	76	10	12	14	5	5	4	5	9	3	5	4	10
Supervision: Superintendent Timekeepers	1		1	1 1	1 2	1			2	1		1				1		1 1	2 2	1		1.	1	1	1		1		1	1	1	1 2	1	1	1	1	1	1	1	1	1
Total	2	2	2	2	3	2		2	3	2	2	2	2		2	2	3	2	4	2		2	1	2	2	2	2	2	2	2	2	3	2	1	1	1	2	2	3	2	2
Miscellaneous: Laborers Watchmen. Mechanics. Waterboys.	3	1	1	1	2				1	1	1					1	1 -1 -1	1	12 2			1	1	7 2 2	1		1	,		2	+1 -1 1	1	2 1 1		3	1	1	4 2 1 2 2	1 2 2 1	1 4	1
Total	7	1	1	2	4				2	3					1	3	2	3	16	1		3	3	11	3	3	1	10	4	3	2	1	4		3	1	2	9	6	6	3
Total, excluding truck drivers, steel crew, and miscellaneous Total, excluding truck drivers and steel crew Total, excluding truck drivers	$\begin{aligned} & 73 \\ & 80 \\ & 82 \\ & \hline \end{aligned}$	$\begin{aligned} & 56 \\ & 57 \\ & 60 \\ & \hline \end{aligned}$	79 80 84	$\begin{aligned} & 45 \\ & 47 \\ & 49 \\ & \hline \end{aligned}$	$\begin{aligned} & 89 \\ & 93 \\ & 98 \end{aligned}$	88 88 95	6		$\begin{aligned} & 84 \\ & 86 \\ & 87 \end{aligned}$	$\begin{aligned} & 54 \\ & 57 \\ & 59 \\ & \hline \end{aligned}$	$\begin{aligned} & 49 \\ & 51 \\ & 53 \\ & \hline \end{aligned}$	$\begin{aligned} & 61 \\ & 61 \\ & 63 \\ & \hline \end{aligned}$	$\begin{aligned} & 52 \\ & 55 \\ & 57 \\ & \hline \end{aligned}$		$\begin{aligned} & 45 \\ & 46 \\ & 50 \end{aligned}$	$\begin{aligned} & 49 \\ & 52 \\ & 56 \\ & \hline \end{aligned}$	$\begin{aligned} & 64 \\ & 66 \\ & 67 \\ & \hline \end{aligned}$	$\begin{aligned} & 53 \\ & 56 \\ & 58 \\ & \hline \end{aligned}$	$\begin{aligned} & 74 \\ & 90 \\ & 92 \\ & \hline \end{aligned}$	37 38 42		71 74 76	$\begin{aligned} & 61 \\ & 64 \\ & 66 \\ & \hline \end{aligned}$	$\begin{aligned} & 77 \\ & 88 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & 66 \\ & 69 \\ & 71 \\ & \hline \end{aligned}$	$\begin{array}{r} 69 \\ 72 \\ 73 \\ \hline \end{array}$	$\begin{array}{r} 62 \\ 63 \\ 65 \\ \hline \end{array}$	$\begin{array}{r} 73 \\ 83 \\ 84 \\ \hline \end{array}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & \hline \\ & 48 \\ & \hline \end{aligned}$	$\begin{aligned} & 63 \\ & 66 \\ & 69 \\ & \hline \end{aligned}$	$\begin{array}{r} 80 \\ 82 \\ 86 \\ \hline \end{array}$	$\begin{array}{r} 68 \\ 69 \\ 69 \\ \hline \end{array}$	$\begin{aligned} & 55 \\ & 59 \\ & 59 \\ & \hline \end{aligned}$	$\begin{aligned} & 51 \\ & 51 \\ & 51 \\ & \hline \end{aligned}$	$\begin{array}{r}54 \\ 57 \\ 57 \\ \hline\end{array}$	$\begin{aligned} & 57 \\ & 58 \\ & 58 \\ & \hline \end{aligned}$	$\begin{array}{r}57 \\ 59 \\ 64 \\ \hline\end{array}$	71 80 81	68 74 75	86 92 94	79 82 82
Grand total personnel	99	67	91	53	118	113	8		121	88	70	76	68		58	67	84	65	104	47		87	77	100	84	88	74	93	100	84	110	74	72	61	67	69	74	97	102	129	93

A, shaping the subgrade with a tractor-drawn grader; B, excavating trench for forms; C, setting and lining up forms; D, the "subgrader" does the final shaping, leaving excess material in furrows for removal by hand shovels or fresnos.

Steps in Shaping the Subgrade.
and on joints, varied from a minimum of 6 to a maximum of 23 with an average of 11 .

Setting steel, which includes both the longitudinal steel joint and reinforcing steel, required an average of 2 men on each of the 34 projects. The number varied from 1 to 7 for individual projects. On several projects
neither longitudinal joint steel nor reinforcing steel was used.

The number of men employed in curing the concrete varied from 1 to 15 , depending on the method of curing, the amount of slab to be cured and the efficiency with which the curing operation was performed. An average of 8 men was used for this work.

Table 3.-Analysis of number of men required for different operations.

TAble 4.-Labor and equipment required oll average concrete paring project as estimated from stud!! of 34 projects

FINE GRADING

	Number and type of equipment units	Number and class of men employed
Blade grader	1. 8 to 12 -font blade	1 foreman.
Tractors.	1,30 to 75 horse-power	1 tractor operator.
Subgraders	1	1 blade grader operator.
Subgrade planers	1, heavy, metal	2 teamsters.
Rollers.	1, 3 to 15 -ton.	2 laborers in rearof paver.
Fresnos.	2, 3-foot	
Fresno teams.	2, 2-horse	5 Laborers ahead of paver.
Total		13

HANDLING AND SETTING FORMS

Forms, lineal feet Teams Trucks Form trenchers	4.300 steel 1, 2-horse 1 1.	1 form foreman. 2 form setters. 2 form setters' helpers. 1 teamster or truck driver. 1 teamster's belper. 4 laborers.
Total		11

| HANDLING MATERIALS | |
| :--- | :--- | :--- | :--- |

MIXIN:

Table: 4. - Labor and equipment required on aterage concrete pating project as estimated from study of 34 projects-Contimed

> FINLSHING

	Number and type of equipment units	Number and class of men employed
Finishing machine		4 pudillers and smaders.
Floats.-	1 to. 3	1 finishing machin
Belts,	1	3 hand finishers, stah.
Small tools Bridges...		2 hand finishers. joints.
		1 hand finisher, edteinu.
Total.		11
	SETTING STEEL	
		2 laborers.
CURING		
Burlap, road feet	1,300.	2 laborers, burlap
Hose, 3_{4}-in., lineal feet.	400	6 laborers, covering.
Curing agent apparatus	- --7......	
Total.		\checkmark

MISCELLANEOUS

Total.	I watchman. I water boy. 1 mechanic:
SUPERVISION	
	1 superintemitent. 1 timekeerrer.
Total	2
Total exclusive of truck drivers	$6 x$
Grand total .-...-.	¢1

Shaping the Subgrade.
The equipment and the personnel on the average project, as judged from 34 projects, are shown in table 4, which gives the approximate distribution of personnel performing each operation. This table shows an average of 68 men employed to operate a modern paving outfit exclusive of the operators of hauling equipment. "Miscellaneous" as used in table 4 includes. watchman, water boy, and mechanic. "Supervision includes the superintendent and timekeeper.

Table 2 shows that the total personnel exclusive of truck drivers and steel crew on the paving projects employing a single 27 -E parer raried between 35 and 93, a difference of 55 men.

In general, the number of men employed to operate a concrete paving outfit should be sufficient to perform all of the operations when the paver is working at maximum production. Considerable physical exertion is required of workers and assignments should be such that the work can be accomplished by uniform sustained effort and without injury to the men.

The type of supervision exercised over workers varies considerably. Some operations require a definite number of men regardless of the amount of work they have to do. Utilization of the capacity of workmen performing various operations may vary considerably. Again, the number of men that the contractor must employ to perform an operation may be and sometimes is regulated by arbitrary requirements of the engineer or inspector rather than by the amount of work to be done.

The number of men employed is regulated by a combination of the following influences: The maximum possible rate of production of the paver, the volume and character of fine grading, the lineal feet of transrerse joints to be finished per square yard of pavement, methods employed, arbitrary requirements, type of supervision given, and extent to which machinery is used. It is believed that the combination of personnel and equipment employed on the majority of projects studied was sufficient to handle full paver production, and that the personnel in many instances was more than sufficient.

no consistent relation found between number of men EMPLOYED AND EFFICENCY OF OPERATION

To analyze the interrelation that may exist between number of men employed, maximum possible production, and over-all efficiency of paver operation, table 5 has been prepared, based on 23 of the projects studied. The information contained in this table is shown also in figure 1. There is a general relation between the number of men employed and the maximum possible rate of production although this relation is by no means definite. The relation between number of men and efficiency of paver operation is even less definite, showing that there are other factors besides production and efficiency which regulate the size of a working force.

Table 5.-Comparison of number of men employed, over-all efficiency, and maximum possible production

Project	Men employed exclusive of truck drivers and steel crew	Over-all efficiency, percent	Maximum possible production in cubic yards per hour ${ }^{1}$
Maine no. 1.	46	66.4	40.7
California no. 3	47	47.4	50.6
Louisiana no. 2.	51	82.1	39.6
Washington no. 3	51	81.8	42.5
New Jersey no. 1.	56	76.0	38.6
Louisiana no. 1	57	87.2	41.0
Washington no. 4.	57	96.8	51.5
Washington no. 2	59	87.9	51.2
Louisiana no. 3....	$f 1$	80.3	44.0
Tennessee no. 6	63	86.4	44.7
Colorado no. 1.	64	87. 4	51.1
Tennessee no. 2.	64	81.8	52.4
Louisiana no. 4.	55	91.0	43.7
Texas no. 1.-	66	50.9	52.8
Tennessee no. 4.	69	65. 6	49.4
Washington no. 1	69	93.5	50.2
Tennessee no. 5	72	83.2	44.0
Nebraska no. 1.	74	79.6	47.7
California no. 2	80	95.3	49.6
Texas no. 2...-	82	75.7	58.6
Tennessee no. 8	88	59.1	48.6
California no. 4...	93	95.5	59.4
South Carolina no. 1	93	90.1	34.3

Figure 1.-Relation Between Size of Force, Efficiency and Production.

Table 6.-Comparison of number of finishers (finishing machine operator, spaders, and puddlers), lineal feet of transverse joint per square yard of pavement and maximum possible production

Project	Lineal feet of transverse joint per square yard	Maximum possible Iroduction in cubic yards per hour
Louisiana no. 2	None	39.6
Louisiana no. 4	None	43. 7
Louisiana no. 3.	None	44.0
Tennessee no. 3	0.018	48.0
Tennessee no. 5	. 018	44.0
Tennessee no. 6	. 018	44.7
Michigan no. 1.	. 09	44.9
Tennessee no. I	. 018	49.0
Tennessee no. 2	. 018	52.4
Missouri no. 1..	. 09	3 5. 8
Colorado no. 1	. 15	51.1
Iowa no. 1.	None	43.4
Louisiana no. 1.	None	41.0
Tennessee no. 4	. 018	49.4
Maine no. 1...	. 23	40.7
New Jersey no. 1	. 26	38.6
Texas no. 1	. 11	52.8
South Carolina no. 1	. 22	34.3
Oregon no. 1	. 45	40.6
Tennessee no. 7	. 018	49.5
Arkansas no. 1	. 18	47.5
W isconsin no. 1.	. 18	44.0
Washington no.	-45	51.5
Nebraska no. 1.	None	47.7
Washington no. 1.	. 45	50.2
Washington no. 3	. 45	42.5
California no. 3.	. 45	50.6
Washington no. 2	. 45	51.2
Washington no. 5.	. 45	52.7
Texas no. 2	. 11	58.6
California no. 1	. 45	52.0
Tennessee no. 8	. 018	48.6
California no. 2	. 45	49.6
California no. 4	. 45	59.4

Table 6 gives the relation between the number of finishers (finishing machine operator, spaders, and puddlers), the lineal feet of transverse joint per square

, crane unloading agyreyates from cars to batcher bins or stockpiles as conditions require; B, unloading cement from cars to hatch compartments of trucks; r : hin fot A, crane unloading aggregates from cars to batcher bins or stockpiles as condions ; a good plant arrangement; F, handling bulk cement in "bugkies.

Arrangempint for Handling Cement and Aggregates.

Fard of parement and the raximum possible paver production on 34 projects. Figure 2 also shows this information. Nodirect relation between these factors is erident
EFFICIENCY OF PAVER OPERATION IS GENERALLY AN INDICATION of efficiency of entire organization
The efficiency with which concrete paving is placed is indicated by the studies. It is true that the efficiency with which the paver is operated may or may not measure the efficiency of the paring outfit as a whole. The efficiency of the entire organization is of primary interest to the contractor in that it regulates his unit costs for personnel and equipment. It sometimes happens that, although the paver operates with a high degree of efficiency, it does so with an oversupply of hauling equipment. Other operations than hauling may also be orer-equipped or over-manned. It may happen that the personnel and equipment for hauling, subgrade preparation, and other operations have a high degree of efficiency, while the parer has a low degree of efficiency. Or it may be that the paver operates at a consistently low rate, but because of that consistency the production can be handled by a reduced personnel. These conditions are the exception rather than the rule.

In general, the efficiency of the paver is a close indication of the efficieney of the entire organization which is in turn an index of the type of supervision employed. The contractor or superintendent who operates the paver efficiently is likely to be equally efficient in all operations. Similarly, inefficiency in paver operation is often attended by inefficiency in most other operations.

The paver is the key equipment on a concrete paring project and should set the pace for the entire paving organization. It has a maximum capacity of a definite number of batches per hour for the specified mixing time. It cannot exceed this production. When the production of the paver falls below this maximum number of batches the efficiency of the organization in general is lowered.

A definite number of men is required to operate the equipment and to perform nearly every operation. This number of men cannot be changed as the rate of production changes. The number required to operate the outfit at maximum production of the key equipment must be employed, for on the most inefficient jobs studied, there were times during nearly every day when the paver was operating at close to its maximum production.

- NUMBER OF FINISHERS INCLUDING PUDDLERS AND SPADERS

Figite 2.-Relation Between Number of Finishers, Jont Spacing and Possible Prodection.

Failure of outfits to maintain a high rate of produc－ tion was not the result of insufficient persomel，but of intermittent delays of varying lengths．A high rate of production requires no greater rate of physical exertion on the part of workers than does a low and fluctuating rate of production．

Before discussing the efficiency of operation of major equipment，an outline will be given of the manner in which efficiency was determined．An engineer with one or more assistants was assigned to the project to be studied．In general，the duration of the study was from 1 to 2 months．During the study an accurate record was kept of the total available working time． The term＂available working time＂is defined as the time a crew was actually on the job，or the time it would have been on the job had there been no interference by the elements or other contingencies，consideration being given to the customs of the region and the practices of the contractor in regard to length of working day，holi－ days，etc．If a 9 －hour day is customary with $\overline{7}$ hours work on Saturday，and holidays off，the avalable work－ ing time for a week in which no holiday occurs，will be 52 hours plus any overtime，regardless of how much time was actually lost because of rain，breakdowns，or other causes．

In accurate record was kept of all major delays． The term＂major delays＂，as used throughout this re－ port，indicates a delay of 15 minutes or more during the a vailable working time．A delay of less than 15 minutes is termed a＂minor delay．＂The division between major delay and minor delay at 15 minutes is chosen arbitrarily．In general，the major equipment will cease to operate during a major delay or the outfit may be shut down entirely as is usually the case during delays due to rain or wet subgrade．During the shorter major delays the entire organization may be on the job and drawing pay．The total available working time minus the total major delays gives the time the major equip－ ment actually operated．
Minor delays are intermittent interruptions that range from a few seconds up to 15 minutes．Such delays are determined by stop－watch studies of operations． A stop－watch study period was usually of 1 hour＇s duration．From 2 to 4 such studies were made each day that the paver operated．The results of 2 stop－ watch studies， 1 on a project operating with high efficiency and the other on a project operating with low efficiency，are shown in tables 7 and 8 ．

PREVENTABLE DELAYS FOUND ON MANY PROJECTS

Analysis of these tables shows characteristics of paver operation and the factors affecting the rate of produc－ tion．The production of a batch of concrete consists of three operations：Raising the paver skip to charge the drum，mixing the batch，and discharging the batch from the drum to the parer bucket．In correct opera－ tion the raising of the skip overlaps the discharge of the preceding batch．Whenever the paver ceases to per－ form one of the three operations its efficiency is lowered． The project reported in table 7 was operated with high efficiency．With a mixing cycle of 74.1 seconds，repre－ senting the time to charge，mix，and discharge，the maximum production possible was 48.5 hatches per hour．The over－all efficiency on this project during the entire production study was 96.8 percent．

Table 7．－－Result of typical stop－walch stud！y of projed opcratm？ with high efficiency

Length of study， 60.53 minutes．
Number of batches mixed， 48 ．
Total time lost， 85 seconds or 2.3 percent
Time per batch， 74.1 seconds．
Table 8．－Result of typical stop－watch study of project operating with poor efficiency
［Drum revolutions 15.5 per minute］

$\begin{aligned} & 30 \\ & \frac{30}{0} \\ & \frac{1}{0} \end{aligned}$	$\underset{Z}{\Xi}$	$\begin{aligned} & \mathbb{B} \\ & \frac{0}{0} 0 \\ & \frac{7}{3} \\ & \stackrel{0}{2} \\ & \vdots \end{aligned}$		Z		Delay due to－					
							乞电號				$\begin{aligned} & a \\ & z \\ & a \\ & a \\ & a \\ & a \\ & \tilde{c} \\ & \text { a } \end{aligned}$
Sec．	Sec．	Sec_{3}	Sec．${ }_{9}$	Sec． 62	Sec． 3	Sec． 25	Sec．	Sec．	Sec．	Stc．	Nec
9	62	3	9	62	3	27	25				311
9	62	3	9	63	3	26	24				51
9	63	3	9	6i3	3	24		87			
\％	64	3	9	12	3	23					－
9	62	3						70			
8	61	3							28		
9	62	3							27		
8	62	3				21					
8	62	3				17		22			
9	68	3				16					
9	63	3								251	
9	62	3				18					
8	62	3				21					
8	62	3						27			．．．．．
8	62	3						19			．．．．
9	63	3				21					
8	（i2	3						19			．
9	62	3						15			
8	62	3					－	31			
8	62.	3							24		
9	62	3				13					4112
9	63	3									－．
							49	290	79	251	\cdots
			8.7	182． 5	3.0						

length of study， 59.2 minules
Number of batches mixed， 26
Total time lost， 24.6 minules or 41.5 percent
Time per batch， 74.2 seconds．

[^0] straight-edging" the surface

Table 8 shows stop-watch data taken on a project where the efficiency was low. Small intermittent delays ranging from a few seconds to several minutes account for the low efficiency. Nearly all of the delays could have been eliminated under good supervision such as was found on the first job mentioned. The mixing cycle was 74.2 seconds. The maximum production could have been close to 48 batches per hour. During the study period the production rate was 28.4 batches per hour. The over-all efficiency during the entire period of the production study was 50.9 percent.

Delays of 15 minutes or more occurring during a stop-watch study, were recorded as major delays and were excluded from the stop-watch study period. Periods of study were of such length and at such times that the minor delays recorded are typical of those occurring throughout the working day. The total minor delays recorded during study periods for a day were extended to cover the working time for that day. The time that the major equipment actually operated minus the minor delays is considered to be the time of operation at full efficiency.

Both the major and minor delays are divided into two classes. Class A delays, in general, include those time losses arising from the weather and other causes whick could not have been anticipated and prevented under good management. The class B delays are those which should have been eliminated under good management, due allowance being made for conditions affecting the particular project.

The efficiency of operation of major equipment is indicated by expressing the time that the major equipment actually operated at full efficiency as a percentage of the time that it could have operated at full efficiency had all class B or avoidable delays, both major and minor, been eliminated. There are factors which may affect efficiency and which are not taken into consideration in this method of determining over-all efficiency. The specified mixing time is one of them. The operations which must be performed during the mixing period, such as movement of hauling equipment at the paver, dumping batches, filling water tank, changing hose, preparing subgrade in rear of paver, making provision for joints, and placing steel, are less likely to cause delays to the paver when it is operating with mixing time of 75 or even 60 seconds, than when operating with a 50 -second mixing time. A paving outfit with a full season's work ahead of it is in a much more advantageous position and has a greater incentive to use a better type of equipment and more specialized personnel, and to attempt efficient operation than is the outfit at work on a project of only a few weeks' duration. This advantage is not generally appreciated as is evident from table 9 and figure 3, which show a lack of relation between length of project and over-all efficiency of operation of major equipment on 24 projects.

Another factor in this method of determining over-all efficiency is the ability of observers to classify delays as avoidable or unavoidable according to the definitions previously given. A classification of this kind is essential if efficiency of operation is to be determined with any high degree of accuracy. The total available working time is no indication of the time in which it was possible to operate, when delays beyond the control of the contractor have occurred or when it would not

Table 9.-Comparison of oner-all efficiency amd length of project

be profitable to aroid delay. The observers in these studies had investigated paving projects and are thought to have been well trained for the work. The classifications made by the observers depended on judgment and therefore may not always be correct but there was no practicable way of eliminating the personal factor.

Trucks Ready to Back to
Paver.

MINOR DELAYS RESULT FROM NUMEROUS CADSES

Table 10 is a typical weekly summary of time losses and their effect on production．It shows the total arailable working time for the week，the time lost through avodable and unavoidable najor and minor delays，the production obtained，and the over－all efficiency of operation of major equipment．

Table 11 is a summary of weekly summaries covering the production studies on 23 projects using a single $27-\mathrm{E}$ paver each and on 4 projects using two 27－E pavers each．The over－all efficiency of paving outfits ranges from 47.4 percent to 96.8 percent．Of the 10,651 hours that were avaibable for paving on projects using a single parer，the parer operated at full efficiency only 4,973 hours，or 47 percent of the total arablable working time．Had the class B delays，those which could be eliminated under proper management，been eliminated，fuil production could have been noaintained for 6,366 hours．The over－all efficiency of these 23 paving outfits representing nearly every section of the United States is 78 percent．The causes for the major delays and the time losses resulting from them are shown in table 12．The causes for the minor delays are shown in table 13 ．The results of these studies are believed to be a fairly accurate estimate of the effi－ ciency with which major concrete paving equipment is operated in the United States．

Table 11 shows considerable difference in the over－ all efficiency with which different contractors operated the major equipment．Table 1 indicates that the major and auxiliary equipment was about the same on all projects．Concrete paving equipment is fairly well standardized and in most cases the auxiliary equip－ ment has a capacity corresponding to maximum paver production．
Table 10．－Typical weekly summary of time losses and their effect on production
Project，Maine No．1；equipment，one 27 －E mixer，batcher，trucks，finishing ma－ chine；available working hours， 57.17 ；estimated Iroduction， 1,640 batches，or 6,560 lineal feet

MAJOR DELAYS OCCURRINGDURINGAVAILABLE WORKING TIME

Source of delay	Class A		Class B		Total majo delays	
	Hours	Per－ cent	Hours	Per－ cent	Hours	Per－ cent
Hauling equipment supply			0． 40	0.7		
Water supply ．－．．．．．．．－－			． 25	． 4		
Hose line ．－．－．－．－－－1		0.9	． 28	． 5		
Mechanical trouble at plant	1． 24	2.2				
Waiting for finishers ．．．．．．．．	2.95	5． 2				
Total	4.73	$\times .3$	93	1.6	5． 66	9.9

MINOR DELAYS OCCURRING DURING TIME OF ACTUAL OPERATION

Hauling equipment operation		4． 18	8.1		
Operator．		1． 10	2.1		
Handling cement		6i3	1.2		
Placing steel		2.74	5.3		
Wet aggregate sticking in trucks		2． 15	4． 2		
Shifting hose and pipe line trouble		1.95	3.8		
Water supply．		38	． 7		
Trouble at plant	0． 23	52	1.6		
Hauling equipment supply		19	4		
Mixer，mechanical ．	． 14				
Lack of subgrade and waiting for ishers	1.82				
Total．	2． 16	14.17	27.5	16.33	31.7

[^1]T．ABLE：11．－ボummary of time losses amd efferiency of operatione of major f＇quipment

PROJECTS USING A SIN゙っLE 2そ－E PAリER

		Major delays as percent－ ages of lotal available working time $\frac{1}{5}-\frac{r}{2}=$		Min delay perce age of time maj equi ment tual opera 热	nor s．as ent－ f the that jor ij）－ ac－ 115 ated 总		会		
	Hours						frours	Hours	cr
California no． 2	456.0	32．1｜ 0.51	637.4	1． 1	3.9	95． 01	292.0	306， 2	（1）
California no． 3	1 fk .0	9． 5141.9	4x．6	5． 1	9． 0	85． 91	70.1	147． 4	－
Califormia no． 4	370.7	$12.9 \quad 0.0$	87． 11	3.4	4，31，	92． 3	298.11	312.0	94 i
Colorado no． 1	417.0	9.91 .8	88.3	4． 9	10．2	84.9	312.5	357.5	ni：
Louisiana no．	336.0	（i6． $2 \quad 0.3$	33.5	4． 1	11.3	84.31	915．31	109.1	8
Louisiana no． 2	448．0	（84．9 0.5	34.6	8． 0	15．3	76.71	118.41	144． 2	\because
Louisiana no． 3	544.6	43．6 2.0	54．41	7.2	15． 2	77． 61	229.71	285． 3	611
Louisiana no． 4	240． 4	31.31 .3	67．51	5． 6	6． 7	87.7	142． 1 ｜	156．1，	
Maine no． 1	225.0	$31.3 \quad 3.0$	6．5． 7	5.7	28． 6	65.8	97.3	146．5	617
New Jersey no．	859.7	$47.8 \quad 5.5$	46． 7	5． 2	13.7	81.1	338． 0 ！	444.4	7 il
Tennessee no． 2	517．6	23．6 $6^{1.3}$	75． 1	15． 3	14． 1	70． 61	$274.1{ }^{1}$	333． 0	\therefore ：
Tennessee no． 4	672.0	$39.4 \quad 7.9$	52.7	2.9	23． 6	73.5	2680.4	397． 0	fiti
Tennessee no． 5	475.0	$17.9 \quad 2.0$	x0． 11	2． 2	14.5	83.3	316.9	381.7	8.3
Tennessee no． 6	413.4	$50.7 \quad 0.5$	51.3	6． 4.	14．9	78.7	158． 51	190.7	8.3
Tennessee no． 8	293.0	$\begin{array}{lll}28.1 & 12.6\end{array}$	59.3	8.0	25． 1	66.9	116． 2	196． 6	54
Texas no． 1.	1， 055.4	$51.8 \quad 7.6$	40． 6 ？	0， 0	39． 5	60.5	258． $9^{\text {i }}$	508.0	51
Texas no． 2	1，431． 6	$48.5 \quad 2.9$	． 48.6	8． 71	17． 6	73．7｜	512．2）	676． 61	Tii
Washington no．	117．0	2.92 .0	－ 95.1	4． 7	4．3	91．0	101． 1	10x． 3	4.4
Washington no．	185．7	12.54 .6	82．8	1． 0	7.3	91.7	141.4	160.9	84
Washington no． 3	89.0	0．0． 8.2	91.8	0.0	10．9	89． 1	72.9	89.0	82
Washington no． 4	99.5	3． $7 \quad 0.6$	95． 7	2． 4	2． 5	95.1	90． 5	93． 5	97
Nebraska no．I	812.6	$24.4 \quad 4.9$	70． 6 i	3． 2	14． 2	82.6	475． 0	595.7	al
South Carolina no．	394.1	42．0） 0.5	57.51	2． 6	8．7	¢8． 7	201.2	222.9	941
Total	10，651．3	37.3 4． 2	58.5	5． 0	15． 2	79.8	4，973．316	5，366． 0	i．

PROJECTS USINC 2 2T－E PAVERS

California no． 5^{3} California no． 5
Missouri no．2t
Ohio no． 2 t
Allinoís mo． 1
Total

Unavoidable

Avoidable
3 One of two pavers operating side by side
＇Two pavers side hy side
Two pavers，one hehind the other．Material is delivered to first paver and mixed for part of required time and then fed to second paver for completion of mixing

TABLE 12．－Distribution of the major delays on 2.3 paving projects haring＂total arailable working time of 10,6 ： 1 howrs；the per－ centages are based on the total available working time

Cause of delay	Major delays			
	Class A		Class 13	
	Hours	Per－ cent	Hours	Per－ cent
Kain	1，290． 0	12.1		
Wet subgrade－	1，006． X	9.4		
Cold weather or snow－	482．8	4． 6		
Moving outfit．	421.1	4． 0		
Lack of prepared subgrade	240.4	2． 3	128.5	1． 2
Lack of materials．	152.7	1． 4	76． 4	7
Mixer trouble，mechanical	106.3	1． 0	11.7	1
Inadequate water supply	45.4	． 4	21.7	2
Stopping work early before regular stopping time	36.9	． 4		
Finishing machine trouble，mechanical	21.0	2		
Hauling equipment，operation．			14.7	2
Hauling eruipment，shortage．			30.3	3
Miscellaneous．	168.9	1.5	159.5	1.5
Total	3．973．3	37.3	442.8	4． 2

[^2]Table 13.-Distribution of minor delays on the 23 paving projects during the 6,2S5 hours that the major equipment was operating; the percentages shown are based on the actual operating time

Cause of delay	Minor delays			
	Class A		Class B	
	Hours	Per- cent	Hours	Percent
Wet subgrade	16. 0	0.3		
Lack of prepared subgrade	12.8	. 2	95.2	1.5
Hauling equipment, operation	17.1	. 3	191. 6	3. 1
Hauling equipment, shortage	72.1	1. 2	282.5	4. 5
Inadequate water supply	27.4	. 4	48.3	. 8
Niver trouble, mechanical	71.8	1. 1	20.0	. 3
Mixer trouble, operative.			94.6	1.5
Moring mixer	9.2	. 1		
Waiting on finishing operation			13.2	2
Handling cement.			15. 3	. 2
Placing joints and reinforcing steel			46.6	8
Shifting hose at mixer			15.9	. 3
Miscellaneous.	85.6	1.4	126. 7	2. 0
Total	312.0	5. 0	949.9	15. 2

Total minor delays, $1,261.9$ hours or 20.2 percent.
l'ime major equipment operated at full efficiency, 4.973 .3 hours or 79.8 percent
Table 14 is a summary of time losses on a project having a high type of supervision and correspondingly efficient operation. On this project work was carried on during the winter months under unfavorable weather conditions, but even with this handicap a high rate of production was maintained during periods in which it was possible to work.

Table 15 shows the results of a study made on a project with inadequate supervision and a resulting low efficiency. Avoidable delays were forestalled on the first job, but were allowed to happen and to reduce efficiency on the second project.

Table 14.-Summary of time losses on an efficiently managed project during entire period of study
[Project, South Carolina no. 1; available working time, 394.1 hours; estimated production, 6,898 batches or 39,461 square yards]

MAJOR DELAYS OCCURRING DURING AVAILABLE WORKING TIME

Cause of delay	Class A		Class B		Total major delays	
	Hours	Percent	Hours	Percent	Hours	Percent
Wet subgrade		15. 20				
Rain Cold weather	52.75 51.53	13. 40				
Mixer trouble, mechanical	. 50	- 14				
Water supply	. 25	. 06	0.28	0.07		
Truck operation	. 50	. 14	1. 54	. 39		
Totals	165.41	42.04	1. 82	. 46	167. 23	42. 50
MINOR IDELAYS OCCURRING DURING TIME OF ACTUAL OPERATION						
Shertage of hauling units	1. 62	0.71	0.97	0. 43		
Hauling units, operation.	1. 26	. 56	8. 67	3. 81		
Mixer operator			7. 08	3. 11		
Subgrade.....-....			2. 20	. 97		
Mixer, mechanical Setting joints	1. 25	. 55				
Setting joints,			18	. 08		
Water supply	75	33	59	. 26		
Miscellaneous	96	42	21	. 09		
Totals	5.84	2.57	19.90	8. 75	25. 74	11.32

[^3]Table 15.-Summary of time losses on an inefficiently managed project during entire period of study
[Project, Texas no. 1; available working time, $1,055.3$ hours; estimated production 12.352 batches or 77,831 s'uare yards]

MIAOR ISELAY゙ OCCTRRING DURING AVAIT, ABI,E WORKING TIME

Cause of clelay	Class A		Class B		Total major delays	
	Honrs	Percent	Hours	Percent	Hours	Fercent
Rain and wet subgrade	295.07	27.9				
Cold weather	212.12	20.1				
Moving.	-23.50	2.2			.	-.-.
Mixer, mechoninal	16. 67	1. 6				-.--
L.ack of subgrade			13. 26	1.3		
lack of materials			12.00	1.1		
W'ater supply.			11. 42	1.1		
Truck supply.			5.08	. 5		
Truck oreration			. f 3	. 1		
Miscellaneors			37. 71	3.5		
Totals	547.36	51.8	80.10	7.6	627. 46	59.4

MINOR LETAYS OCCIRRINT DURING TMME OF ACTEAL OPFRATION
[No class A minor delays]

Couse of delay		Class B

Major equipment operated 427.9 hours or 40.6 percent of arailable time.
Major enuipment operated at 109 percent effciency 259 hours or 90.5 percent of operating time. Possible operating time with all class B losses eliminated, 5fia hours. If ith all class B losses eliminated production would have been 24,238 batches. Over-all efficiency of operation of major equipment 50.9 nercent.

CAUSES OF INEFFICIENCY DISCUSSED

Constant and proper supervision is the key to efficient operation. The type of supervision on nearly every project listed in table 11 is indicated with fair accuracy by the figure for over-all efficiency of operation of major equipment. A superintendent who understands highway construction, who realizes the importance of utilizing available working time to the fullest extent, and who has the ability to foresee and to prevent delays, is highly valuable.

It is evident that adequate supervision has not always been employed. The first reason that comes to mind is that contracting firms, in general, have not always realized the value of adequate supervision of construction. Administrative officers devote a major portion of their time to obtaining contracts and purchasing materials and partially neglect measures for attaining efficiency in construction. It has been customary to refer to highway construction as a "risky business", and there has been a tendency on the part of highway contractors to place much of the blame for inefficient operation on the element of risk rather than on a lack of proper supervision.

Another reason for low efficiency may be that there is no large supply of highway superintendents who have

4. covering concrete with hurlap after finishing; B, placing earth covering after surface has hardened; C, the finished surface

Steps in Curing.
a natural aptitude for the work, together with adequate experience in methods of construction and such special training in production work as enables them to appreriate the value of adrance planning and of full use of available working time. Possibly the seasonal and intermittent character of concrete road construction has led qualified men to seek continuous employment in other lines of work.

Another factor affects the efficiency with which highway construction work is done. This can be termed "inspectional interference.'
Inspectional interference is not to be confused with proper and adequate action in the enforcement of specifications. Proper inspection is a necessity. It is a factor which can be evaluated with reasonable accuracy in preparing bid prices. Inspectional interference, on the other hand, is the overstepping of the engineer's or inspector's authority to enforce specifications. Arbitrary requirements may be imposed on the contractor. An element of risk may be introduced which cannot usually be evaluated, but which must be considered in arriving at bid prices.

The reasons for such interference are natural ones. In some instances specifications do not state clearly what is desired. They may be contradictory also. Ennecessary interference has been found on many of the projects studied. The actual extent to which it has lowered operating efficiency is not shown in the results of the production studies. The lost time caused by such interference has been reported under the type of delay which it caused.

Ennecessary interference causes a loss of working time and also tends to discourage the employment of adequate supervision when the efforts and planning of a competent superintendent can be easily frustrated by a well-meaning but over conservative and autocratic resident engineer or inspector.

Nany examples of unnecessary interference could be cited. Contractors are sometimes required to mix the concrete longer than the specified mixing time, because, in the inspector's opinion, it results in better concrete. It actually results, however, in decreased production and increased costs for labor and equipment. The hours of work are sometimes arbitrarily regulated. Instances have been observed where production has been stopped for extended periods in order that the templates and finishing-machine screeds might be rhecked although there was ample opportunity for checking during nonoperating time.

A rather absurd instance of interference was observed not long ago. Laborers emptying sacks of cement on trucks were required by the engineer to leap through the air from one truck to the next rather than to descend to the ground after the dumping operation. This was done to prevent the loss on the ground of ‘ement adhering to the laborers' shoes. The laborers, after dumping cement on one truck could not start on the next truck until it came alongside so that they could jump to it. With two trucks abreast between the forms there was not sufficient room for the empty truck at the paver skip to proceed without delay. The empty truck had to wait its turn to pick its way between loaded trucks engaged in this maneuver. The hauling service was badly disrupted. Hauling costs were increased and paver production was decreased.

The daily operating cost for labor and equipment on a comerete paving project is approximately $\$.580$ as will be shown later. The cost raries but little whether the production per day is 250 or 500 cubic rards of
concrete. The importance of efficient operation in reducing unit costs should not be overlooked. Neither should the fact be lost sight of that an efficient organization is in a much more fayorable position to produce concrete of good and uniform quality than is the inefficient and intermittently operated outfit. Inspectional interference will be difficult to eliminate so long as both the results desired and the methods by which the contractor must obtain these results are specified, and so long as authority over the operation of the contractor's personnel and equipment, without responsibility for the finished product, is assumed by the inspector.

UNIT COSTS PER SQUARE YARD ANALYZED

State practices vary with regard to pavement thickness, cement factor, length of mixing time, size of batch, amount of reinforcing, and joint material used, etc., and it is difficult to calculate accurately the unit cost for concrete pavements for the country as a whole. During 1930, 10,600,000 square vards of plain cement concrete pavement were laid on Federal-aid projects at an average cost of $\$ 1.78$ per square yard. Five and one-half million square yards of reiniorced concrete pavement were laid on Federal-aid projects at an average cost oif $\$ 2.16$ per square yard. This gives a weighted average for all Federal-aid concrete pavements of approximately $\$ 1.90$ per square yard. On the assumption that these unit prices are representative of prices for concrete parements built by State and local authorities and that the proportions of plain and reinforced parements for the total mileage built are about the same as for the Federal-aid mileage, the price of $\$ 1.90$ per square yard will be used in the detailed analysis of costs.

The distribution of this unit cost in respect to the various items of expense is shown in table 16 . The percentages have been calculated from data collected in cost studies. On individual projects, costs and their distribution will vary considerably from these figures, but the table is believed to be representative of average conditions.

Table 16.-Distribution of average cost of cement concrete pavements on Federal-aid projects in 1930 of $\$ 1.90$ per square yard ${ }^{1}$

[^4]During 1930, approximately 10,000 miles of portland cement concrete pavements were built on rural highways. Assuming a pavement width of 20 feet, the cost per mile was approximately $\$ 22,500$ and the total
cost was $\$ 225,000,000$. The percentage distribution of this total expenditure is shown in figure 4.

The analysis shows that the cost of cement and aggregates delivered to the contractor's plant is 59 percent of the pavement cost, and that 22 percent of this total parement cost is for the transportation of materials from the source of supply to the batching plant on the project. Transportation charges constitute 37 percent of the cost of these materials.

Figtre 4.-Estimated Distribution of Expenditure on Portland Cement Concrete Pavements During 1930.

If METHODS OF MIXING AND PLACING CAN BE IMPROVED, LESS CEMENT WILL BE REQUIRED

The largest item of expense is for cement the cost of which, delivered to the project, is about 30 percent of the total parement cost. The cement factors used on the 34 projects studied during 1929 and 1930 varied from 1.23 to 2.10 barrels of cement per cubic yard of concrete. The possibility of reducing the amount of cement used without reducing the quality of the parement is dependent on several factors, one of which is the uniformity with which the ingredients are distributed throughout the mass of concrete. Available information indicates that the present method of combining ingredients does not produce concrete in which these ingredients are uniformly distributed throughout the mass.

Analyses of samples removed from concrete after it has been spread on the subgrade show that variation in the amount of any one ingredient from one part of a batch to another part is often as high as 20 or 30 per-

Figtre 5.-Variation in Distribution of Ingredientis of Concrete as Mixed in Standard Payers.
cent. One point in the batch may contain 10 or 15 percent more of an ingredient than the average for the batch while another point may be deficient by a similar amount. Percentage differences or "spreads" between points as high as 30 percent are not uncommon. The average spread in the proportion of any 1 of the 4 ingredients is about 10 percent. This lack of uniformity in the distribution of the ingredients no doubt accounts, to a large extent, for the wide variations that are found in the compressive strengths of cores removed from concrete pavements. Figure 5 shows the percentage spreads in materials on two different projects. These are typical examples of the lack of uniformity resultingfrom the present method of mixing concrete. Could the mixing be improved so that the ingredients would be uniformly distributed in the pavement, the cement content probably could be reduced, resulting both in a reduction in the cost of this material and a probable increase in the quality of the pavement.

Methods of manipulation must be considered in fixing the water and cement content of concrete. Present methods of placing concrete require rather wet mixes. It is generally accepted that the strength of concrete varies inversely with the ratio of the water to the cement. If methorls of manipulation can be improved so that considerably drier concrete can be placed satisfactorily, a reduction in the amount of cement used should result.

The cost of reinforcing steel, material for joints, and other minor materials, averages 6 percent of the pavement cost. The cost varies considerably on different projects. Some States use heavy, double reinforcing while other States use no reinforcing. The spacing of transverse joints likewise varies between wide limits. Some States use no transverse joints while others space joints as close as 20 or 30 feet. For the 34 projects analyzed the transverse joints per square yard of parement varied from none to 0.45 lineal foot.

EQUIPMENT COSTS ANALYZED

The cost of equipment is about ? percent of the parement cost. The most logical way to reduce this cost is to increase the efficieney with which equipment is operated by using a greater percentage of arailable working time. Annual or monthly expense for equipment is nearly constant except for field repairs, fuel, and lubri-
cants. Cost- do not vary materially with production obtained. The unit cost for depreciation, overhauling, major repairs, interest, taxes, storage, and insurance therefore varies almost inversely with the rate of production.

The unit cost for field repairs, fuel, and lubricants can be expected to vary nearly directly with the rate of production. There is no accurate method of determining equipment expense. The care that a piece of equipment receives is important in affecting its life. Equip)ment obsolescence affects costs. In the absence of a definite method of determining equipment expense, an approximation of the arerage daily equipment cost for the country as a whole is given in table 17. The figures shown in this table may not be applicable to erery paving organization but they are suitable for use in general comparisons.

The figures in table 17 are based on an assumption that the average length of a construction season is 8 months (from Mar. 1 to Nov. 1). There are 245 dayrs in this period of which 35 are Sundays and 3 are holidays. It is reasonable to assume that during an 8 -month construction season the average paving contractor will have two projects. This necessitates a move from one project to the other. Allowing 12 working days for this move, 195 days or 24 days per month are available for operation. Table 12 shows that on the 34 projects analyzed the major unavoidable delays were as follows:

INAVOIDABLE MAJOR DELAYS
Cause of delay: Percentage of Cause of delay: uorkinך tim

Wet subgrade 9
Cold weather, snow
Moving equipment about project 9. t

Lack of prepared subgrade
Lack of materials
2. 3

Paver trouble, mechanical
Inaderuate water supply
Miscellaneous.
Total
37. 3

Thirty-seven percent of the total available working time was lost through delays of 15 minutes or over, delays that the contractor could not have been expected to anticipate and prevent. Delays from adverse weather conditions, wet subgrade, and moving the equipment about the project amount to 30 percent of available working time. Such delays generally last from one-half day to several days. During these periods the outfit usually does not operate, and the personnel, with the exception of straight-time men, is not on the job and does not draw pay.
The remaining delays, which amount to 7 percent of available working time, may or may not be of sufficient duration to shut down the outfit and stop production. In this discussion such delays will be considered as occurring during periods when the entire personnel is on the job and drawing pay. The possible

Table 17.-Estimated equipment costs ${ }^{1}$

[^5]working time will therefore be 70 percent of 195 days, or 136.5 days. This gives 17 possible working days per month during a construction season.

Monthly equipment expense exclusive of field repairs, fuel, and lubricants is prorated over the 17 working days that equipment can be actually operated under average conditions. Daily costs for field repairs, fuel, and lubricants are based on observations made during the time studies and are estimates only. The total average daily equipment expense as derived by this method of estimating is $\$ 256$. The portion of this expense regarded as constant regardless of production is $\$ 203$.

The production studies show that the average contractor operates major equipment with an efficiency of 78 percent. With a 69 -second mixing time and a batch of 27 cubic feet this means an average production of 300 cubic yards of concrete per 9 -hour day, or a fixed unit cost for equipment of 85 cents per cubic yard. With an efficiency of 90 percent this fixed equipment charge would be 74 cents per cubic yard.

LABOR COSTS DISCUSSED

The cost of labor, including supervision, is 11 percent of the pavement cost. The number of men employed is usually that necessary to handle maximum paver production and remains relatively constant. It does not fluctuate as the hourly or daily rate of production fluctuates because of delays. The daily labor cost can therefore be considered as an almost constant amount. As production decreases, the unit cost for labor increases.

To determine daily labor cost it is first necessary to consider the basis of payment of personnel and that part of the personnel which is on the straight-time pay roll. Although there is some variation in the number of men carried on the straight-time pay roll by different paving organizations, the straight-time men are usually a superintendent, a timekeeper, four foremen, a crane operator, a paver operator, and a mechanic. Some common labor is also employed during periods of nonproduction and appears on the straight-time pay roll. However, such labor is affected by job conditions and therefore is omitted in this discussion. The superintendent is usually paid on a monthly or yearly basis. The other men on the straight-time pay roll are generally kept working on the job during periods of nonproduction and are usually paid on a weekly basis for all time except Sundays and possibly holidays. During an 8 -month construction season the superintendent will usually be paid for 245 days. The remaining straighttime workmen will usually be paid for 245 days less 35 Sundays and 3 holidays, or 207 days. It is again assumed that there will be 136 productive days during the construction season on which the remaining personnel will be paid. Table 18 gives the approximate daily cost for labor per day of actual construction, assuming an average working day of 9 hours and wage rates which are averages for the country as a whole. Payments made to straight-time men are distributed among the productive days.

With an over-all efficiency of operation of major equipment of 78 percent and a daily pay-roll cost of $\$ 334.23$, the unit labor cost is $\$ 1.11$ per cubic yard. With an over-all efficiency of operation of 90 percent the unit cost would be 96 cents.

TABLE I8.-Pay-roll costs on an assumed typical project for each productive day. Based on 136 productive days per season

Position	$\begin{aligned} & \text { Num- } \\ & \text { her } \end{aligned}$	Inily	Inys for which pay is rereived cluring season	Non-productive days during season for which pay is received	Total cost of non- pro- due- tive time	Pro- rated cost of non-pro-duetive time to each rroductive day	I aily cost of pros-ductive time	Total cost for each 15(0) duc- tive day
Superintendent	1	\$12.00	245	119	\$1.30x	\$9.62	\$12. 00	\$21. 62
Timekeeper	1	5. 00	207	7	3.55	2. 61	5. 00	7.61
Foremen	4	6. 00	207	71	1,704	12.53	24. (6)	36. 53
Crane operator	1	9. 0 ()	207	71	6.39	4. 69	9. (K)	13.69
Paver operator	1	7. (\%)	207	71	497	3. 65	7. 10	10. 6.5
Mechanic.	1	6. 00	207	71	426	3. 13	6. 00	9.13
Other machine operators	7	5. 00	136	0	0	0	35.00	35.00
Semiskilled and heavy common labor	18	4. 50	136	0	0	0	81.00	81.00
Ordinary common labor	34	3. 50	136	0	0	0	119.00	119. (\%)
Total	68				4,929	36. 23	297. 50	334. 23

The cost for labor and equipment on concrete pavement construction during 1930 is estimated to have been $\$ 44,600,000$. Had the general over-all efficiency of operation of major equipment been 90 percent instead of what it actually was it is reasonable to suppose that the total labor and equipment costs would have been reduced by at least $\$ 4,000,000$. It is to the advantage of both contractors and engineers that concrete construction be carried on with a high degree of efficiency. Efficiency is advantageous to the contractor in his efforts to meet competition. A competent superintendent, invested with the necessary authority, is invaluable to him. Efficiency works to the advantage of the engineer as it is his duty to see that the general public receives the greatest value in both quality and quantity for expenditure for concrete pavements.

HAULING COSTS AN IMPORTANT ELEMENT

An estimate for the cost of equipment and personnel connected with batch hauling, that is, transporting the batches containing aggregates and cement from the batching plant to the paver, has not been included in the preceding analysis. The cost of batch hauling is estimated to be 7 percent of the pavement cost. This figure is based on average haul and costs on the projects studied. Transporting batches from the batching plant to the paver on the road is an operation separate from that of paving. It is synchronized with the paving operation in that a definite number of trucks is required to furnish the paver with the maximum number of batches that it can mix per hour. The hauling equipment on the average project is usually operated with lessefficiency than is the major paving equipment. This is especially true where the hauling is sublet, in which cases the equipment is often owned and operated by several individuals and is not directly supervised.

The daily cost of truck operation is not affected by the amount of work done except in the items of field repairs, fuel, and lubricants. The cost for the truck driver will be the same regardless of the number of batches hauled. The daily cost of operating a hauling unit can be considered as almost a fixed charge. The unit cost of hauling batches will be determined by the number of batches that the truck can deliver per day, and this in turn will be determined by the following items:

1．Haul distanee．
2．Condition of hauling road．
3．Efficiency of truck operation．
4．Number of trucks in excess of those required to match maximum paver production．

5．Efficiency of paver operation．
6．Length of time required for loading，turning，backing， passing throngh plant yard，dumping hatch，waiting to dump first batch of multiple batch truck，time interval between the dumping of batches，and necessary delays．

Fluctuating production of the parer increases the unit hauling cost by causing delays to the hauling units． On the other harid an insufficient supply of hauling units or faulty operation causes delays to the paving organization．＇Table 13 shows that one－half of the minor a voidable delays to major equipment were due

Table 19．－Exampues of job efficiency between 192．3 and 1928

Project no．	Year	Total available working time during study	In－ aroid－ able delays	Aroid－ able delays	Time paver operated at full effi－ ciency	Time paver coulil have operated at full effi－ ciency had avoidable delays been eliminated	```Actual effi- ciency of oper- ation```
	1923	IIours	Hours	Hours	Hours	Hours	Percent
2.	1924	222.0	63.8	71.2	87.0	158.2	55.0
3	1924	163.0	42.0	56.1	64.9	121.0	53.5
4	1924	146.0	36.5	40.0	69.5	109.5	63.5
5	1925	210.0	73.5	79.9	56.6	136.5	41.5
fi	1925	477.5	157.8	120．2	199.5	319.7	62.5
7	1926	1，164．5	429.1	358.9	376.5	735.4	51.2
x	1927	1，143．3	197.3	46.5 .1	480.9	945.0	50.9
9	1927	520.0	82.9	147．6	289.5	437.1	66.2
10	1928	512.0	（97） 0	182.3	239.7	422.0	56.8
Total		5，298． 3	1．285．9	1．822．3	2，190． 1	4．012． 4	54.6

TARLE 20．－．S．Smmary of weekly time losses on a project operated efficiently
［Study made in 19：31］

[^6]to these two causes and amount to 7.6 percent of the time that the major equipment was actually operating． Harmony between the paring operations and the haul． ing operations requires that the paving organization should operate at a uniform rate；that the hauling equipment be adequate for the rate of paver produc－ tion；and that the hauling equipment be operated at a steady pace without interruption．

The investment in hauling equipment may be even greater than the combined investments in all the other equipment．Inefficient operation of hauling units may increase costs greatly．

The cost of overhead，interest，bonds，set－up charges， etc．，is estimated at 4 percent of the bid price，and the return to the contractor in the form of salary and profit， after all other cost items have been met，is also placed at 4 percent．＇These items are more or less intangible and the percentages shown are merely estimates made for the purpose of this analysis．The true cost may be a few percent either way from the percentages shown， but the distribution of the remaining cost will not be materially changed from the figures shown in this cost analysis．

Table 21．－Summary of time losses on project reported in table 20 and their effect on production
［Total available working time， 536.9 hours．Estimated production， 16，551 batches］

TOTAL MAJOR DELAYSOCCURRIN（子DURING AVALLABLE WORKING TIME

Cause of delay	Class A		Class B	
	Hours	Percent	Hours	Percent
Rain	39． 69	7.4		
Moving mixer	25． 53	4.7		
Wet subgrade	18． 74	3.5		
Pouring concrete gutter	12． 75	2.4		
Mixer trouble，mechanical．	8． 56	1.6		
Pouring headwalls．	5． 89	1.1		
Removing concrete from drum			3.50	0.7
Batcher trouble	1． 55	． 3		
Preparing subgrade			75	． 1
Skip blocked by traffic	12	1		
Water supply trouble	45	． 1		
Truck operation．．．	40	． 1		
Truck shortage	25	． 0		
W reck	25	． 0		
Miscellaneous	25	． 1	25	． 0
Late start			． 50	． 1
Total	114． 93	21.4	5.00	． 9

TOTAL MINOR DELAY゙S OCCURRIN゙G DIRING TIME OF ACTEII， （）PERATION

Truck operation．	2． 27	0.5	2．$\times 9$	0.7
Mixer trouble，mechanical	1． 17	． 3	2． 15	5
Water supply	1． 42	． 3	21	0
Truck shortage	． 30	． 1	1． 17	3
Mixer operation			1． 21	． 3
Handling cement			3． 05	． 3
Placing reinforcing steel	17	． 0	． 65	2
Wet subgrade	． 76	2		
Rain	． 58	． 1		
Preparing suhgrade			35	1
Miscellaneous	12	． 0	15	0
Setting expansion joint	13	． 0	10	0
Skip blocked by traflic	． 11	． 0		
Truck trouble，mechanical	． 11	． 1		
Dumpinz－．．．．－－－．			03	（）
Total	7． 14	1.6	9． 97	2.1

[^7]
EFFICIENCY IN CONSTRECTION GREATLYIMPROVED IN

 RECENT YEARSWhen production studies of highway construction were started in 1923 the efficiener with which conerete paving was laid was much less than it is today. Kery little attention was given to attaining maximum paser production or to the full use of available working time. In recent vears, there has been a gradual increase in the efficient use of working time. Table 19 indicates that trend.

The 10 projects listed in table 19 were studied in the years shown and are representative of supervision better than the average. With few exceptions the projects selected for efficiener studies were each several miles in length and all were constructed with standard paving equipment. The projects were located in five different States. Project no. 2 was in one of the central States. The contractor's organization on project 2 had the reputation of being the most efficient in the State, yet the major equipment was operated with an efficiency of only 55 percent.

In contrast with the rates of efficiency shown in table 19 for years prior to 1929, 10 of the projects studied in recent years (table 11), each using a single paver, were operated with an over-all efficiency of more than 85
pereent and 6 projects were operated with an efficiency of 90 percent or more.

An example of the high efficiency that can be maintained in concrete paving is given in table 20. This is a summary of production studies made on a paring project in an eastern State during a period of 9 weeks in the summer of 1931 . The drop in efficiency in the fifth week was caused by the paver operator's negligence in allowing a bateh of concrete to harden in the mixer while the motor was being repaired. Table 21 contains a summary for the 9 weeks of operation and show: the cause and extent of all delays.

Efficient use of available working time has steadily increased. This increase has had a favorable effect on unit costs. It is generally recognized that this increase in the rate of production has had no adverse effeet on the quality of parements.

The cost of labor and equipment, however, is only a part of the cost of a concrete parement. Improwenents in the methods and equipment used in the production of paring materials as well as in the production of finished surfaces, together with more definite information concerning the design of concrete mixtures as developed through research will increase both the efficiency of comcrete parement construction and the value received hy the public per dollar of pavement expenditure.

Net gasoline tar earned after deduction of reands allowed by law
Leegislation enacted in several states ant horizes the diversion of gas
Liegislation enacted in several states anthorizes the diversion of gasoline tax revenue to purposes ot her than
for highways after such funds have been transferred by the collecting agency presumably for road purposes. In several such cases the reports of collecting agenpies as given here indicate the initial distribution and not the final
distribution. The County Commissioners of Florida counties of $4.135 t 04,300$ population are anthorized to (ransfer surplus money of road and bridge funds derived from the gasoline tax to courthouse and jail funds.
 ${ }^{3}$ Many States pay collection cost from other State funds, and such are noted. Administration cost in4 Since this table covers the calendar year earnings, but not the actual collections during the year, these columns are not comparable with similar columns in tables F-1 and F-4 which cover different periods fixed For State highway bonds, except as noted.
Shows percentage increase or decrease compared to net gallons reported in previous year.
Aplief fund, 1/10 of net motor fuel tax after June 30, 1933.

Includes receipts from 1 cent tax on gasoline not used in motor vehicles.
Tax refund of 3 cents athowed for use other than in motor vehicles.
Tax refund of 3 cents ahlowed for use other than in motor vehicles.
$\$ 75,000$ to conservation department: $\$ 48,000$ for approaches to ferries, and $\$ 2,320$ for protest fees To unemployment relief fund, and other nonhighway purpose
For aeronautic fund $\$ 22,677$ and $\$ 4,185$ to State general fund.
${ }^{34}$ Paid by State appropriation of $\$ 13,006$).
но syวәч.) рәұ.)ə! closed banks.
40 Includas $\$ 4,802$ from 2 cent tax on gasoline used by motor boats.
42 Includes $\$ 50,000$ paid to refund reserve.
43
State general emergency fund from 1 cent extra tax.
44 Tax rate of 2 cents allowed at border of State.
${ }_{4}{ }^{4}$ For police patrol and administration of motor vehicle laws
4s Consists of $\$ 2,262,625$ for redemption of State warrants, $\$ 237,127$ reserve for taxes paid under protest; $\$ 94,923$ o State general revenue.
ty Delinquent tax collections.
so Includes part of police patro
50 Includes part of police patrol expenses; amount not reporterd.
si Paid from Motor vehicle fees, $\$ 15,558$.
53 Paid from Siate tax commission appropriation.
st Includes $\$ 2,712,661$ for payments on counth honds
s5 New law effective during last nine months allows
${ }^{35}$ New law effective during last nine months allows only 2 cent refunds.
${ }_{56}$ This does not correspond to gallons taxed at 4 cent rate due to refunds being at 2 cent rate
is Includes $\$ 183,217$ allocated to roads in (1reat Smoky Mountain Park.
${ }^{59}$ Includes $\$ 1,832,166$ payments on county bonds and same amount 10 sinking fund bonds.
60 For free school fund.
${ }_{61}$ Payments made from motor vehicle fees.
${ }_{63}$ Estimate based on previous year.
63 Payments on State emergency relief bonds.
${ }_{64}$ Includes $\$ 1,133,848$ allotted in lieu of personal property tax
On February 1 tax reverted to 4 cents and on date shown changed back to 5 cents.
Includes $\$ 2,692,323$ assignable to county bond payments.
11 Transfer to State Charity fund.
12 Tax rates of 2,4 , and 5 cents allowed at State borders.
Consists of $\$ 61,049$ to transportation division of State bo
CLASS I－PROJECTS ON THE FEDERAL－AID HIGHWAY SYSTEM

						$\begin{aligned} & 0 \\ & \underset{\sim}{0} \\ & \underset{\sim}{2} \\ & \dot{\sigma} \end{aligned}$				を分ま のั		$\begin{aligned} & \text { mow } \\ & \text { onion } \\ & \text { ons } \\ & \text { nis } \end{aligned}$				ํํN రiఱ゙ －		$\stackrel{\infty}{\infty}$	－
		$\xrightarrow[\sim]{\text { N～O }}$	$\stackrel{\square}{\sim}$	-ヘ	$\dot{\min }$	\％omb	$\stackrel{\sim}{\sim}$	$\begin{aligned} & \text { OT } \\ & \dot{\mathrm{N}} \end{aligned}$	$\begin{aligned} & \text { Mon } \\ & \text { Móm } \end{aligned}$	$\stackrel{\sim}{\circ}$	0.0 .3 nio		mitin	$\dot{\circ} \dot{\sigma}$	$\stackrel{\sim}{n}$		$\begin{aligned} & 70 \\ & -0 \end{aligned}$	$\stackrel{\square}{\circ}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$
			$\begin{gathered} \text { 영 } \\ \text { N } \\ \dot{-} \end{gathered}$				がき ぶ ～気						ま〇〇〇 ${ }^{\infty}$告合		๙゙ํㅡㄴ兑が兌 둥			$\begin{aligned} & 0 \\ & \stackrel{\sim}{\omega} \\ & 0 \\ & \text { N } \end{aligned}$	
		muo	－	こNE			noo 家まき											$\stackrel{\sim}{x}$	－
		$\begin{aligned} & \text { nimm } \\ & \text { 我in } \end{aligned}$	－	勺ั๋	の－－－	A．	－60	－	－Mm	¢		¢゚ロッ	ジぎき	ตํํํ	mmin	$\begin{aligned} \text { O~N } \\ \text { inifin } \end{aligned}$		$\stackrel{\sim}{\sim}$	$\bar{\sim}$
				$\begin{aligned} & \bar{\circ} \\ & \stackrel{0}{\infty} \\ & \stackrel{\sim}{\infty} \end{aligned}$							๙38 －뿡 がが にざ		$\begin{aligned} & \stackrel{\text { ®}}{\dot{\bar{N}}} \\ & \stackrel{N}{\tilde{\sim}} \end{aligned}$		$\begin{aligned} & ⿳ 亠 口 冋 口 \\ & 0 \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \stackrel{0}{\infty} \\ & 0 \\ & \stackrel{0}{0} \\ & \stackrel{0}{2} \end{aligned}$	$\begin{aligned} & 8 \pi \\ & 80 \\ & 80 \\ & 0 \\ & 0 \\ & \text { mix } \end{aligned}$		
				운은戸登 ธibio \therefore									sit요 mion玄录ば ～～is				8 inn ํㅜㅇ ごー		
			च88 ษัํํ むigio －～～				๑๐ット ※®® ヘ－		ninc 品宮言 がが	\approx		๗．88 ベニ ${ }^{\circ}$		$\because=$				$\begin{aligned} & \underset{\sim}{\circ} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{\sim} \end{aligned}$	
$\begin{aligned} & \text { 惫 } \\ & \text { 畨 } \\ & \text { 㕄 } \\ & \end{aligned}$	唇	$\begin{gathered} \sigma-\infty \\ \dot{\sigma}-\dot{2} \\ \hline \end{gathered}$	$\%$	－゙ョロ்	$\stackrel{\infty}{\infty}$		$\stackrel{\square}{\circ}$				-ino	$\begin{aligned} & \text { Non } \\ & \text { Oivinion } \end{aligned}$				$\begin{aligned} & 7 N r \\ & \text { rion } \end{aligned}$	$\begin{aligned} & \text { Hog } \\ & \text { in in } \\ & \text { Sin } \end{aligned}$	¢ิ	
	碳									$\begin{aligned} & 8 \\ & \stackrel{8}{0} \\ & \stackrel{\sim}{0} \\ & \underset{\sim}{0} \end{aligned}$	8 8 8 9					$\begin{aligned} & \text { ow } \\ & \text { i. } \\ & \text { and } \\ & \text { aim } \end{aligned}$		$\begin{aligned} & \text { ๙ } \\ & \text { む } \\ & \underset{\sim}{~} \end{aligned}$	\sim \sim \sim \sim \sim \sim \sim \sim
			129 5우웅甜品的 ～				$\begin{aligned} & \text { gi } \\ & \text { ס } \\ & \text { Ñָ } \end{aligned}$				がn 犬家先 				2Nㅜ き்ं 	R゙ラ ธing		$\begin{aligned} & \stackrel{N}{N} \\ & \stackrel{N}{N} \\ & \stackrel{0}{6} \end{aligned}$	
						〒웅完루ํ รั웅 \because	$$		ño雚気 ๙ึํํ			$\because 0$				～ 8.8 去的票 家言品		$\stackrel{2}{\mathrm{~N}}$ $\tilde{\sim}$ $\underset{\sim}{\tilde{N}}$	\％
						888 ํㅗํㅆㅆㅆ ninim										888 觅品 ๙ूँ min			
																			\％

CURRENT STATUS OF U．S．PUBLIC WORKS ROAD CONSTRUCTION

CLASS II－PROJECTS ON EXTENSIONS OF THE FEDERAL－AID HIGHWAY SYSTEM AND THROUGH MUNICIPALITIES
AS OF JUNE 30,1934

	敬							N8\％ あうこ ㅊ シั่	ざロき $\stackrel{y}{\circ}$ ダら		ソも $=$ －๙ั 灾官		以゙き 定が家 登三密				に気に シャシㅡㅇ	$\frac{\stackrel{2}{\dot{\omega}}}{\stackrel{\rightharpoonup}{\dot{\omega}}}$	
	$\frac{\stackrel{4}{4}}{\frac{4}{2}}$		¢ٌim．	$\stackrel{\varrho}{j} \stackrel{\square}{=}$	\dot{m}	$\stackrel{\sim}{n}-\stackrel{\circ}{\alpha}$	$\stackrel{\sim}{\sim}$	O～～00	ごャの	\approx	凹inc		minio		$\stackrel{0}{0}$	\bigcirc	$\stackrel{\sim}{\sim}$		范
			 กั่ ष्षㅁ ષั～ㅜㅜㅇ	$\begin{array}{ll} 8 & 7 \\ \dot{0} \\ 0 & 8 \\ 0 & 0 \\ 0 & 0 \\ 2 & i \end{array}$	$\begin{aligned} & 8 \approx \\ & \text { © } \\ & \text { - } 0 \\ & 20 \\ & 0 . \end{aligned}$				き～的 － ～룰		$\begin{aligned} & 508 \\ & 30.8 \\ & 300 \\ & 300 \\ & 300 \end{aligned}$	\therefore 8응영 以	우눙 ${ }^{\circ}$ 	8こも かisio 웅		$\begin{aligned} & 82 \\ & \text { 80 } \\ & \text { xio } \end{aligned}$			
$z$$\frac{2}{0}$0000000000002	皆			－－m	m～N	－¢	－¢ ¢ ¢	～no	＊＊	家へ	O\％ ¢i¢	コ～～～			$\underset{F}{2 \dot{N}}$			$\stackrel{m}{\sim}$	－
	$\begin{aligned} & \text { yb } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	non		－	nった		$\stackrel{\sigma-i n}{\sim}$	mam	$\stackrel{\sim}{\sim}$	N～\％	ふ～\％	$\begin{aligned} & \overrightarrow{a n} \\ & \text { Nis } \end{aligned}$		ano 出云点			nom	\％	$\stackrel{\square}{\square}$
			$\begin{aligned} & \infty \\ & \stackrel{\unrhd}{\vdots} \\ & \vdots \end{aligned}$					$\begin{array}{ll} \div & 8 \\ 0 & 8 \\ 0 & 8 \\ \text { in } & \end{array}$			$\begin{array}{ll} 8 & 8 \\ \dot{8} & 8 \\ \dot{8} & \mathbf{~} \end{array}$			$\begin{gathered} \delta \\ \stackrel{\rightharpoonup}{0} \end{gathered}$		$\begin{aligned} & \stackrel{\circ}{6} \\ & \stackrel{0}{\circ} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \vec{~} \\ & \stackrel{\omega}{\omega} \\ & \stackrel{\omega}{\sim} \end{aligned}$		\％ － 3 \％
			ももに まうこ 宫云雪 ～		～～ㅜㅜㄱ走～运 ま息念 ©		つ゚～部書気客葸		ゅのニ运菑 ธัฒ \sim	～ペには 京吕点 号品䓌					むえシ ロi̊N 900 $\therefore \dot{\sim}$				0 \vdots \vdots \vdots 0 0 0 0
			8も』 8운 8 每気		\＆8各会～き なix M －\sim		デ～․ 둥今棲品			\therefore					にもあ がす。家寻 \therefore				
	$\begin{aligned} & \frac{6}{6} \\ & \frac{5}{5} \end{aligned}$	$\underline{-100}$	？	min	－¢ N	$\underset{\sim}{0} \underset{\sim}{n}$	na	※n mo		$E \approx$	$\dot{\sim}$	$\ddot{\sim}$		N－\％	Hequ	gon		$\stackrel{3}{*}$	¢
		$\begin{aligned} & \stackrel{0}{\mathbf{x}} \\ & \mathbf{~} \end{aligned}$		$\begin{aligned} & \tilde{\sim} \\ & \tilde{\sim} \\ & \dot{\sim} \end{aligned}$				$\begin{aligned} & 8 \\ & \dot{8} \\ & \dot{\sim} \\ & \dot{\sim} \end{aligned}$				$\begin{aligned} & 0 \\ & \underline{\delta} \\ & \underline{0} \end{aligned}$							
					$\begin{aligned} & 38 n \\ & 60 \\ & 600 \\ & -20 \end{aligned}$	$\begin{aligned} & 8 \omega= \\ & \text { NGN } \\ & \text { No } \\ & \text { inN } \end{aligned}$		$\because 8$ B ドぶ				들 各承家 	\＆̊も․ 言安宛 टio 울				に京品药 ら尔		n
	$\begin{aligned} & \frac{\overline{y y}}{8} \\ & \stackrel{y}{5} \\ & \stackrel{y}{5} \end{aligned}$			ため 㐫刍 ※ ผi		ご品 5 Nํ	$\begin{gathered} \text { mot } \\ \text { on } \\ \text { ox } \\ \text { cio } \end{gathered}$	589 © ふீธ்囚்	ミ2． 変家点 츠눌	$\begin{aligned} & x \\ & =0 \\ & =0 \\ & \dot{d}= \end{aligned}$		g？高㐘 シix ํ．	85 永思突 						9 9 0 0 0 0 0 $=$ $=$
																			号
		號畨																	¢

	n088		$\underset{\substack{\infty \\ \hline \\ \hline}}{(N)}$																		会
							$\begin{aligned} & \ddagger \\ & \stackrel{1}{0} \\ & \stackrel{0}{6} \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { ñ } \\ & \text { in } \\ & \text { on } \end{aligned}$		ำ －ぎロ	パッロ － よう			に5 ํㅜㄹㄹㅜ iñ			ํㅜㅅ言落N シoํ				
				\％¢		Noํ	$\stackrel{m}{\dot{o}}$	$\begin{gathered} \text { onn } \\ \text { in } \\ \text { nit } \end{gathered}$	$\stackrel{\sim}{\circ}$	$\stackrel{\sim}{\sim}$	$\begin{aligned} & \circ \dot{\circ}=1 \\ & \dot{q} \operatorname{un} m \end{aligned}$	－	$\stackrel{\circ}{\circ}$	－－oin	$\stackrel{\infty}{\dot{\sim}=\stackrel{\sim}{\dot{N}}}$	nox	minn	＊ 0 －	Now ウ்ம்		－
										88 88 ณัં	mim ぎ玄登等家苋	N． $\stackrel{N}{N}$ N \sim	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & \text { ¿ } \end{aligned}$		に゙ Eivin	$\begin{aligned} & 800 \\ & \text { on } \\ & \text { mit } \\ & \text { mo } \\ & \text { sion } \end{aligned}$					
				กัin		－5\％	三－mo	－	ぶき	NM－			Nmo	Ninn	まべい	No．	Nom	－	〇¢¢	No	－
	$\begin{aligned} & \text { JJECTS ON SECONDARY OR FEEDER } \\ & \text { AS OF JUNE } 30,1934 \end{aligned}$			¢nの号	Mn¢	¢000	ann	no	$\begin{aligned} & \text { gon } \\ & \text { Ane } \end{aligned}$			\％－in	¢MN	－¢m		－	O．	O．J．		$\begin{gathered} \text { No } \\ \dot{c} \underset{\mathrm{~m}}{2} \end{gathered}$	$\stackrel{\sim}{\square}$
												$\begin{aligned} & \text { ño } \\ & \text { Now } \\ & \text { Nos } \\ & \text { now } \end{aligned}$	Nin8 으웅 	$\begin{aligned} & \text { no } \\ & \text { on } \\ & 0 \\ & 0 \\ & 0 \\ & 000 \\ & 0 \end{aligned}$						$\begin{aligned} & =\$ \\ & \text { = } \\ & \text { A } \\ & 0 \\ & 0 . \\ & \text { oit } \end{aligned}$	춫
					き゚ロ ゥー	8．－ 7 ธํํ우 뚠웅							Nㅡㄴ8 우ㄴㅜㅜㅇ คํㅜํ ํ		シペー 需衣 上io ํㅜㅇ					$\begin{aligned} & \text { Fo } \\ & \text { ai } \\ & \text { oin } \\ & \text { in } \end{aligned}$	\＃ 0
$\begin{array}{ll} \infty & U \\ D & \text { II } \\ \mathrm{H} & \\ \mathbb{C} & = \\ H & \end{array}$	$$			mas		－	mo		～ino	$\stackrel{m}{\sim}$	$\begin{aligned} & \infty<0 \\ & \dot{j}=0 \end{aligned}$	mon	¢ ¢	～き，	$\stackrel{\text { ¢）}}{\text { ¢ }}$	－	mo	on	\bigcirc	$\stackrel{\sim}{\sim}$	－
	3					$\begin{aligned} & \text { yo } \\ & \text { on } \\ & \text { on } \\ & \text { cos } \end{aligned}$			$\begin{aligned} & \text { For } \\ & \text { Sin } \\ & \text { MN } \\ & \text { NN } \end{aligned}$										ので 8 玄塷急	$\begin{gathered} \text { N } \\ \stackrel{1}{\infty} \\ \stackrel{\infty}{\infty} \end{gathered}$	～
\cdots																		888 \％\％Kin No \therefore			
			$\stackrel{\text { W. }}{\stackrel{\omega}{4}}$																		寺

PUBLICATIONS of the BUREAU OF PUBLIC ROADS

Any of the following publications may be purchased from the Superintendent of Documents, Government Printing Office, Washington, D.C. As his office is not connected with the Department and as the Department does not sell publications, please send no remittance to the United States Department of Agriculture.

ANNUAL REPORTS

Report of the Chief of the Bureau of Public Roads, 1924. 5 cents.
Report of the Chief of the Bureau of Public Roads, 1927. 5 cents.
Report of the Chief of the Bureau of Public Roads, 1928. 5 cents.
Report of the Chief of the Bureau of Public Roads, 1929. 10 cents.
Report of the Chief of the Bureau of Public Roads, 1931. 10 cents.
Report of the Chief of the Bureau of Public Roads, 1932. 10 cents.

DEPARTMENT BULLETINS

No. 136D . . Highway Bonds. 20 cents.
No. 347D . . Methods for the Determination of the Physical Properties of Road-Building Rock. 10 cents.
No. 532D . . The Expansion and Contraction of Concrete and Concrete Roads. 10 cents.
No. 583D . . Reports on Experimental Convict Road Camp, Fulton County, Ga. 25 cents.
No. 660D . . Highway Cost Keeping. 10 cents.
No. 1279D . . Rural Highway Mileage, Income, and Expenditures, 1921 and 1922. 15 cents.

TECHNICAL BULLETINS

No. 55 T . . Highway Bridge Surveys. 20 cents.
No. 265 T . . Electrical Equipment on Movable Bridges. 35 cents.

MISCELLANEOUS CIRCULARS

No. 62MC . . Standards Governing Plans, Specifications, Contract Forms, and Estimates for FederalAid Highway Projects. 5 cents.
No. 93MC . . Direct Production Costs of Broken Stone. 25 cents.

MISCELLANEOUS PUBLICATIONS

No. 76MP . . The results of Physical Tests of Road-Building Rock. 25 cents.
No. - - . Federal Legislation and Regulations Relating to Highway Construction. 10 cents.
No. 191 . . Roadside Improvement. 10 cents.

REPRINT FROM PUBLIC ROADS

Reports on Subgrade Soil Studies. 40 cents.

Single copies of the following publications may be obtained from the Bureau of Public Roads upon request. They cannot be purchased from the Superintendent of Documents.

SEPARATE REPRINT FROM THE YEARBOOK

No. 1036Y . . Road Work on Farm Outlets Needs Skill and Right Equipment.

TRANSPORTATION SURVEY REPORTS

Report of a Survey of Transportation on the State Highway System of Ohio (1927).
Report of a Survey of Transportation on the State Highways of Vermont (1927).
Report of a Survey of Transportation on the State Highways of New Hampshire (1927).
Report of a Plan of Highway Improvement in the Regiona Area of Cleveland, Ohio (1928).
Report of a Survey of Transportation on the State Highways of Pennsylvania (1928).
Report of a Survey of Traffic on the Federal-Aid Highway Systems of Eleven Western States (1930).

A complete list of the publications of the Bureau of Public Roads, classified according to subject and including the more important articles in PUBLIC RoadS, may be obtained upon request addressed to the U.S. Bureau of Public Roads, Willard Building, Washington, D.C.

PUBLIC ROADS \cdots Highway Research

Issucd by the
UNITED STATES DEPARTMENT OF AGRICULTURE
BUREAU OF PUBLIC ROADS
G. P. St. CLAIR, Editor

August 1934
Volume 15, No. 6

The reports of research published in this magazine are necessarily qualified by the conditions of the tests from which the data are obtained. Whenever ii is deemed possible to do so, generalizations are drawn from the results of the tests; and, unless this is done, the conclusions formulated must be considered as specifically pertinent only to described conditions

THE BUREAU OF PUBLIC ROADS Willard Building, Washington, D.C. REGIONAL HEADQUARTERS Mark Sheldon Building, San Francisco, Calif.

DISTRICT OFFICES

DISTRICT No. 1. Oregon, Washington, and Montana.
Post Office Building, Portland, Oreg.
DISTRICT No. 2. California, Arizona, and Nevada.
Mark Sheldon Building. 461 Market St., San Francisco, Ca!if.
DISTRICT No, 3. Colorado, New Mexico, and Wyoming.
237 Custom House. Nineteenth and Stout Sts., Denver. Colo.
DISTRICT No. 4. Minnesota, North Dakota, South Dakota, and Wisconsin.
907 Post Office Building. St. Paul. Minn
DISTRICT No. 5. Iowa, Kansas, Missouri, and Nebraska.
Saunders-Kennedy Building, Omaha, Nebr.
DISTRICT No. 6. Arkansas, Louisiana, Oklahoma, and Texas.
Old Post Office Building. Fort Worth, Tex

DISTRICT No. 7. Illinois, Indiana, Kentucky, and Michigan.
South Chicago Post Office Building. Chicago. III.
DISTRICT No. 8. Alabama, Georgia, Florida, Mississippi, South Carolina, and Tennessee.

Federal Building, P.O. Box 60, Montgomery, Als.
DISTRICT No. 9. Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, and Vermont.

Federal Building. Troy, N.Y.
DISTRICT No. 10. Delaware, Maryland, North Carolina, Ohio, Pennsylvania, Virginia, and West Virginia.

Willard Building. Washington, D.C.
DISTRICT No. 11. Alaska.
Room 419. Federal and Territoriai Building, Juneau, Alasks. DISTRICT No. 12. Idaho and Utah.

Federal Building, Ogden, Utah.

Because of the necessarily limited edition of this publication it is impossible to distribute it free to any person or institutions other than State and county officials actually engaged in planning or constructing public highways, instructors in highway engineering, and periodicals upon an exchange basis. At the present time additions to the free mailing list can be made only as vacancies occur. Those desiring to obtain Public Roads can do so by sending $\$ 1$ per year (foreign subscription $\$ 1.50$), or 10 cents per single copy, to the Superintendent of Documents, United States Government Printing Office, Washington, D.C.

A STUDY OF OIL-TREATED ROADS IN COLORADO AND WYOMING

BY THE DIVISION OF TESTS, U.S. BUREAU OF PUBLIC ROADS

Reported by C. A. CARPENTER, Assistant Civil Engineer, Bureau of Public Roads

IN JULY 1933 an inspection was made of approximately 150 miles of oil-processed roads in northern Colorado and southeastern Wyoming. Parts of U S 30, 40, 85, and 285, and Colorado 7 and 14 were included in the survey. The locations and mileages of the projects studied and the number of samples taken are given in the following tabulation:

Route	Location	Mileage	
Colorado 7 Colorado 14. U S 30 U S 40 N U S 85 U S 285	Boulder, Colo. 1 Fort Collins, Colo., to Ault, Colo Cheyenne, W yo., east. Berthoud Pass, Colo Ault, Colo., to Cheyenne, W yo Fort Collins, Colo., to Laramie, W yo. Total		
		18	2
		3	1
		20	7
		42	$\begin{array}{r}7 \\ 23 \\ \hline\end{array}$
		150	42

${ }^{1}$ Survey covered portions of 2 principal streets surfaced with oil-processed gravel. Population of Boulder is approximately 12,000 .

STUDY MADE TO RELATE CHARACTERISTICS OF MIX TO PERFORMANCE IN SERVICE

The study was made to obtain data concerning the range in densities and in percentages of voids in trafficcompacted oil-mix surfaces which had been in service. In was also desired to determine, if possible, whether the percentage of voids in the mixtures in service has any definite bearing on their stability and durability.

All of the surfaces inspected were of the dense-graded mixed-oil-treatment type and were, in most cases, constructed on gravel or crushed-stone base courses.

In conducting the survey, each section of highway selected for study was first traversed by automobile to get a general idea of its condition and to decide upon locations for sampling. Points for sampling were located at failed areas and at adjacent areas in good condition in order that comparative studies might be made of good and bad areas in individual projects. Failed areas varied from a few square yards to occasional sections the full width of the pavement and a few hundred feet in length but were usually comparatively small.

Of the 150 miles of highway inspected there were only three cases where marked failure had occurred over an extended portion of a project. One of these was a section about a mile in length on U S 85 approximately 33 miles south of Cheyenne, where the surface, although having good riding qualities, appeared excessively rich and was very rubbery and unstable. Another was a $1 \frac{1}{2}$-mile section on U S 285 in and adjacent to the village of Laporte, Colo., where the surface was constructed on a fill composed largely of clay. The fill crosses a low, wet area where the old gravel road had always been subject to frost heaving in spring. The new fill is wet and a considerable amount of plastic clay was found in a layer between the base and the bituminous surface. This section of surfacing had been scarified and relaid a few days prior to the inspection and was already cracking, rutting, and shoving when the inspection was made

A Smooth Riding Surface Between Fort Collins and Laramie Typical of Most of the Surfaces Inspected.

The third example of extensive failure noted was the oiled portion of the Berthoud Pass Road on the west side of the Pass. This section extends from the town of Frasier, Colo., eastward about 10 miles toward the Pass. About one-third of it is built across mountain meadows which are irrigated by flooding several times each summer. Frequent rains during the summer, heavy snow during the winter, and slush ice in the spring have added to the difficulties of building and maintaining the oil-mixed surface. Virtually the entire length of this 10 -mile section was cracked extensively The condition varied from a network of hair cracks on some portions to extensive "alligator" cracking and shoving on others. Where shoving had occurred the oiled surfacing had separated from the base and the appearance of the underside of the mat indicated that considerable slippage of the mat on the base had occurred. At each of the test holes on this section the base was wet and a layer of plastic clay was found between the base course and the surface mixture.

The west 2.6 miles of this project represented by samples 40,41 , and 42 and the easterly 3 miles had been surfaced about a year at the time of the inspection. The central portion of approximately 4 miles was completed just prior to the inspection. Several short sections of the year-old surface had been scarified and

relaid a few days prior to the inspection. These reworked portions showed a general tendency to develop cracks as soon as traffic had recompacted them. In general, the mixture on the entire project was rubbery and unstable and appeared to be excessively rich.

LIQUID CONTENT, TYPE OF FILLER AND DRAINAGE CONDITIONS APPEAR TO AFFECT SERVICE QUALITY

In addition to the three cases of extensive failure, which totaled approximately $12 \frac{1}{2}$ of the 150 miles of surfacing observed, there were numerous instances of local failure due to clay spots in the base, seepage of water, and local areas deficient in oil binder. Many
of these small local failures were not detrimental to the riding qualities of the road.

The bulk specific gravity or density of the compacted surface was determined in the field at all locations where samples were taken. For this purpose a special portable balance, sampling equipment, and a tank of water for immersing specimens were carried in the car. The balance was designed especially for the purpose. It was constructed with a demountable beam and was accurate to one-tenth gram. Besides the unbroken samples taken for gravity determinations, samples were taken from each test hole, sealed in metal buckets and shipped to the Arlington laboratory for further
of field observations

tests. Notes were kept on the type and condition of the base, drainage, and any visible peculiarities of the subgrade and appearance and condition of the surfacing mixture. As much information as could be obtained in the limited time available as to construction details and date of construction was included in the field notes. Table 1 is a summary of the field data on the surfaces represented by the 42 samples collected.

In the laboratory the samples were tested for specific gravity of the constituents of the mixture, water and oil contents, grading and type of aggregate, and type of filler. Portions of the samples passing the no. 8
sieve were tested for Hubbard-Field stability with the water content as received and also with the water removed by drying for 3 hours at $212^{\circ} \mathrm{F}$. Two HubbardField specimens of the water-free mortar from each sample were tested for swell in water over a period of 9 days.

The percentages of air and water voids in the compacted road surfaces were computed from the specific gravities as determined in the field and the specific gravities of the constituents as determined in the laboratory. Table 2 gives the results of laboratory tests on the 42 samples.
Table 2.-Results of laboratory tests of samples

The percentages of bituminous material required for the various gradings were calculated by the Stanton (Calif.) formula, ${ }^{1}$ the California surface area method, ${ }^{2}$ the Wyoming formula, ${ }^{3}$ and the McKesson-Frickstad formula. ${ }^{4}$ The results of these calculations are compared with the oil contents of the mixtures as determined by extraction in table 3. Some of the data from tables 1 and 2 are repeated in table 3 for convenience in making comparisons.

It will be noted that the percentages of oil calculated by the Stanton formula are in close agreement with the
as oil and water content, type of filler, type and condition of the base and subgrade drainage are of primary importance.

EVIDENCE OF FAILURE NOTED IN MOST SURFACES HAVING HIGH LIQUID CONTENT

The sections of surfacing represented by the first 15 samples listed in table 3 and designated as group 1 showed evidence of failure of the type usually found in unstable mixtures containing excessive quantities of liquid binder, namely, shoving, corrugating, and

General View and Detail of a Surface of Group 1 Which Was Highly Unstable Due to a High Combined Oil and Water Content. Age Approximately One Year at Time of Inspection. Note Tire Marks and Foot Tracks on This Surface.
mean percentages given by the surface area method. The Wyoming formula indicates considerably higher percentages, agreeing closely with the maximum percentages given by the surface area method. The Mc-Kesson-Frickstad formula indicates lower percentages and agrees closely with the minimum percentages given by the surface area method. The average spread between the maximum and minimum as given by the surface area method is 1.4 percent.

Analysis of the datco presented in table 3 indicates that the void content of a compacted mixture has relatively little bearing on its behavior and that such factors

[^8]rutting. Ten of them also showed extensive "alligator" cracking. The combined percentage of water and oil in these was, in all but one case (sample no. 14), considerably greater than the percentage of oil required by the Stanton formula, and all but three contained more total liquid than the percentage of oil required by the Wyoming formula. Considering oil alone, all but three of these mixtures contained less oil than is required by the Stanton formula. Nine of the 15 samples contained more than 2 percent water, the average water content for the 15 samples being 1.9 percent. These facts seem definitely to associate high liquid content with lack of stability. There are indications that high liquid content causes instability regardless of whether the liquid is principally oil or oil and water in various proportions.

The next 20 samples listed in table 3 and designated as group 2 are from sections which showed no visible evidence of failure. All but six of these contained less total liquid (oil and water) than the percentage of oil
Table 3．－Correlation of field and laboratory test data

$\begin{aligned} & \dot{3} \\ & \text { 등 } \\ & 0 \\ & 0 \end{aligned}$							च
				 	がパッが 		
			 	ర 	ぱっ8． ๙ージヘベッド		\＃
				 	ホージかのホッ		$\begin{aligned} & \text { I } \\ & \text { § } \\ & \text { Sin } \end{aligned}$
						H	気
				 		$\begin{aligned} & 100 \\ & \text { sis } \end{aligned}$	发
			 	 		∞ © ダำ	荭
	~.		 	 	ーがNのサー 		$\frac{\Xi}{\underset{y}{E}}$
			 	 	 	$\begin{aligned} & \approx-10 \\ & 150 \end{aligned}$	
				 	$\begin{aligned} & \operatorname{son} x \\ & \text { miv mix } \end{aligned}$	∞ W ๙サー	$\begin{aligned} & \stackrel{\otimes}{\otimes} \\ & \Phi \\ & \cong \end{aligned}$
		$\begin{aligned} & \text { 育白 } \\ & \text { 之 } \end{aligned}$	 	のOOOHMMOONNMOMI－T10000 	 	+80 $\therefore 84$	$\begin{aligned} & \stackrel{S}{2} \\ & \hdashline 0 \end{aligned}$
				 		－	
		官		 	axeoont	－ッロサ	$\stackrel{8}{8}$
				 			ट
				｜1 1 1 1 1 1 1 1 1 1 1 1 1 1｜1	 ｜11111｜		$\stackrel{\text { ¢ }}{\text { ² }}$
					$\begin{aligned} & \text { rancol } \\ & i 1 i=1 \div \end{aligned}$		－
				 			，
				HMNTOONOOOMOMNTOMCOO 		No－	E
				 		¢＋im	\％
	－			HCNTOOHOHMNMONOLNWHMN 	$\infty 000000$ 	10130 ๗゙ゅう	䓪运
	$\begin{aligned} & \text { ⿹勹巳一 } \\ & \stackrel{\pi}{=} \end{aligned}$			 		サーロ゙	－
			 	 	ゆぐにがごさ		辰
				 		$\operatorname{lon}_{\infty}$	边
$\underset{\sim}{\dot{\pi}} \underset{\sim}{\circ}$					せ へーが込		－

Typical Oil-Mix Surfaces Which Have Given Exceleent Service. The Mix Shown on the Left Mas Rich and Unstable the First Iear and Was Remixed with Additional Gravel. It Was Three Years Old at the Time of Inspection. The One on the Right Had Received No Maintenance of Any Kind Since Its Constrection Four Iears Prior to the Iñpection

Typical Examples of Raveling of Group 3 Surfaces Having a Low Oil Content and No Seal Coat or Surface Treatment to Prevent loss of Aggregate.

Group 3 Surface Represented by Sample 9. Mixture Was Low in Oil Content and Had Been Sealed to Prevent Raveling. Picture Shows Local Area Where Seal Had Peeled and Raveling Followed. Sealed Portion Represented by Sample 8 Was in Excellent Condition.
required by the Stanton formula. Only two contained as much total liquid as the percentage of oil required by the Wyoming formula. Considering oil content alone all but six samples were fairly close to the minimum content required by the surface area method, the six exceptions having from 1 to 1.9 percent less oil than would be required by this minimum. Sample no. 8, which had 1.9 percent less oil than the minimum by the surface area method, contained only 2 percent oil but the section represented by it had been given a seal treatment. This surface was in good condition except for a few small areas such as that represented by sample 9 and illustrated above, where the seal coat had peeled off allowing the mixture to ravel. None of the 20 mixtures contained as much as 2 percent water. The average water content was 1.1 percent.

These data indicate that stability and durability of the surface under traffic are definitely associated with comparatively low oil content and water content below 2 percent. Considering all the mixtures sampled, evidence of failure was noted in all but five instances where the total liquid content (oil and water) was greater than the oil requirement as calculated by the Stanton formula. In four of these exceptional cases the liquid content was only slightly greater than the percentage given by the formula. Not a single example of satisfactory service hehavior was noted where the water content in the surface was as high as 2 percent.

The last seven samples listed in table 3 as group 3 are from sections of pavement which, although having adequate stability, showed raveling because of poor bond. These mixtures, without exception, contained less total liquid than the percentage of oil required by the Stanton formula. Their total liquid contents are in very close agreement with the oil requirements of the Mckesson-Frickstad formula and also with the mini-

Group 1 Surface Represented by Sample 5. The Base Was Moist Clay-Gravel. Surface Smooth and Firm but Badly Cracked.
mum percentages required by the surface area formula but, considering oil alone, they are all deficient in oil content as indicated by the formulas. The deficiency ranges from 0.3 to 1.4 percent and averages 0.9 percent on the basis of the minimum requirement by the surface area formula. Their water contents varied from 0.3 to 1.4 percent. The average water content was 0.9 percent.

LABORATORY STABILITY TESTS ON MORTAR SPECIMENS APPEAR TO INDICATE STABILITY OF MIXTURES IN SERVICE

Raveling and loss of surfacing material caused by poor bond are shown to be associated with lack of oil. The average water content of the seven lean mixtures was distinctly lower than that of the first group and slightly below that for the second group.

Although the unstable group has a slightly lower average void content than had the two stable groups, study of the data obtained on these surfaces indicates that there is little definite relation between the percentage of voids in the compacted mixtures and the service behavior of the pavement. In the case of the sections showing failure because of lack of stability the percentage of air-filled voids ranges from 0 to 3.5 , with an average of 1.3 . For the mixtures showing no evidence of failure the air-filled voids range from 0.5 to 9.2 percent with an average of 4.2 . The mixtures showing failure caused by raveling had air-filled voids ranging from 2.3 to 11.2 percent and averaged 6 percent. These figures are all based on the percentage of airfilled voids in a given mixture. Any water present is considered as a part of the mixture.

Assuming all water to be evaporated from samples leaving additional air voids, the percentages of voids would be appreciably higher but there would still be no significant differences between groups. Considering group averages only, the voids increase by increments of approximately 1 percent from group to group but the range of voids is so great within each group that each group overlaps the others. The 15 mixtures failing on account of instability have voids (air and water filled) ranging from 2.5 to 9.3 percent with an average of 5.7. Those showing no failure have voids ranging from 3.3 to 10.8 percent and average 6.8 . Those showing failure caused by raveling have voids

Typical Examplé of Failure Caused by High Moisture Contents in the Mixtures. These Grotp 1 Strfaces Are Two and Three Years Old.
between 5.5 and 12.4 percent with an average of 8.2 percent. These percentages are given in table 3 under the heading " Air and water-filled voids."

The Hubbard-Field stabilities of the mortars (oil coated material passing the no. 8 sieve) appear to have a general relation to the service stabilities of the mixtures. Although there is considerable variation in mortar stabilities within each group, the group averages show a tendency toward low mortar stabilities for the mixtures which failed because of excess oil or oil and water combined. Alhough the stability of mortar from the unstable mixtures with field water content is low, when the test is made on water-free specimens the stabilities are almost as high as the average for the other two groups. There is no appreciable difference in the average stabilities of either wet or water-free mortars representing the sound surfaces and the raveled surfaces. The arerage increase in mortar stability caused by the drying of the mortar is much less for groups 2 and 3 than for the unstable group 1.

The arerage stabilities by groups and the maximum and minimum stabilities by groups are summarized below:

Hubbard-Ficld stabilities of the mortar
[Passing no. 8 sieve]

	With water content as received			With water removed by drying		
	Minimum	Average	Maximum	Minimum	A verage	Max mum
Group 1 (failed because of instability)	475	1,535	2,525	1,050	2,560	3,750
Group 2 (satisfactory service)	925	2,295	3,625	1,500	2,695	4,850
Group 3 (failed through raveling).	1,175	2,180	3,125	1,500	2,605	4,300

The relations shown above indicate that the stability of the mortar is appreciably reduced by the presence of water in the amounts found in these samples. It seems reasonable to conclude, from the behavior of the sections studied, that the stability of the surface is to some extent influenced by the stability of the mortar.

An Oil-Min Surface in Boulder, Colo. Surface Has Carried Through Traffic for Three Years and Is in Excellent Condition Except for Occasional Small Cracked Areas.

The soil analyses of the mineral aggregates extracted from these samples indicate that all the filler materials used were comparatively low in clay content. The maximum percentage of clay in any of the samples,
hased on the material passing the no. 40 sieve, was 23 percent (table 3) and the average for all samples was 15.4 percent.

FILLERS HAVING HIGH VOLUME CHANGE UNDESIRABLE

It was not possible to obtain sufficient filler from the samples to make other soil tests. However, swell measurements were made on molded specimens of the portion of the original mixtures passing the no. 8 sieve. After sieving, the mortar was oven-dried at $100^{\circ} \mathrm{C}$. to remove any water present, then molded into Hubbard-Field specimens and immersed in water for 9 days. Vertical swell was measured with an Ames dial gage at 1, 3, and 6 hours and at 1, 2, 3, 7, and 9 days. The percentages of swell of these specimens are given in table 3 .

Swell of such specimens in excess of about $2 \frac{1}{2}$ percent at 9 days may be considered to indicate inferior or questionable filler material. At 3 days, 2 percent swell may be considered the critical value. The figures given in table 3 are based on the results at 9 days.

Results of the swell tests do not indicate that inferior filler contributed to the failure of the mixtures in group 1 , with the possible exception of those represented by samples $13,20,28,32$, and 39 . In addition to having high percentages of swell, the mortar specimens from these five samples developed more or less cracking and disintegration during immersion. It is interesting to note that of the 15 mixtures in this unstable group, those containing fillers with high volume change and a tendency to disintegrate during immersion had, in general, the highest water contents regardless of whether the base course was wet, moist, or merely damp. The same relation is also noticeable to some degree in the other two groups and leads to the conclusion that fillers which have high volume change and show disintegration or slaking tend to retain moisture in the mix, once it has entered the surfacing. In the case of mixtures which are susceptible to loss of stability when wet, this tendency apparently prolongs the period of surface instability for some time after the base has dried.

In the swell test on the mortars of group 2, about half the materials showed considerable swell, and six developed cracking and disintegration during immersion. With only one exception, however, the surfaces from which these samples were taken were on dry or only slighlty damp bases, and the mixtures, without exception, contained only small amounts of moisture. This probably accounts for the fact that the surfaces represented were not affected by the questionable quality of the filler material.

Three of the mortars from the group 3 samples showed considerable volume change and two of them developed cracking and disintegration during immersion. Two of these were from surfaces which had dry bases and the other was from a surface having a moist base. All three mixtures had very low water contents and for this
reason the raveling of these surfaces in service is not believed to have any connection with the type of filler used.

CONCLUSIONS

The results of the observations and tests are briefly summarized as follows:

1. Instability of the oil-processed surfaces was caused by high liquid content. In some cases this high liquid content was made up principally of bituminous material with 1 percent or less of water but in 9 of the 15 cases of failure caused by instability, the mixtures contained water in excess of 2 percent. No mixtures in which the water content was 2 percent or more were found to give satisfactory service.
2. The mixtures which, after a year or more of service, contained percentages of bituminous material agreeing roughly with the minimum requirements of the California surface area formula, were sufficiently rich to prevent loss of aggregate by raveling. In order to account for normal losses during early service, it is assumed that the mixtures were somewhat richer when laid and for this reason it is believed that either the Stanton formula or the mean surface area formula is approximately correct for designing mixtures containing closegraded aggregate.
3. The mixtures which showed evidence of failure caused by raveling contained less oil than would be required by any formula now in use. These mixtures, however, were in no case lacking in stability and it is believed that surface treatment would give them satisfactory wearing qualities.
4. Clay spots and areas in the bases containing excessive proportions of clay were found to be the cause of numerous small local failures.
5. In several cases where a high moisture content was found in a mixture on a comparatively dry base, the filler material was found to have a tendency to swell and disintegrate in the swell test, thus indicating a relatively high colloidal content. Colloidal contents are believed to have been responsible for the retention of water in mixtures containing them.
6. Hubbard-Field stabilities of the mortars from the unstable mixtures were noticeably low when the mortars were tested with water contents as received. The stabilities were raised to very nearly the same values as those for the stable mixtures after the water had been dried out. This is interpreted to indicate that water destroyed the stability of these mixtures by reducing the stability of their mortars.
7. The relation between the percentage of roids in a mix and the service behavior of the surface is so indefinite for any one group of samples and the variation in voids between groups is so slight as to supply no basis for conclusions as to the effect of voids, or for designing oil-aggregate mixtures on the basis of void contents.

POWER-SHOVEL OPERATION IN HIGHWAY GRADING

BY THE DIVISION OF MANAGEMENT, BUREAU OF PUBLIC ROADS

Reported by T. WARREN ALLEN, Chief, Division of Management, and ANDREW P. ANDERSON, Highway Engineer

PART 1.-THE OPERATING CYCLE AND FACTORS AFFECTING THE RATE OF PRODICTION

TTHE DAILY COST of operating a power-shovel grading outfit is very nearly fixed for any given set of conditions, regardless of whether the output is high or low. The most effective way, therefore, for a contractor to reduce his unit costs is to increase his rate of production. Some of the more important factors controlling rates of production and attainment of efficient and economical operation will be discussed in these articles.

HIGH DEGREE OF EFFICIENCY ATTAINABLE IN SHOVEL OP. ERATION

Efficient use of the power shovel in highway grading generally involves the proper coordination of at least three distinct operations: (1) Digging and loading, (2) hauling and dumping, (3) spreading and compacting. The material, except where it can be cast, must be dug and loaded into the hauling units at or near the maximum rate of production which can be attained by the shovel in that particular material. The hauling units must be sufficient to carry the output of the shovel and must be operated with almost clocklike precision, so that the loads may be received, transported to the place of disposal and dumped, and the hauling units returned to the shovel without delay to individual units or interruption to the steady operation of the shovel. At the fill or dump the material brought by the hauling units must be spread and compacted or otherwise cared for as may be required by specifications without interfering with the steady operation of hauling units.

If the material is too hard to be dug effectively with the shovel, drilling and blasting are necessary. These operations also must be carried on efficiently and without interfering with other work.

Aside from the management, efficiency in powershovel operation is largely dependent on the operator and on the shovel itself. A first-class operator may be able to obtain fair production with a poor shovel, but a poor operator is a heavy handicap, even with the best equipment. It is hoped that the data assembled in these papers will help contractors to increase their present rates of shovel production and power-shovel manufacturers to perfect their shovels so as to meet

When working in ordinary "common excavation" where the material dumps freely from the bucket and is 4 or more feet in depth, a good power shovel can be operated so as to load vehicles at the rate of four dipper loads per minute, provided the vehicles are so placed that the average boom swing does not exceed 90°. A highly skilled operator can attain this rate for intermittent periods throughout the day. To do so, it is necessary to load the dipper in about $51 / 4$ seconds, to swing and spot the dipper in about 4 seconds, to dump it in $11 / 4$ seconds, and then return the dipper to the loading point in about $41 / 2$ seconds.

Many jobs have been found on which this rate has been maintained during intermittent periods of varying lengths under the conditions given above, and this may be taken, therefore, as about the maximum rate attainable with present-day power shovels under ordinarily favorable field conditions. Numerous jobs have been found on which the average rate of all-day shovel operation, in good common excavation, was at the rate of three or more dipper loads per minute; and this may be accepted as a criterion of good operation under normally favorable field conditions.
still better those conditions which are prerequisite to high rates of production.

The shovel is the primary producer and all production is dependent on it. The shovel should be sturdy, powerful, dependable, fast, and easily operated. But no matter how good the shovel, a high grade of skill, intelligence, and endurance is required of the operator for a consistent high rate of production.

Efficient power-shovel operation, in the sense intended here, demands high production with a minimum use of labor and auxiliary equipment. This requires the synchronization and coordination of all operations so that the entire organization functions as a unit. Absolute perfection in all details is probably impossible. Nevertheless, extensive studies on a large number of projects operated under a great varicty of conditions show conclusively that (1) a high degree of efficiency is possible of attainment, and (2) that, in general, the low production found on many projects is due to conditions over which the management has some control and which are therefore to some extent remediable.

CHARACTER OF MATERIAL AFFECTS SIZE OF DIPPER LOAD

Under conditions to which each shovel size is adapted, shovels of all the sizes usually found in highway work can be operated at approximately the same cycle speed. In general, data for one size can be applied to any other size - at least within the range of shovels with capacities of from $5 / 8$ to 2 cubic yards. In making such comparisons we must remember, however, to extend data only to similar working conditions for each of the respective shovel sizes. Rock which would class as well blasted for a 2 -yard shovel might readily grade as poorly blasted for a smaller shovel. Weliblasted material should have very few pieces with any dimension much greater than about half the smallest inside dimension of the bucket. A large shovel may work readily in material which a small shovel could handle only with difficulty.

Figure 1.-Analysis of Time Study of 1,518 Dipper Loadings. Average Loading Time, 5.5 Seconds.

Figure 2.-Analysis of Time Study of 1,667 Dipper Loadings. Averafe Loading Time, 6.4 Seconds.

Figure 3.-Diagram Showing Percentage of Loading Operations Performed in Various Time Intervals. Based on 734 Loadings of $1 \frac{1}{8}$-Yard Shovel Working in $2 \frac{1}{2}$ to 7 Feet of Clay with a Few Boulders.
 TIME LOADING DIPPER - SECONDS
Figure 4.-Diagram Showing Percentage of Loading Operations Performed in Various Time Intervals. Based on 1,058 Loadings (18 Were Over 32 Seconds) of a ${ }^{3 /-}$ Yard Dipper Working in 1 to 5 Feet of Sticky Clay. Average Time 10.29 Seconds.

Figure 5.-Diagram Showing Percentage of Loading Operations Performed in Various Time Intervals. Based on 658 Loadings (16 Were Over 32 Seconds) of a $3 / 4$-Yard Shovel Working in 2 to 6 Feet of Sticky Clay. Average Time, 12.2 Seconds.
Output is the product of dipper loads and the average yardage per load. A good operator can combine speed and high average quantity of material per dipper load. In ordinary common excavation three or more feet in depth, the average dipper load in terms of cubic yards of material, as measured in place, may be expected to average about as shown in table 1.

In some materials which heap up in the dipper and do not spill on the swing, the average load will sometimes equal the rated capacity. In poorly blasted rock or shale or in materials full of roots and stumps, the aver-

Table 1.-Average yardage per dipper load for different dipper sizes

Size of dip- per (rated capacity)	Material per dipper load
Cubic yards	Cubic yards $3 / 4$
11.50	
114	.68
$11 / 2$	1.10

age dipper load may be 40 percent less than the average for ordinary common excavation or about 0.3 cubic yard for a $3_{4}^{3}-$ yard dipper and 0.65 cubic yard for a $1 \frac{1}{2}-$ yard dipper. Figures 1 to 5 and tables $7,9,10$ and 11 are illustrative of the studies made, and show the rates at which dipper loads can be deposited in the hauling units with fast operation, and how a few operations increase the average time per cycle for the entire period. As the material changes from good common to other classifications, the digging and loading become slower and there is greater difficulty in obtaining a full dipper.

During the studies on which these articles are based many determinations were made as to the number of dipper loads and the quantity of material moved under various conditions. Quantities were usually determined by careful cross-sectioning and are believed to include sufficient volume and rariety to represent a fair average of the more usual conditions met with in highway grading work. Table 2 gives the results obtained on a considerable number of jobs and illustrates how the size of the dipper load may vary from time to time and from job to job., The average dipper load of a so-called " $3 / 4$-yard dipper", having a capacity of approximately three-fourths of a cubic yard when struck in line with the top of the teeth and the top of the rear edge, may rary from 0.3 to 0.8 cubic yard, depending on the material and the skill of the operator. In fair to good common excavation with few roots and boulders, a good operator working under favorable conditions should move an average of 0.5 to 0.6 cubic yard per dipper load. In poorly blasted rock or shale, very rooty and stumpy soils, and in certain tough, moist clays, the average load may be only 0.3 to 0.35 cubic vard or even less in exceptional cases. The average dipper load is also likely to be low in shallow cuts. The same is true of materials which bulk considerably when broken up or which lack cohesion and will not heap up in the dipper.
time of loading greatly increased in difficult material
The material itself is responsible for much slow digging. Cuts usually classed as common excaration but which contain many medium-sized or large rocks embedded in stiff clay are particularly troublesome. The shovel operator cannot see such rocks until they are exposed, and when the dipper strikes one it may be necessary to draw back and try again. Often two or three passes, sometimes more, are made before either a load of loose material is obtained or the position of the rock defined so that it can be picked up.

Tables 3,4 , and 5 show the effect of the character of the material on the time required for filling the dipper. The tables do not all show the quantities moved per dipper load; but, in general, fast operation in good material is accompanied by large dipper loads. The size of the dipper load decreases with an increase in the difficulty of loading, and this decrease is at a somewhat faster rate than is indicated by the time factor.

Material Too Hard to Dig Readily Without Blasting.
Table 2.- $\begin{aligned} & \text { verage size of dipper load under various conditions }\end{aligned}$

Type of shovel	Rated capacity of dipper	Character of material	Dipper loads handled	Aver age load per dipper
	Cubic yards		Number	Cubic yard
Steam.	$3{ }_{3}$	Light moist clay, free from roots and stones.	147	0.39
	384		223	. 51 .50
Do.	$3 / 4$	Light moist clay, with some shale	148	44
Do.	$3 / 4$	Loamy clay, with 25 percent loose ro	50	48
Do	$3 / 4$.-do	156	40
Do	34	Sand-clay	82	60
DO	34	do.	150	62
Do.	34	Loamy to hard clay	85	. 58
Do	3.4.	Loamy to sandy clay	141	35
Do	$3 / 4$	Loamy to clay	157	38
Do	$3 / 4$	- do.	72	53
$1{ }^{1}$	34.	Gneiss-granite, poorly blasted	2, 960	33
Do	$3 / 4$	Wet, sticky clay, with a fow stumps	1,745	67
D)	$3 / 4$	Moist to wet sand-clay	1,825	80
	34	Sandstone, well blasted	632	35
	34		2,599	43
Do	34	Moist clay, with a few small surface boulde	794	5
$1) 0$	34	Very wet clay.	990	$5!$
Do	34	Wet clay, with small stumps.	210	. 48
	34	Sandy gravel, with some hard chunks of shale.	4,099	41
Do	34	Dry loamy clay	309	$5:$
Do	34	do	71	41
Do	7/8	Granite-gneiss, poorly blasted	3, 340	40
Gas	3/4	Loamy clay, moist, with a few roots	583	. 61
Do	11/3	Sandstone, blasted.	3,448	. 53
Do	11/8	Dry clay, with a few boulders	2,892	
D)	11/2	Dry clay, with surface houlders	996	
	11/8	70 percent large boulders and 30 percent dry clay --	667	
Do.	11/8	10 percent dry clay, 20 percent loose rock, 70 percent solid rock, blasted.	4,384	. 63
Do	11/3	Wet sticky clay, with a few surface boulders....	2,396	57
Do.	11/8	20 percent dry clay, with 80 percent sandstone, well blasted.	784	
Steam	$3 / 4$	Sandy clay and clay loam, with some stone .-....	3, 504	4
G95	$3 / 4$	80 percent sandstone, poorly blasted, with 20 percent clay.	788	
Do	$3 / 4$		$6,646$	46
Do	11/4	Mostly earth, with about 25 percent fair to poorly blasted granite.	10, 254	
Do	11/4	About 75 percent in poorly blasted granite.......	4,485	61
Do	11/4	Mostly shallow earth cuts with many boulders, some poorly blasted rock	8,778	. 68
Do	11/4	Mostly poorly blasted rock and shale.....	39, 600	62
Do	11/2	do	23, 860	70
Do	$11 / 2$	Fairly well blasted rock and shale	53, 740	. 85
Do	11/4	do	88, 600	. 74
Do	$11 / 4$	Deep cuts of well blasted shale and sandstone	78,300	. 80
Do.	11/4	- do	58, 000	. 87
Do.	11/4	Good common	9,110	. 88
Do	11/4	Good common, fairly deep cuts	14,800	. 99
DO...	11/4	. . . do - - - -	18,060	1.00

Large Boulders Are Hard on Equtpment and Decrease the Rate of Production. They Should Be Redtced by Blasting.

Figures 1 to 7 show graphically the number of dipper loadings performed in different time intervals on different jobs.
Table 3.-Effect of character of material on time required to load and dump dipper

Character of material	Observations	$\begin{aligned} & \text { Time } \\ & \text { to } \\ & \text { dump } \\ & \text { dipper } \end{aligned}$	Time to load dipper
	Number	Seconds	Seconds
Loam and light clay	722	1.0	4. 2
Loamy clay and soft shale	254	1.9	5.4
Soft shale	399	4.2	6. 5
Sandy clay	249	3.0	7.4
Muist clay	96	2.4	8.0
Iight clay, wet and gummy	173	4.6	8.1
Clay and surface loam	692	1.9	8.4
Sandy clay, moist to wet	349	4.8	8.8
Well blasted sandstone with 20 percent light clay	229	1.8	9.3
Clay with a few boulders.-	448	2.1	10.0
Heavy clay, wet and cummy	271	5.3	10.4
Clay with some surface boulders	2, 892	1.8	10.5
Loam with loose rock and loose shale.	369	2.8	10.5
Do.	288	2.4	11.8
Clay-gravel	506	1.7	11.8
Heavy clay, wet and sticky	83	6. 0	12.0
Seventy-five percent loose shale with 25 percent clay	579	3.2	12.4
Heavy clay with a few boulders.	101	2.0	12.5
Wet clay with some stumps.	105	3.2	12.8
Loam with 30 percent loose rock	148	2.1	13.5
1rock, well blasted.	183	3.4	13.9
$1)^{1}$	560	4.2	15. 1
Mard shale, well blasted	1, 434	2.6	16.4
Gneiss, poorly blasted.	550	10.7	18.5
Fifty percent loose rock with 50 percent unblasted shale rock	338		28.0

CONDITIONS JUSTIFYING MORE THAN ONE PASS OF DIPPER ANALYZED

In general, operating speed should not be obtained at the sacrifice of size of dipper load. To sacrifice, say, 10 percent of the dipper load to increase the number of dippers by 10 percent results in a loss of amount of material dug and it frequently results, also, in smaller loads for the hauling units. The value of making additional passes to obtain a larger dipper load is dependent on the amount of material which such passes will add to the dipper load and the speed at which the shovel is operating. If a $3 / 4$-yard shovel is operating in fairly good common excavation in which the average dipper load is 0.5 cubic yard of material as measured in place, and the average operating cyele is 20 seconds, then production is at an average rate of 0.025 cubic
yard per second. If a second pass to fill an occasional dipper is to be profitable, it must increase the dipper load at least at this rate, during time required to make the extra pass. If 6 seconds are required to make an

TABLE 4.-Effect of material on time required to load a $3 / 4-y$ ard dipper as indicated by one-hour stop-watch studies with same operator throughoul on each shovel

SHOVEL ÑO. 1

Kind and character of material	Time to		
load			
dipper		\quad	Height
:---:			
of face			

SHOVEL NO. 2

Light, loamy clay, no stones or roots.
Do
Light clay, free from stones or roots
Light clay, practically free from roots and stones
Light clay, practically free from roots and stones.
Light clay with old hard roadbed on one side.
ight to medium clay.
Clay and soft shale .-..
Light clay with small amount of rock, side hill cut..
Clay and soft shale.

5.2	5.5
5.3	4.0
5.7	4.0
6.0	3.5
6.7	6.0
6.9	4.0
7.5	4.5
8.2	2.0
9.2	$0-4.0$
9.4	7.0
11.0	11.0

Table 5.-Effect of material on average time required to load dipper. Number of 1 -hour studies during which the dipper was loaded from the class of material indicated in the time shown in the first column

A verage time to load dipper (seconds)								与 능 2 $\stackrel{3}{3}$
3 to 4	1							
4 to 5	7							
5 to 6	20	5						
6 to 7	10	20			6			
7 to 8.		12	$30)$		23			
8 to 9		5	11	12	27			
9 to 10			13	16	(5)			
10 to 11			26	16	2			
11 to 12				21	4			
12 to 13				11	(1)	1		
131014				7	5	14	3	
14 to 15					9	11	2	
15 to 16.					3	4	1	
16 to 17					2	7	1	
17 to 18						10		1
18 to 19						7	4	
19 to 20						6		S
20 t. 22.							2	9
22 to 24								3
24 to 26							1	7
26 t.o 28.								
28 to 30.								1
30 to 35								
35 to 40.								2
A verage time of loading in seconds.	5. 5	6.7	8. 9	10.9	9.9	15.8	17.4	23.9

extra pass it is not warranted unless 0.15 cubic yard can be added to the load.

The less the time of loading the dipper as compared with the time of the entire cycle, the greater is the importance of obtaining a full dipper. Consequently, it is more important to try for a full dipper when the swing is long than when it is short.

The relation between size of dipper load, length of shovel cycle, and time required to make an additional pass with the dipper may be shown as follows:

Let
$C=$ shorel cycle, in seconds, when only one pass is made with dipper.
W = dipper load, in cubic yards, when only one pass is made with dipper.
$Q=$ percentage by which dipper load is increased by each additional pass of the dipper.
$P=$ time, in seconds, required for making each additional pass with dipper.
Then

$$
\frac{W}{C}=\begin{aligned}
& \text { rate of production when using only } \\
& \text { one pass of the dipper. }
\end{aligned}
$$

$\underline{W+X Q W}=$ rate of production when using X
and

$$
C+X P=\text { passes. }
$$

$$
\frac{W+X Q W}{C+X P}-\frac{W}{C}=\begin{gathered}
\text { increase in the rate of operation } \\
\text { over that of using only one }
\end{gathered}
$$

Sn long as $C Q$ is greater than P, additional passes of the dipper will result in increased production.

For example, an operator working on a 20 -second cycle occasionally finds that the $1 \frac{11}{4}$-yard dipper, with which he usually obtains 0.9 cubic yard per dipper load, is only about two-thirds filled by the first pass. He has found that it requires 6 seconds to make each additional pass. Would it pay to make one or more additional passes to obtain the usual dipper load of 0.9 cubic yard? The solution is as follows:

The load in the dipper from one pass is 0.6 cubic yard. To obtain 0.9 cubic yard an increase of 50 percent is necessary, and $20 \times 0.50=10$ seconds. Since each pass can be made in 6 seconds, a distinct gain will be registered if the dipper can be filled to normal in one additional pass, but a loss will result if two passes are used to obtain the normal load. Since the cycle is 20 seconds, and the time required to make the additional pass is 6 seconds, the additional pass will be justified if a partial load can be increased by $8 \% 2$, or 30 percent.

If the normal cycle were 25 seconds, then even two additional passes at 6 seconds each to obtain the normal load would register a definite gain. Additional passes would be advantageous so long as each pass increased the part-load by 24 percent. This discussion also demonstrates the greater importance of securing a full dipper load when the swing is long, as the longer the swing the longer the operating cycle. Table 3 shows readings of the time required to make additional passes and the extent to which such extra passes may he expected to increase the average loading time for the dipper.

Several instances have been observed in which contractors in an effort to increase the yardage per dipper load have replaced regular $3 / 4-$ yard dippers with $1 \frac{1}{4}$-yard dippers. This proved a decided handicap to production, except in extremely soft and easy digging, as the power of the shovel was insufficient to force the large dipper through the material at normal loading
speed. In addition to decreased normal production, time losses due to breakage and repairs were high. A dipper larger than that for which the shovel was designed is not recommended.
Table 6.-Effect of multiple passes on time of loading dipper TIAE REQUIRED IN MAKIN゙G MILTIPLE PASSES IN LOADING A MOIST TO WET GRAVELLY (LAY

NUMBER OF PASSES REQUIRED WHEN WORKINGIN FATRTOGOOD COMMON EXCAVATION. MOSTLY SHALLOW CUTS. 3/Y-YARD SHOVEL IN GOOD CONDITION

Number of passes	Time retquired toload dipper	Percentage of dipper loads secured in this way
	Scconds 6. 4	Percent 61.4
	13.0	20.0
	18.9	13.7
	25.4	3.8
	31.2	1.0
	38.0	0.1

It has been pointed out that the time required to load the dipper often varies considerably from the average. The manner of this variation and its extent are shown in figures 1 to 7 and in various tables. Each of the graphs shown covers a considerable number of observations and shows the number of times the dipper was loaded in any given number of seconds. It is clear that a few of the loading times took very much longer than the others and that the effect was to increase the average loading time materially.

Figure 1 is based on a job in earth and well-blasteri shale where the shovel performance was excellent. A comparatively large number of dipper loads required only 4 seconds each. The average loading time was 5.5 seconds, and there were only a few dipper loads which required much time, none over 11 seconds an indication that a good, consistent operator was handling the shovel.

Figures 1 and 6 show results obtained on jobs with good, consistent operation. Figure 5 shows time of loading dipper in tough and somewhat sticky clay in which it was hard to pick up a full load. In about 50 percent of the observations on this job, one pass of the dipper was made in an average of less than 7 seconds. In the remaining cases, 2 or 3 , or even 4 , passes were made to fill the dipper to the satisfaction of the shovel runner. Occasionally the time of filling the dipper was as much as a full minute. The average time of filling the dipper on this job was 12.2 seconds.

Figure 7 illustrates the loading time of a rather indifferent operator. Although working in light loam soil, his average loading time was 16.5 seconds, more than double what it should have been.

insufficient blasting found on many projects

There is a rather general tendency among grading contractors to do too little blasting, as well as to slight the claring and grubbing. Poor blasting usually

Improper Spacing and Loading of Drill Holes Resulted in Material Hard to Load.

Same Rock Ledge as Above, Well Broken by Proper Blasting

Appearance of Ground After A SAtisfactory Blast. Material Well Broken but Not ScatTERED.

Figure 6.-Diagram Showing Percentage of Loading Operations Performed in Various Time Intervals. Based on 1.322 Loadings (15 Were Oyer 32 Seconds) of A $11 / 8$-Yard Dipper Working in $1 / 1 / 2$ to 5 Feet of Clay and Loam with a Few Boulders. Average Time, 9.67 Seconds.

Figure 7.-Diagram Showing Percentage of Loading Operations Performed in Various Time Intervals. Based on 763 Loadings (21 Were Over 32 Seconds) of a $3 / 4$-Yard Dipper Working in 1 to $4 \frac{1}{2} / 2$ Feet of Light Loam. Average Time, 16.5 Seconds.
means the presence of large rocks and also very frequently some tight or even unbroken ground. Large rocks, tight ground, large roots and stumps can be handled only with difficulty and at a slow rate. Further delays are often imposed on the shovel while large rocks are being "bulldozed" or while unbroken ground is being reblasted.
When blasting has been so thorough that the largest dimensions of the larger pieces do not exceed one-half of the smallest inside dimension of the dipper, the rate of operation can be practically the same as in good to fair common earth. The increase in the amount of material moved per dipper load with improved blasting is striking, especially with the smaller shovels. In poorly blasted rock, the average dipper load for a $3^{3} 1$-yard shovel is not likely to exceed 0.3 cubic yard and may readily be as low as 0.25 cubic yard, while in well-blasted rock the same shovel will generally average about 0.45 cubic yard per dipper load, or about 50 percent more material than in poorly blasted materials.
In poorly blasted material there is not only a large reduction in the amount of material handled by each dipper load but there is also a decided decrease in the rate at which the shovel can be operated. Poor blasting, consequently, is a serious handicap to production. Table 12 illustrates the increase in production which can sometimes be obtained by comparatively light blasting. In this case the material was hard caliche which the 1 -yard shovel could move at the rate of only 64 cubic yards per hour before it was blasted. Aifter blasting, the same shovel moved the material at the rate of 151 cubic yards an hour. The net gain to the contractor after paying the cost of drilling and blasting was about $7 \frac{1}{2}$ cents per cubic yard in addition to the saving in wear and tear on his shovel.

It will generally pay to blast material which is ton hard to dig readily with the shovel. In hard rock thorough blasting is a prerequisite to efficient shovel operation. Examples of the effect of poor blasting on production rates are given in tables 5,11 , and $12 .{ }^{1}$

BEST POSITION FOR SHOVEL DEPENDS ON HEIGHT OF CLT

The position of the shovel with reference to the face of cut is often responsible for the repeated passes some shovel operators make to fill the dipper. Aside from the swing, the dipper is actuated by two separate and distinct motions: One, known as the "hoist", tends to raise the dipper in a vertical circle about the point of intersection of the boom and the dipper stick, while the other, known as the "crowd", controls the radius of the" are in which the "hoist" moves the dipper. The "crowd" is used to force the dipper against the face of the cut, and on the swing to spot the dipper correctlyover the hauling unit. When the dipper stick is vertical, the combined motion of the "crowd" and the "hoist" can drive the cutting edge of the dipper almost straight forward several feet. When the dipper stick is horizontal, the "crowd" holds the cutting edge of the dipper hard into the bank.

When loading a dipper in a bank less than 2 feet high, a direct forward thrust of the cutting edge into the bank is required. While on a bank 6 or more feet high the loading is generally best done by a longer swinging motion in which a slice is cut from the bank. For some reason it appears to be difficult to find operators who work equally well in both shallow and deep cuts. The shovel should stand close to a low bank with the boom somewhat lower than normal and must be moved forward frequently. This is because the forward thrust of the dipper resulting from the proper combination of "hoist" and the "crowd" only reaches a relativelyshort distance. Most of the cutting from a high bank is best done after the dipper has begun to turn upward in its swing. This requires the shovel to stand somewhat back from the bank with the boom relatively high. The superintendent who will drill his shovel operators in the proper placing of the shovel for effective dipperloading should find the results gratifying.

If there is any considerable amount of shallow cutting, the contractor may well consider the advisability of using some other method than operation of a power shovel to move that portion of the work. Various kinds of scrapers, and in very rough country even bulldozers, are frequently used to good advantage in conjunction with the shovel, first, to move short-haul material and make shallow cuts, and, second, to help the blade grader trim the cuts to exact grade after the shovel has passed through.

moving shovel consumes much time

The time spent in moving the shovel forward within a cut varies somewhat inversely as the depth of the cut. In shallow cuts careful attention must be given to the time required to make each forward move of the shovel. Table 7 gives a few observations of the time required for individual moves of two $1^{\frac{1}{4}-\text {-yard }}$ shovels working in earth and in well-blasted shale and schist. It will be noted that the time required for each move varies considerably under different conditions. The awerage time required to move the shovel which was in good condition was only half of that required to move the shovel in poor condition.

[^9]Table 7.-Length of time, in seconds, required to move shovel forward in cut
11G-YARD SHOVEL, IN GOOD CONDITION, WORKING IN COMMON EXCAVATION

Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds
21	22	10	13	11	12	14	12
12	10	11	10	14	33	13	12
11	11	15	31	11	10	12	14
12	12	16	24	15	10	10	13
12	10	20	13	10	22	35	14
15	11	11	12	11	11	25	14
17	12	18	9	11	14	11	16
9	10	10	11	27	28	10	11
12	17	13	12	41	15	12	14

Average time per move, 14.8 seconds.
11 1 -YARD SHOVEL, IN POOR CONDITION, WORKING IN WELL BLASTED SHALE AND EARTH

Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds	Seconds
35	27	28	28	15	34	35	40	26	32
46	28	22	10	21	41	48	26	33	26
33	28	39	38	37	41	44	21	26	30
50	22	23	35	14	30	45	40	20	27
37	23	35	51	16	34	31	45	34	31
41	32	26	54	17	26	31	82	45	16
42	20	30	31	40	13	23	54	31	23
36	25	29	28	58	34	61	81	25	28

A verage time per move, 33.3 seconds.
Table 8.-Time consumed in moving 11/4-yard shovels forward in cuts of different depths and on different jobs
[Each entry is result of 1 or more hours of stop-watch study]

Job no. 1		Job no. 2		Job no. 1		Job no. 2	
Depth of cut	Working time consumed in moving forward	Depth of cut	Working time consumed in moving forward	Depth of cut	Working time consumed in moving forward	Depth of cut	Wrorking time consumed in moving forward
Feet	Percent	Fect	Percent	Feet	Percent	Feet	Percent
14	2.5	12	1.7	6	3.9	6	${ }^{1} 5.9$
12	4. 0	10	1. 2	5	3.4	6	16.2
11	1.3	10	1. 7	3	${ }^{2} 12.8$	4	4.0
10	1.3	8	3.1	21/2	6.8	2	8.3
9	3.8	7	3.1	2	5.3		
8	2. 0	6	2.4	1	10.3		
7	2.7	6	4.0				

[Each entry is average time consumed throughout job]

On jobs mainly involving deep cuts	$\left\|\begin{array}{c} \text { On jobs } \\ \text { mainly in- } \\ \text { volving } \\ \text { shallow cuts } \end{array}\right\|$	On jobs mainly involving deep cuts	On jobs mainly involving shallow cuts
$\begin{array}{r} \text { Percent } \\ 36.0 \\ 35.2 \\ 35.4 \\ 3.4 \\ 4.8 \\ 3.9 \end{array}$	$\begin{array}{r} \text { Percent } \\ 10.0 \\ 9.9 \\ 8.4 \\ 8.4 \\ 7.2 \end{array}$	$\begin{array}{r} \text { Percent } \\ 3.3 \\ 3.4 \\ 2.1 \\ 1.7 \end{array}$	$\begin{array}{r} \text { Percent } \\ 7.0 \\ 6.1 \\ 4.3 \\ 3.9 \end{array}$

Shovel operating in a cut composed mostly of fine, dry sand.
slippery clay, difficult moving.
Mostly rock work and many steep grades.
The moving time is affected by grade, soft or rough ground, condition of the moving mechanism, and ability of the operator. This is brought out more fully in tables 8 and 9 . In general, the modern crawlertype shovel in good condition can be moved forward in abbut 15 seconds. If, under ordinary operating conditions, the average time required per move is more than 30 seconds, either the operator is unduly slow or the mechanism is in need of attention. The larger the shovel and the higher the rate of production, the more time will be required to move the shovel forward.

Table 9.-Working time lost by shovel in moving within cuts, because of shortage of hauling equipment, and total from all causes
[Each line represents a different job]

Moving within cuts	Shortage of hauling equipment	Total minor time losses from all causes	Moving within cuts	Shortage of hauling equipment	Total minor time losses from all causes
Percent	Percent	Percent	Percent	Percent	Percent
9.9	9.8	54.6	5.7	3.2	33.1
9.2	12.3	50.8	5.5	5.3	30.9
5.8	2.4	45.8	4.9	0.6	27.8
7.3	18.3	43.0	5.0	6.3	25.0
4.1	17.1	42.5	2.9	1.5	22.8
4.6	8.5	42.2	3.1	11.4	22.7
6.6	10.4	39.0	7.3	3.9	22.7
3.4	4.7	35.0	0.9	3.4	19.0
2.7	16.7	34.6	1.8	3.8	18.8
5.0	6.3	33.9	3.1	3.1	17.4
3.5	2.0	33.7			

The movement of the shovel within the cut to keep within easy reach of the face is a check on production which cannot be removed entirely. The best that can be done is to train the operator to make the moves as expeditiously as possible. In deep cuts the time required is small-sometimes little more than 1 percent (table 8). In shallow cuts the proportion mounts rapidly and cases where from 8 to 10 percent of the total time is used in moving the shovel are not uncommon, especially where the operator is slow or the mechanism in poor condition.

Because of generally insufficient hauling equipment, it has become a more or less accepted practice to consider the time required for moving the shovel as of no importance, since it can usually be done while waiting for wagons or trucks. This may seem like a good way of neutralizing an inherent shortcoming of the shovel, but it is one which absorbs profits which might otherwise be had from the job.

Moving shovel within the cuts consumes about 5 percent of the actual working time (table 9) and forms about 15 percent of the total minor time loss. Table 9 shows that the statement that moving the shovel is generally done while waiting for hauling equipment is not well founded. The 7 jobs with the highest waiting time for hauling units lost 6.1 percent of their working time in moving the shovel, while the 7 jobs with the lowest time loss from waiting for hauling units required 3.8 percent of the working time for moving the shovel. The 7 jobs having the highest moving time used 6.8 percent of the time, while the 7 lowest used 3.4 percent.

angle of swing greatly affects rate of production

When the dipper is loaded, the operator swings the shovel through the angle necessary to bring the dipper over the hauling unit, at the same time adjusting the height and reach of the dipper, dumps the load and returns the dipper for another load. Figures 8 to 11 show the time required to swing and return the dipper through various angles on four jobs. The time required to complete a swing and return movement does not depend entirely upon the angle through which the movement is made. Time is required for the operator to react and start the mechanism. The mechanism requires time to function, while still more time is required to accelerate, and at the end of the swing to decelerate, the large mass of the load and shovel. The time actually required to get a swing under way and later stopped yaries with the operator, the load, type of shovel, and its mechanical condition. With some operators and under some conditions this

Figure 8.-Influence of Angle of Swing on Time of Sifing and Return Based on 506 Operations of a $3 / 4$ Yard Shovel Handling Poorly Blasted Rock. Note that the Points Located for Time of Swing Are Much More Irregular Than Those for Time of Return. This is Explained in Part by the Extra Care Required in Handling Boulders. Average Rate of Swing, 32° per Second. Average Rate of Return, 46° per Second.

Figure 9.-Influence of Angle of Swing on Time of Swing and Return Based on 2,069 Operations of a $3 / 4$-Yard Shovel Working in Clayey Gravel. Average Rate of Swing, 37.5° per Second. Average Rate of Return, 46° per Second.
time may be as much as 3 or 4 seconds and is rarely less than 1 second.
The return swing involves much the same process as the loaded swing, except that the dipper, instead of simply being stopped at the completion of the swing, must also be lowered into position for beginning a new cycle. It appears that some shovels with slow swing speed have quick starting and stopping, so that the time required for the swing and return, as shown in table 10, is often as short as, or shorter than, for the slow-speed types so long as the angle of swing is small. On longer swings, the higher speed types are considerably faster.

Figure 10.-Tnfluence of Angle of Swing on Time of Swing and Return Based on 1,788 Operations of a $3 / 4-$ Yard Shovel Working in Gravel and Loose and Blasted Shale. Average Rate of Swing, 18° per Second. Average Rate of Return, 22° fer Second.

Figure 11.-Relation Between Angle of Swing and Time of Swing and Return. 7/8-Yard Shovel in Good Condition.

Table 10.-Comparison of combined swing and return time for various types of power shovels
[Values are averages from a large number of field studies under actual operating conditions]

Examples of Correct "Spotting" of Trucks for Loading with Short Swing of Shovel.

The portion of the swing and return time required for the operator to actuate the controls and for the machine to accelerate and decelerate is designated as "lag." It is difficult to separate the "lag" into personal and mechanical components but the studies show that the personal time element is sufficiently large to warrant careful consideration because of its eflect on the rate of production. For a good operator the reaction lags are small--generally not more than 1 second. For a slow operator they may run 2 seconds or even more. The difference of 1 or 2 seconds seems a trifling matter, but an operator who takes 18 seconds where only 15 are necessary, reduces the rate of production almost 17 percent. To change an operator making a load every 18 seconds for a man who takes 20 seconds reduces the rate of output about 10 percent. With efficient operation otherwise, this can easily reduce the value of the output from $\$ 20$ to $\$ 25$ a day-about twice the ordinary wage of a firstclass operator. It never pays to hire cheap, poorly trained operators on any work requiring fast, uniform, consistent operation, and nowhere in highway work is this more true than on power shovels.

In good common excavation and under favorable conditions, a 90° swing (loading at the side of the shovel) can be performed in 15 seconds. An extension of the swing to 180° (loading back of the shovel) ordinarily increases the cycle by from 4 to 8 seconds, depending on the type of shovel used and the skill of the
operator. As a general average it may be said that loading behind the shovel instead of at the side extends a 15 -second cycle to at least 20 seconds and thereby reduces the attainable rate of output 25 percent. There is, of course, much work where loading at the side of the shovel is impossible. However, there are many more situations where side loading is practicable but is not employed.

Extending the average swing to 270° is the worst possible practice, especially with a slow-swing shovel. This extends a normal 15 -second cycle to 25 seconds or more and correspondingly reduces the rate of output. Such operation may be caused by a cab arrangement that makes it hard for the operator to see out of one side. To avoid swinging the dipper over objects he cannot see clearly and thus running the risk of accidents, the longer swing is sometimes used. Poor vision also interferes with spotting the dipper exactly before dropping the load. Hauling units are usually placed for swings over the side or rear of the vehicles. This is important if rock is being handled. A good operator seldom drops any material, but a relatively small rock may seriously injure a man or an animal. Every effort should be made to keep the average swing from exceeding 90°, and, in general, a swing of over 180° is the result of improper equipment or of faulty operating methods.

Figures 12 and 13 show the average time used in loading, swinging, dumping, and returning the dipper on jobs where the swings ranged from 45° to 90°.

Figure 12.-Percentage of Operations of Swinging. Dumping, and Returning Performed in Various Time Intervals. Based on 1,058 Cycles of a $3 / 4$-Yard Shovel Working in Sticky Clay with an Angle of Swing of From 45° тo 90°. Average Time of Swing 4.42 Seconds. Average Time of Dumping, 4.31 Seconds. Average Time of Return, 4.86 Seconds.

Figure 14 shows similar averages for swings of 150° to 180°. When the point of loading and the point of dumping are within the operator's vision at the same time, he can keep his mind far enough ahead of his work to react quickly and plan his operations with confidence. As he digs his load he decides where he will dump and plans the manipulations necessary in the process. As he drops his load, he determines where he will get the next bite, and so on. The saving in time is small per load, but it is enough to make considerable difference in a day's run.

DUMPING THE DIPPER LOAD

Dumping or discharging the dipper load requires great skill if done rapidly. The load must not be dropped from too great a height or the truck or wagon may be damaged. It must not be dropped too soon or too late or much of it will fall outside of the vehicle. If the load is composed of materials which dump freely, an experienced shovel operator will drop it just as the swing ends and be ready to start the return as soon as the dipper comes to a stop. In such material the fast operator really takes no time to drop the load, the time consumed being only that needed to stop the dip-

Figure 13.-Percentage of Operations of Swinginci, Dumping, and Returning Performed in Various Time Intervals. Based on 1,322 Cycles of a $1 \frac{1}{8}$-Yard Shovel Working in Clay with Some Boulders with An Angle of Swing Varying from 45° to 90°. Average Time of Swing, 4.62 Seconds. Average Time of Dumping, 2.23 Seconds. Average Time of Return 5.49 Seconds.
per and then start it on the return swing. Ordinarily, this can be done in 1 second. Wet, sticky clay and other adhesive materials often require considerable shaking or jarring to force them out of the dipper. With such materials, the time required depends on the skill of the operator and the amount of shaking and jarring necessary to empty the dipper.

For materials which clear the dipper freely, dumping time should not exceed an average of about 1 second. Sticky, adhesive materials and large rocks require much skill if average dumping time is to be held below 2 or 3 seconds, especially when small-capacity hauling units are used. A slow, inexperienced operator may readily consume 2 or 3 times the normal average time per dipper load. Because of the time required to empty the dipper, daily production in very sticky or adhesive materials may be as low as that in poorly blasted rock.

It is not unusual to find the dumping time in sticky materials running as high as 5 or 6 seconds regularly: In handling large rocks considerable care must be taken by the operator to prevent injury to the wagons or trucks. This naturally slows down the rate of operation. Large chunks often hang to or wedge in the dipper and require manipulation before they are released. Roots and stumps are often troublesome in this respect.

Figure 14.-Percentage of Operations of Swinging, Dumping, and Returning Performed in Various Time Intervals. Based on 658 Cycles of a $3 / 4-Y a r d ~ S h o v e l ~$ Working in Strcky Clay with an Angle of Swing of from 150° to 180°. Average Time of Swing, 6.23 Seconds. Average Time of Dumping, 4.33 Seconds. Average Time of Return, 6.10 Seconds.

Figure 15.-Number of Dumping Operations Performed in Various Time Intervals in Different Kinds of Material. Based on 10,200 Observations on 13 Different Jobs.
Tables 3, 11, and 12 show how average dumping time is affected by the kind and character of the materials. Figures 12, 13, and 14 also show the time used in emptying material from the dipper into the wagons or trucks under typical conditions. Figure 15 shows the average dumping time for a number of classes of material as

Figure 16.-Diagram Showing Percentage of Shovel Cycles Performed in Various Time Intervals. Based on 383 Complete Cycles (4 Greater Than 40 Seconds) of a $3 / 4$-Yard Shovel Working in an $81 / 2$-Foot Cut of Blasted Shale and Loading Trucks at Side. Average Time per Cycle, 18.9 Seconds.

 TIME OF CYCLE-SECONOS
Figure 17.-Diagram Showing Percentage of Shovel Crcles Performed in Various Time Intervals. Based on 204 Complete Cycles (5 Were Over 40 Seconds and Not Shown) of a $3 / 4$-Yard Shovel Working in from 8 Inches to 2 Feet of Loamy Clay with an Angle of Swing of from 45° to 90°. Average Time per Cycle, 20 Seconds.

Figure 18.-Diagram Showing Percentage of Shovel Cycles Performed in Various Time Intervals. Based on 734 Complete Cycles (3 Were Over 40 Seconds and Not Shown) of a $11 / 8$-Yard Shovel Working in 2 to 6 Feet of Clay With a Few Boulders. Length of Swing, 45° to 90°. Average Time per Cycle, 20.3 Seconds.
found from the analysis of 10,200 readings on 13 different jobs with various grades of operators and 6 different makes of shovels. It will be noted that many of the operations were performed very rapidly in all but the most difficult materials.

LOW PRODUCTION FREQUENTLY CAUSED BY INSUFFICIENT HAULING EQUIPMENT

On the jobs studied an inadequate supply or poor operation of the hauling equipment, or both, caused the largest and most frequent time losses.

If the highest possible production is to be obtained the hauling vehicles must be exchanged within the time required to handle 1 dipper load, or in about 15 to 18

10111213141516171819202122232425262728293031323334353637383940

TIME OF CYCLE - SECONOS

Fifiure 19.-Diagram Showing Percentage of Shovel Cycles Performed in Various Time Intervals. Based n. 1, 322 Complete Cycles (20 Were Over 40 Seconds and Not Shown) of a $11 / 8$-Yard Shovel Working in From 1 to 6 Feet of Clay with a Few Boulders With a Swing of From 45° to 90°. Average Time per Cycle, 22 Seconds.
seconds in good common excavation. Operation of hauling equipment to meet this requirement is practical under ordinary field conditions, provided each vehicle can carry two or more dipper loads. Except under very unusual conditions, it has not beenfound possible to synchronize the operation of the hauling equipment for consistent maximum shovel production if only one dipperful is carried per load.

The adequacy of the hauling equipment has a decided effect on production. The number of hauling units of any given kind required to maintain full shovel production varies more or less directly as the length of haul which generally fluctuates between rather wide limits and often at frequent but irregular intervals. The characteristics which affect the rate at which material can be dug by the shovel sometimes change also with unexpected frequency

In practice, it is usually found inadvisable to attempt to maintain an exact balance between hauling equipment and the maximum possible rate of shovel production. In many instances a definite number of hauling units is maintained on the job until grading is completed. On short hauls some of the equipment is idle or working at a slow rate, while on long hauls not enough equipment is available to keep the shovel working at full production. The question is one of determining what hauling equipment should be maintained on the job in order to complete the grading at the lowest possible cost. This question will be discussed more fully in a following article.

USE OF SHOVEL FOR FINE GRADING GENERALLY UNPROFITABLE

Trimming to grade and dressing slopes were prolific causes of extending the time per dipper load. While more accurate trimming of slopes has been required in many States during recent years, the loss in shovel time from this cause does not seem to have changed greatly. This is probably due to greater use of special mechanical equipment or hand labor for these operations.
Using the shovel for fine trimming of slopes and grade usually means practically stopping yardage production while these operations are being performed. From time to time during the day equipment worth $\$ 20,000$ to $\$ 30,000$, and especially adapted to function as a unit in the production of pay yardage, is diverted to performing a task for which it is but poorly adapted and to which only the shovel can contribute useful work.

On the average job the hauling units and the equipment on the dump are entirely unproductive when the shovel is dressing or trimming slopes. Some contractors condone a certain amount of shortage in hauling equipment because the resulting delays impressed on the shovel are used in trimming or dressing slopes. This may be good in theory but in practice it is found that slopes must be trimmed about as often when hauling units are on hand as when the shovel is waiting for hauling units.

COMPLETE SHOVEL CYCLE DISCUSSED

Under ordinary field conditions the fastest operation possible in good, common excavation with present shovels is in the neighborhood of 1.5 seconds per dipper load when the swing is 90°. The importance of approaching this limit as closely as possible can hardly be overstated. A 15 -second cycle, consistently maintained, will yield the large output of 240 dipper loads an hour. To attain a 15 -second cycle it is necessary to load the dipper regularly in about 5 seconds, to swing it over the wagon in about 4 seconds, to dump it in 1 to $1 \frac{1}{2}$ seconds, and return it again to loading position in 4 to 5 seconds. Lengthening the cyele time to 20 seconds drops the output to 180 dipper loads an hour-a reduction of 25 percent. If the cycle is lengthened to 25 seconds, the best the shovel can turn out is 144 dipper loads an hour, while if a 30 -second cycle obtains the output cannot exceed 120 dipper loads.

The difference between operation on a 15 -second cycle and on a 20 -second cycle is often a matter of a second or so in loading, a slight hesitation during the swing, with perhaps a bit of delay in spotting over the wagon-delays which may not be noticed except with the aid of extended stop-watch readings. It is not surprising to find that slow operators are sometimes rated as fast because there is nothing definite with which to compare their work, and to find that fast operators are sometimes being discredited because job conditions or methods of job management over which they have no control hold down the output. Examples of the full operating-cycle time where loading was at the side of the shovel are shown in figures 16 to 19.

Tables 11 and 12 show in detail the average operating characteristics found under normal working conditions on 14 rather large, well-managed jobs. The effect of the character of the material on production is very marked. The production of similar shovels varies from an average of 38 cubic yards an hour in poorly blasted granite to 168 cubic yards in good earth. Not all but most of this difference in production was due to a difference in the material. Table 12 shows that the production in hard caliche was only 64 cubic yards per hour. When the caliche had been blasted, the same shovel produced 151 cubic yards an hour.

MAJOR TIME LOSSES ANALYZED

As the successive shovel operations are repeated over and over again throughout the day, it is clear that if a few seconds, or even fractions of a second, are regularly lost on any one operation, the total loss during the course of the day will be large. If an operator working consistently on a 20 -second cycle slows up only just enough regularly to add 1 second to each of the major operations, the output will be cut from 3 to $2 \frac{1}{2}$ dippers per minute. If the regular unhampered output is 50 loads per hour, and the drivers of the hauling units in getting into place to be

Table 11.-Average rates of power-shovel operation as observed on typical jobs

	Job no. 1, earth and poorly blasted rock	Job no. 2, poorly blasted granite	Job no. 3, earth with many boulders	Job no. 4, fairly well- blasted rock	Job no. 5, well- blasted rock and earth	Job no. 6, fairly well- blasted rock	Job no. 7, soft rock, blasted	Job no. 8 , wellblasted sandstone and shale	Job no. 9, well- blasted shale and sandstone	Job no. 10, well- blasted shale and sand- stone	$\begin{aligned} & \text { Job } \\ & \text { no. } 11, \\ & \text { fair to } \\ & \text { hard } \\ & \text { earth } \end{aligned}$	$\begin{aligned} & \text { Job } \\ & \text { no. } 12 \text {, } \\ & \text { good } \\ & \text { earth } \end{aligned}$	$\begin{aligned} & \text { Job } \\ & \text { no. } 13, \\ & \text { earth } \\ & \text { with } 12 \\ & \text { to } 18 \\ & \text { inches } \\ & \text { of frost } \end{aligned}$
				11/4		2	11/4	11/4	11/4	$11 / 4$	11/4	11/4	11/4
Condition of shovel	New	Very good	New	Fair	$\left\{\begin{array}{l}\text { Very } \\ \text { good }\end{array}\right.$	Very good	\} New	Good	$\left\{\begin{array}{l}\text { Very } \\ \text { good }\end{array}\right.$	\}Good	Good	Good	Good
Shovel cycle: Load, seconds	11.5	16.7	11.0	9. 6	7.1	8.5	7.9	7.5	7.0	7.4	8.3	5. 6	9.0
Swing, seconds	6.0	8.6	6.8	7.6	5.9	8.0	4.9	4. 1	3.5	4. 9	5.1	4. 7	4. 7
Dump, seconds	2.0	3.5	1.6	1.7	1. 6	1.6	1.0	1.5	1.3	1. 1	1.3	1.0	1.8
Return, seconds	6. 6	9.1	7.3	8.2	6. 2	7.9	4.7	4. 5	4.3	5. 2	5. 1	4. 6	5. 7
A verage shovel cycle, seconds	26. 1	37.9	26.7	27.1	20.8	26.0	18.5	17.6	16.1	18.6	19.8	15.9	21.2
A verage angle of swing, degrees.	85	130	129	138	103	136	111	96	83	$\begin{array}{r}47 \\ \hline 88\end{array}$	76	50	63
A verage load per dipper, cubic yards	0. 88	0.61	0.68	0.62	0.70	0.85	0.74	0.80	0.87	0.88	1. 60	0.96	0.99
Average rate of production, cubic yards per working hour .-.	71.4	38.0	42.8	69.0	97.0	98.0	128	128 3.4	150 5.4	130	133	168 9.9	110
Time lost in moving shovel, percentage of working time.....	7.2	5.2	7.0	1.7	3.3	4.8	2.1	3.4	5.4	3.9	6.1	9.9	5. 5
Total minor time losses, including all stops of less than 15 minutes in duration, percentage of working time	41.2	35.5	54.0	14.8	20.1	17.6	13.4	22.1	23.3	25.0	25.2	23.1	24.4
Total major time losses, including all stops of 15 minutes or more in duration, percentage of available time-	21.0	15.5	33.9	12.9	13.8	16.1	11.0	5.7	10.9	8.4	6.1	11.0	11.0
Total yardage moved during study, cubic yards..................-	8,900	2, 800	5,950	24,560	20,900	45, 680	65,420	62, 650	50,400	8,036	18,060	104, 680	14,700

Table 12.-Effect of material on length of shovel cycle
[1-yard shovel in good condition. Hauling done with light trucks. Manarement good. Materials, very dry]

	Good common excavation	Hard caliche	Blasted caliche	$\begin{aligned} & \text { Blasted } \\ & \text { rock } \end{aligned}$
Percentage total excavation on job	26	38	15	21
	6.5	10.3	5.8	8.5
	5. 2	6.1	5.5	6. 4
	0.8	0.9	0.9	1.1
Return	5.1	6.0	5. 4	6.1
A verage angle of swing --------- degrees.-	152	148	157	156
	17.6	23.3	17.6	22. 1
Average dipper load.......... cubic yards .-	0.84	0.65	0.90	0.65
A verage production per hour......-do...-	137	64	151	97

Iinor time iosses
PERCENTAGE OF WORKING TIME LOST
Percent
Hauling equipment, insufficient supply
Hauling equipment, faulty operation.
Moving shovel within cut
Mechanical trouble with shovel
Sloping
Checking grade
Miscellaneous.
Major mechanical repairs, shovel and cable
Light trucks, operation characteristics:
Average speed, loaded, in reverse, 448 feet per minute.
Average speed, return, forward, 690 feet per minute.
Average loading time, 40.6 seconds.
loaded delay the shovel only 18 seconds on each load, the output will be cut to 40 loads per hour.
Definite stops are obvious time losses and every contractor makes efforts to eliminate or reduce them. But a shovel outfit may operate all day without a definite stop and yet produce less than half the yardage it is capable of producing, simply because the management is not aware of the effect on production of the constant loss of seconds, or even fractions of seconds, in the repetitive operations.

Table 13.-Major time losses (delays of 15 minutes or more) on power-shovel grading jobs. Average values for more than 100 jobs

Cause	Percentage of available time lost
Rain and wet ground	9.4
Repairs to shovel and other equipment	10.5
Moving shovel from cut to cut.-	2.8
Waiting for drilling or blasting	2.1
Hauling equipment trouble or shortage.	1.4
Taking on or lack of fuel or water	0.9
Miscellaneous causes.	3.0
Total.	30.1

Large Dipper Loads Are $\begin{aligned} & \text { Necessary for High Production } \\ & \text { Rates. }\end{aligned}$
Field studies on more than a hundred jobs have shown that no contractor succeeds in maintaining capacity production all the time. Many were able to keep the shovel at work less than half of the available working hours. Table 13 gives the average percentage of the normally available working hours lost from various causes.

MINOR TIME DELAYS CONSIDERABLE IN EXTENT

These definite stops, each of 15 minutes or more in duration, do not comprise the entire time loss. Stopwatch studies on the same jobs showed that an average of 38.8 percent of the remaining time during which the crew was on the job was lost in minor stops and interruptions, each less than 15 minutes in duration. Many of the delays were only a second or so in duration but were repeated at more or less regular intervals, so that their accumulated totals often assumed surprising proportions. The average percentages of the normal working time consumed by these minor delays or interruptions to continuous operation and the causes to which they were due are given in table 14 .

No matter how excellent the shovel and its supporting equipment, a high degree of efficiency can be obtained only through the proper coordination of all elements in the moving of material from cut to fill. Aside from management, the first and most important element in this combination is the operator. The ideal operator is gifted with quick reaction, a true eye, good judgment, great endurance, and a high degree of

Table 14.-Minor time losses (less than 15 minutes duration) on power-shovel grading jobs. Average values for more than 100 jobs

| Cause | Percent-
 age of
 actual
 working
 time
 lost |
| :--- | :--- | :--- |

1. Actual working time is available working time less major delays.
skill and experience. He should know the possiblities and limitations of the shovel and be able to maintain it in first-class condition.

Except in casting, the operator can dig no more material than can be hauled away, and he can dig only when hauling units are in place for loading. If the supply of wagons or trucks is inadequate for full production, or if their operation is such as to interfere with the steady operation of the shovel, the fault lies with the management.

The management is frequently at fault in failing to maintain and replace equipment. High rates of production cannot be obtained from equipment in poor mechanical condition; yet the field studies give abundant evidence that proper maintenance of both the shovel and the hauling equipment is frequently neglected.

CARE OF EQUIPMENT IMPORTANT
Operating conditions in highway grading work are severe on equipment, and neglect soon proves costly Many contractors using two or more shovels have found it economical to provide a shop and a good mechanic and helper. A particularly satisfactory arrangement
was one in which the mechanie was made responsible for the regular inspection and maintenance of all equipment. Frequently he was also made responsible for the proper oiling and greasing of the hauling units, tractors, compressors, and similar equipment. In making repairs on the shovel the shovel operator usually acted as helper.

If no mechanic is employed the contractor must be certain that the shovel operator is competent to make all ordinary adjustments and repairs to the shorel. Unless a good mechanic is on the job or especially highgrade drivers are employed, the contractor should assign some one, such as the shovel foreman, to be personally responsible for seeing that the hauling units, tractors, and other pieces of equipment are inspected at frequent intervals and greased, oiled, adjusted, and repaired as may be found necessary.

Equipment should be given a general overhauling at the time of storing. All parts should be thoroughly inspected, repaired if necessary, and then greased, oiled, or painted as may be proper. Effective protection from the elements should be provided. If the storage is on the job or in an isolated location, all indicators, valves, brasses, and other small parts should be removed, labeled, boxed, and placed in safe custody. The contractor can then be sure his equipment will be ready when work is resumed.

In too many cases, equipment is left in such shape that deterioration during so-called storage is as great as, or at times even greater than, if it had been in use for the same period. Deterioration of the equipment is a big drain on the profits of any going power-shovel grading job. To permit this drain to continue after the job has been closed down or completed seems inexcusable. The duty of the management does not end with the movement of the last dipper load of excavation. Management is not fully efficient until it extends to every source through which profits may be lost as well as to every source through which profits may be made. The storage and protection of the equipment during idle periods is one of the most important of the sources of profits.

CURRENT STATUS OF U．S．PUBLIC WORKS ROAD CONSTRUCTION AS PROVIDED IN TITLE II，SECTION 204 OF THE NATIONAL INDUSTRIAL RECOVERY ACT CLASS III－PROJECTS ON SECONDARY OR FEEDER ROADS AS OF JULY 31,1934												
			сойmrio			umore comereco			Emammin			
		Tatem	numembes	\pm	－mmomem	neusix	$=$	xemoter	nex	nomer		
Nitm	＇		＇skuk	． 6			鹤	cota	$\$ 942.293 .45$ 134.723 .58	\％		
cemme		：105：	，．antimin	，\％${ }_{\text {m }}^{\text {a }}$	ckick		薪					comb
	citand	\％		${ }_{2} \mathrm{z}, 3$		cismex	镪			${ }_{\text {\％}}^{\substack{\text { \％} \\ \text { \％}}}$		？
	cinck	gotatix		${ }_{6.2}^{6} 5$		－ 4.	絡。		\％1．4	，	¢，	
\％	comatem						㪟		come			
边	\％atitem	ckiay	cker	\％				筥品	\％ins	${ }^{10.6}$	cixame	
	cink	Kask	\％，	10：	comen	Sux	哭：		comemmem	：		䢒
ximm		amimem		${ }_{\text {ck }}^{2 \times 5}$	andem	，	䠈	器：		，		
		anamat	ckick	${ }^{16}$	cosk	（ayk	皆：	cin	as， 6	${ }_{6.4}$		边
Name	10，	，	cixamem	${ }_{\text {and }}^{5}$	，	，fitasis	\％iof	${ }^{2 \times 85}$				（ix
kimm		cex	coser		c．ax	ation		哏：				
		ckide	，		\％ata	，	${ }^{\text {m }}$	cix		15，9	9，19．0．0	
	1：39，	coid		．1．7．	，	－．	䇖	趗				
\％	aiden	ckiduck		哭			器第	\％．git			\％s，	
戓					，	，	唯	caty	\％aximem	， 3	s，mex	
Nax		，bata			，mix		饎	yo．		，		
${ }_{\text {a }}$		mamoso 0	2manc．sp	3．4		cincmin	\％	：				patiasa coumit
tornes	${ }_{9}, 5,5,6,5 \times 10$	2，560．56， 0	$2.55,12$	2996．	（0．80，88， 7		${ }_{8}^{8,1}$	5，123，	S．1．1． 5 s，, 0	97.3		roras

PUBLICATIONS of the BUREAU OF PUBLIC ROADS

Any of the following publications may be purchased from the Superintendent of Documents, Government Printing Office, Washington, D.C. As his office is not connected with the department and as the department does not sell publications, please send no remittance to the United States Department of Agriculture.

ANNUAL REPORTS

Report of the Chief of the Bureau of Public Roads, 1924. 5 cents.
Report of the Chief of the Bureau of Public Roads, 1927. 5 cents.
Report of the Chief of the Bureau of Public Roads, 1928. 5 cents.
Report of the Chief of the Bureau of Public Roads, 1929. 10 cents.
Report of the Chief of the Bureau of Public Roads, 1931. 10 cents.
Report of the Chief of the Bureau of Public Roads, 1932. 10 cents.

DEPARTMENT BULLETINS

No. 136D . . Highway Bonds. 20 cents.
No. 347D . . Methods for the Determination of the Physical Properties of Road-Building Rock. 10 cents.
No. 532D . . The Expansion and Contraction of Concrete and Concrete Roads. 10 cents.
No. 583D . . Reports on Experimental Convict Road Camp, Fulton County, Ga. 25 cents.
No. 660D . . Highway Cost Keeping. 10 cents.
No. 1279D . . Rural Highway Mileage, Income, and Expenditures, 1921 and 1922. 15 cents.

TECHNICAL BULLETINS

No. 55T . . Highway Bridge Surveys. 20 cents.
No. 265 T . . Electrical Equipment on Movable Bridges. 35 cents.

MISCELLANEOUS CIRCULARS

No. 62 MC . . Standards Governing Plants, Specifications, Contract Forms, and Estimates for FederalAid Highway Projects. 5 cents.
No. 93MC . . Direct Production Costs of Broken Stone. 25 cents.

MISCELLANEOUS PUBLICATIONS

No. 76MP . . The results of Physical Tests of Road-Building Rock. 25 cents.
No. - - . Federal Legislation and Regulations Relating to Highway Construction. 10 cents.
No. 191 . . Roadside Improvement. 10 cents.

REPRINT FROM PUBLIC ROADS

Reports on Subgrade Soil Studies. 40 cents.

Single copies of the following publications may be obtained from the Bureau of Public Roads upon request. They can not be purchased from the Superintendent of Documents.

SEPARATE REPRINT FROM THE YEARBOOK

No. 1036Y . . Road Work on Farm Outlets Needs Skill and Right Equipment.

TRANSPORTATION SURVEY REPORTS

Report of a Survey of Transportation on the State Highway System of Ohio. (1927.)

Report of a Survey of Transportation on the State Highways of Vermont. (1927.)
Report of a Survey of Transportation on the State Highways of New Hampshire. (1927.)
Report of a Plan of Highway Improvement in the Regional Area of Cleveland, Ohio. (1928.)

Report of a Survey of Transportation on the State Highways of Pennsylvania. (1928.)
Report of a survey of Traffic on the Federal-Aid Highway Systems of Eleven Western States. (1930.)

A complete list of the publications of the Bureau of Public Roads, classified according to subject and including the more important articles in PUBLIC RoADS, may be obtained upon request addressed to the U.S. Bureau of Public Roads, Willard Building, Washington, D.C.
CURRENT STATUS OF U.S. PUBLIC WORKS ROAD CONSTRUCTION

SUMMARY OF CLASSES I, II, AND II
AS OF JULY 31,1934

[^0]: 4, a standard type of pater with subgrade phan athached for smoothing irregularities in subgrade; B, depositing concrete on subgrade: C, finishing machine in operation

[^1]: Major equipment operated 51.51 hours or $\mathcal{W} .1$ percent of available time．
 Major equipment operated at 100 percent efficiency 35.18 hours or 68.3 percent of perating time．Possible operating time with all class B losses eliminated 50.28 hours．With all class B losses eliminated production would have been 2,344 batches Over－all efficiency of operation of major equipment． 70 percent．

[^2]: Total major telays， 4.416 .1 hours or 41.5 percent
 Time major equipment actually operated， $6,235.2$ hours or 58.5 percent

[^3]: Major equipment operated 226.9 hours or 57.5 percent of available time.
 Major equipment operated at 100 percent efficiency 201 hours or 88,7 percent of Operating time. Possible operating time with all class B losses eliminated, 222.9 hours. Iflofliciency of coneration of major equipment would have been $\overline{7}, 643$ hatches. Over all efficiency of operation of major equipment 90.3 percent.

[^4]: Based on bid prices and includes cost of fine grading.

 - Transportation to batching plant.

[^5]: : Cost of all items of expanse except field repairs, fuel, oil, and grease basei on modified Associated (ieneral Contractors' equipment ownership schedule ${ }^{2}$ Based on 17 working days per month.
 ${ }_{3}$ A nimal feed.

 - Truck costs are variable depending on length of haul, and have bəen exclu ded from this analysis.
 s Automobile used 26 days per month, but monthly cost chaiged to 17 proluctive days.

[^6]: Time remuired to remove hardened hatch of concrete from drum

[^7]: Total major delays 119.9 hours or 22.3 percent of working time
 Total minor delays 17.1 hours or 4 percent of working time．
 Possible operating time with all avoidable delars eliminated 414,4 hours
 With all avoidable delays eliminated production would have been 17.170 batches．
 O ver－all efficiency of operation of major equipment 96.4 percent．

[^8]: $1 P=0.02 a+0.045 b+0.18 c$
 Where $P=$ percentage of oil in mix by weight.
 $a=$ percentage of aggregate retained on no. 10 sieve.
 $b=$ percentage of aggregate passing no. 10 and retained on no. 200 sieve. $c=$ percentage of aggregate passing no. 200 sieve.
 For coarse mixtures (50 percent or less passing $1 / 4$-inch screen) increase coefficient of c to 0.20 . For fine mixtures (100 percent passing $1 / 4$-inch screen) reduce coefficient of c to 0.15 .
 ${ }^{2}$ Amount of oil determined from surface area constants of the different fractions of aggregate. Method of application described in Pacific Constructor for June 1, 1932. ${ }_{3} P=1.4(0.015 a+0.03 b+0.17 \mathrm{c})$. Symbols the same as in note 1 .
 1 $P=0.015 a+0.02 b+0.17 c$. Symbols the same as in note 1 .

[^9]: For more definite data on this question the reader is referred to Some Studies of Drilling and Blasting in Highway Grading, published in Public Roads, February 1932.

