

HIGHWAY ENTERING WILSON CANYON IN NEVADA

PUBLIC ROADS Highway Research

Issued by the

UNITED STATES DEPARTMENT OF AGRICULTURE

BUREAU OF PUBLIC ROADS
G. P. St. CLAIR, Editor

Volume 13, No. 3
May, 1932
The reports of research published in this magazine are necessarily qualified by the conditions of the tests from which the data are obtained. Whenever it is deemed possible to do so, generalizations are drawn from the results of the tests; and, unless this is done, the conclusions formulated must be considered as specifically pertinent only to the described conditions.

THE BUREAU OF PUBLIC ROADS — . . Willard Building, Washington, D. C.REGIONAL HEADQUARTERS - Mark Sheldon Building, San Francisco, Calif.

DISTRICT OFFICES

DISTRICT No. 1. Oregon, Washington, and Montana.
Post Office Building, P. O. Box 3900, Portland, Oreg.
DISTRICT No. 2. California, Arizona, Nevada, and Hawaii.
Mark Sheldon Building, 461 Market St., San Francisco, Calif.
DISTRICT No. 3. Colorado, New Mexico, and Wyoming.
237 Custom House, Nineteenth and Stout Sts., Denver, Colo.
DISTRICT No. 4. Minnesota, North Dakota, South Dakota, and Wisconsin. 410 Hamm Building, St. Paul, Minn.

DISTRICT No. 5. Iowa, Kansas, Missouri, and Nebraska.
Eighth Floor, Saunders-Kennedy Building, Omaha, Nebr.
DISTRICT No. 6. Arkansas, Louisiana, Oklahoma, and Texas.
1912 Fort Worth National Bank Building. Fort Worth, Tex.

DISTRICT No. 7. Illinois, Indiana, Kentucky, and Michigan.
South Chicago Post Office Building, Chicago, Ill.
DISTRICT No. 8. Alabama, Georgia, Florida, Mississippi, South Carolina, and Tennessee.

Shepherd Building, P. O. Box J, Montgomery, Ala,
DISTRICT No. 9. Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, and Vermont. Federal Building, Troy, N. Y.
DISTRICT No. 10. Delaware, Maryland, North Carolina, Ohio, Pennsylvania, Virginia, and West Virginia.

Willard Building, Washington, D. C.
DISTRICT No. 11. Alaska.
Room 419, Federal and Territorial Building, Juneau, Alaska.
DISTRICT No. 12. Idaho and Utah.

403 Fred J. Kiesel Building, Ogden, Utah.

Owing to the necessarily limited edition of this publication it will be impossible to distribute it free to any persons or institutions other than State and county officials actually engaged in planning or constructing public highways, instructors in highway engineering, and periodicals upon an exchange basis. Others desiring to obtain Public Roads can do so by sending $\$ 1$ per year (foreign subscription $\$ 1.50$) to the Superintendent of Documents,

United States Government Printing Office, Washington, D. C.

HIGHWAY TRAFFIC CAPACITY

By A. N. JOHNSON, Dean, College of Engineering, University of Maryland

ONE of the fundamental factors of highway economics is the traffic capacity of a road. This paper reports a study of the relative traffic capacity of 2-lane, 3-lane, and 4-lane highways. The project was undertaken as a cooperative arrangement between the United States Bureau of Public Roads, the State Roads Commission of Maryland, and the University of Maryland, under the immediate supervision of the writer.

The basic data for this discussion are the result of traffic counts taken during the summers of 1930 and 1931. A tentative report on the work done in 1930 was published in the Proceedings of the Highway Research Board for 1930 . It was evident that positive conclusions could not be reached from the data then at hand, and a second series of observations was made in 1931, closely paralleling that of the preceding year. There will be repeated here such general description of the work as is necessary to make this report complete in itself without reference to the tentative report noted above.

In 1930 the field work extended from June 26 to September 1, and in 1931 from July 1 to September 7. Observers in both years were recruited among senior engineering students at the University of Maryland.

TRAFFIC CAPACITY AND CONGESTION DEFINED

For the purposes of this study it was first necessary to develop a definition of traffic capacity. The "working capacity" or "free-moving capacity" of a highway was taken to mean the point at which congestion first becomes apparent. When a road carries only a few vehicles all will move freely and there can be no question of congestion. As the number of vehicles increases there will be reached a point at which some will be delayed because they can not immediately pass slower vehicles ahead of them. This delay indicates congestion.

Beyond the free-moving capacity of a highway the number of vehicles passing in a given time may still increase, but traffic will move with more and more restrictions. The individual driver will have less and less freedom of action, being compelled to follow the vehicles directly ahead of him. The number of vehicles may increase until the rate of flow is at a maximum, when the ultimate capacity of the highway may be said to have been reached. Any attempt to put still more vehicles through will result in serious interference with the movement of traffic, and the number of vehicles passing a given point in a given time will actually decrease because of overcrowding.

The observers were instructed to make note of congestion under substantially the following conditions: Congestion is considered to occur on a road when the number of vehicles reaches a total great enough to fill the road and make turning out impracticable; this condition to last a sufficient length of time to be noticeable, the minimum amount of time being one minute. When congestion occurs, reduction of speed will be noticed, along with the tendency for drivers to crowd one another.

In all further discussion the term "congestion" is used as above defined and "capacity" is understood to mean "working capacity."

The two observers traveled from point to point in a motor car and counted the traffic on roads known to have heavy traffic, endeavoring as far as possible to count during the rush hours on the respective roads. The stretches of highway selected were as free as possible from interference from crossroads or other features that would hinder the free flow of traffic.

During 1930, traffic was counted at 38 different points, scattered between Boston and Washington, 51 separate counts being made. In 1931, 33 stations were occupied, for a total of 56 counts, mostly in northern New Jersey and Pennsylvania because of the comparatively large number of three and four lane roads to be found in this territory. A complete list of the stations is given in Table 3, at the end of the article. A summary of the traffic counts according to geographic location and number of lanes of pavement width is shown in Table 1.

Table 1.-Distribution of traffic counts by geographic location and number of lanes

State	Year	Number of counts			
		$\begin{aligned} & \text { 2-lane } \\ & \text { roads } \end{aligned}$	$\begin{aligned} & \text { 3-lane } \\ & \text { roads } \end{aligned}$	4-lane roads	Total
Maryland	$\left\{\begin{array}{l} 1930 \\ 1931 \\ 1930 \\ 1931 \\ 1930 \\ 1931 \\ 1930 \\ 1930 \\ 1930 \\ 1930 \end{array}\right.$	$\begin{array}{r} 17 \\ 4 \\ 2 \\ 5 \\ 3 \\ 9 \\ 2 \\ 4 \\ 2 \\ 1 \end{array}$	$\begin{array}{r} 7 \\ 26 \\ 3 \\ 6 \end{array}$	4125	2151137614
New Jersey					
Pennsylvania					
New York				2 2	
Massachusetts					
Virginia-........					
Total	1930	31	10	10	51
Total in both years		49	42	16	107

The purpose of the investigation made it necessary to count traffic through peak periods to get as nearly as possible the maximum traffic conditions. It will be readily appreciated, however, that there were many stations occupied which did not at the time develop sufficiently heavy traffic to approach the critical stage. There were, therefore, a number of counts made each year which had no influence upon the results. The rush hours during which traffic stations were occupied proved to be late afternoon or evening, generally between 3 and 7 o'clock.

CONSISTENCY OF OBSERVERS' JUDGMENT TESTED

One of the questions which arose during the analysis of the data was whether under similar traffic conditions like interpretations would be made by the same or different observers; in other words, whether the concept of congestion as formulated was sufficiently definite to serve as a fixed, objective standard. A study of the traffic counts submitted, making comparison between the conclusions reached by one party of observers and those of the other party under similar conditions showed very satisfactory agreement, indicating that such differences as did occur were due more to some other influence that would affect the traffic than to differing judgment on the part of the observers.

HOUR	TRAFFIC		
(VEAICLES)		PERCENTAGE IN	EACH DIRECTION
:---:			

TRUCKS 10 PER HOUR BUSSES 0 SPEED 25 TO 35 M.P.H.

Figure 1.-Traffic on 2-Lane Road in Druid Hill Park, Baltimore, Md., July 15, 1930

As a further test of the judgment of the observers, stations that were occupied at the beginning of the season were again occupied at the close, the traffic at these points being about the same. The reports received were similar and indicated that the picture in the observer's mind of a congested condition, as here defined, was reasonably well fixed and precise.

PROCEDURE DESCRIBED

At each station the traffic was recorded by 5 -minute intervals, showing the number of vehicles in each direction or in each lane. Passenger automobiles, trucks, and busses were tabulated separately. The tally sheets provided space for indicating when the traffic was running freely and when it was congested. No record of congestion was made unless it extended for a period of one minute. Thus, during some 5 -minute intervals there would be but one minute during which congestion occurred; in other instances two minutes, or more, up to the full five minutes.

HOUR	TRAFFIC (VEHICLES)	PERCENTAGE IN EACH DIRECTION
2 TO 3	2,642	$28 / 72$
3 TO 4	2,805	$32 / 68$
4 TO 5	2,755	$41 / 59$
5 TO 6	2,484	$53 / 47$
6 TO $6: 30$	1,157	$56 / 44$

TRUCKS $3 \frac{3}{4}$ PER CENT BUSSES $\frac{1}{2}$ PER CENT SPEED 35 TO 40 M.P.H.

Figure 2.-Traffic on 3-Lane Road, U. S. Route 9, 1 Mile North of South Amboy, N. J., August 1, 1931

The tally sheets were summarized for each count and the data plotted as shown in Figures 1, 2, and 3. These graphs give all the essential facts, such as date, location, actual traffic per hour, estimated average speed, number of trucks and busses, and the number of lanes available for traffic. The ordinates of the graph show the traffic for each 5-minute interval, while the number of minutes of congestion in each interval are shown by the shaded columns in the lower section of the graph.

Figure 1 gives the record of a traffic count on a 2-lane road by 5 -minute intervals during the hours between 3 and $6 \mathrm{p} . \mathrm{m}$. The maximum hourly traffic (5 to 6) was 2,008 vehicles, although the maximum rate per hour during a 5 -minute period within this same hour was 2,268 . This was the maximum hourly traffic observed on any 2 -lane road and was about 89 per cent of the hourly rate of the maximum 5 -minute interval.

Figure 2 shows a similar record for a B-lane road where the actual hourly maximum was 2,805 vehicles.

Hour	TRAFFIC (VEHICLES)	PERCENTAGE IN	TRUCKS 3 3 P PER CENT
5 T0 6	3,496	70/30	BUSSES 0
6 T0 7	3,305	70/30	
7 T0 8	3,068	78/22	

Figure 3.-Traffic on 4-Lane Road, U. S. Routes 1 and 9, 15.5 Miles South of Jersey City, N. J.
The maximum hourly rate for a 5 -minute interval was 3,600 , the total traffic for the hour being about 78 per cent of the maximum rate based on a 5-minute count. This was the maximum hourly traffic observed on any 3 -lane road.

Figure 3, for a 4-lane road, shows a maximum hourly traffic of 3,496 , while the maximum rate per hour for a 5 -minute interval was 3,912 , the actual hourly traffic being about 89 per cent of the maximum 5 -minute interval. This was the maximum hourly traffic observed on any 4 -lane road.

In the analysis of the data to determine the point of incipient congestion, all 5 -minute counts were assembled without regard for location or hour of day, each count being treated as a separate statistical unit. They were first grouped according to the major classification of 2 -lane, 3 -lane, and 4 -lane roads. Each of these larger groups was then subdivided according to the proportion of traffic moving in each direction, viz., 50 per cent in one direction (approximately equal in both directions), 60 per cent in one direction (40 per cent in the opposite direction), 70 per cent and 80 per
cent in one direction. There were then 12 groups into which the 5 -minute counts for all stations were divided, and within each group the items were arranged in order from least to greatest. These were plotted as shown in Figures 4 to 7 , inclusive, congestion occurring during any part of any 5 -minute interval being indicated in the same manner as in Figures 1 to 3 .

The point where traffic congestion first appeared was noted in each case. Thus, in Figure 4, which is a plot of the data for 2 -lane roads with 50 per cent of the traffic in each direction, congestion is first observed when 80 vehicles pass in a 5 -minute interval. The fact that no congestion was reported in this group of observations for any number less than 80 made it unnecessary to plot or to consider further those counts indicating a less amount of traffic. Similarly, in each of the suc-

Figure 4.-Determination of Traffic Capacity of 2-Lane Roads, 50 Per Cent of Traffic in One Direction

Figure 5.-Determination of Traffic Capacity of 2Lane Roads, 60 Per Cent of Traffic in One Direction
ceeding diagrams no consideration was given to the observations that recorded traffic insufficient to produce the first instance of congestion.

The critical point to be established in each diagram is the point at which congestion becomes general. This can most easily be determined by inspection of the graphs, which show in nearly every case a fairly definite and sharp transition from a scattered and infrequent occurrence of congestion to a condition in which congestion is usual or normal. The height of the curve at this point indicates the working capacity of the type of highway under consideration.

The nature of the data appears hardly to justify a more elaborate or refined method of analyzing the graphs than that just described. As a check upon the reliability of the inspection method, a cumulative congestion curve was plotted on each diagram. In each case the break in the trend of the cumulative curve, as located by the intersection of straight lines fitted to the separate sections of the curve, coincided almost exactly with the point previously located by inspection.

It will be seen from Figure 4 that the working capacity of two-lane roads with 50 per cent of the traffic in

Figure 6.-Determination of Traffic Capacity of 3-Lane Roads, 70 Per Cent of Traffic in One Direction
each direction is reached at 90 vehicles per 5 -minute interval. Beyond this point, as trafficincreases, congestion becomes general for nearly all 5 -minute intervals.
For 2-lane roads with 60 per cent of the traffic in one direction, congestion becomes general when traffic exceeds 97 vehicles per 5 -minute interval, as shown in Figure 5. When the proportion of traffic is 70 per cent in one direction, congestion appears to become general at 90 vehicles per 5 -minute interval, and with 80 per cent in one direction, traffic appears congested at about 105 vehicles per 5 -minute interval.
Figures 6 and 7 further illustrate the method of analysis for 3 -lane roads with 70 and 80 per cent of the traffic, respectively, in one direction.

Figure 7.-Determination of Traffic Capacity of 3 -Lane Roads, 80 Per Cent of Traffic in One Direction

The evidence brought out by the series of graphs is summarized in Table 2, showing apparent traffic capacity of 2 -lane, 3 -lane, and 4 -lane roads under differing proportions of traffic in the opposing directions.
The values given for practical hourly capacity are based on the 5 -minute rate, with reasonable allowance for the fact (demonstrated in figs. 1 to 3) that the maximum rate of traffic during any hour is rarely sustained for more than a small fraction of that hour.
From Table 2 it would appear that the effect of unbalanced traffic on the capacity of 2 -lane roads is not marked until 80 per cent of the traffic is in one direction,

Table 2.-Working capacity of 2-lane, 3-lane, and 4-lane highways

Number of lanes	Vehicles per 5 -minute interval					Practical hourly capacity (vehicles)
	Percentage of traffic in one direction				$\begin{aligned} & \text { Aver- } \\ & \text { age } \end{aligned}$	
	50	60	70	80		
2	90	97	90	105	97	1,000
3	185	165	195	175	180	2, 000
			290	270	290	3,000

when the capacity rises considerably above the average. On a 3-lane road the effect is not so definite, but the maximum capacity is reached when about 70 per cent of the traffic is in one direction.

The results for the 4 -lane road are even less conclusive, as there was no congestion noted when the traffic was 50 or 60 per cent in one direction, although as many as 273 vehicles were counted during one 5minute interval. The occasions when 4 -lane roads were seen working to capacity were rare. With the traffic 70 per cent in one direction congestion was reported when 290 vehicles passed in five minutes, and when the traffic was 80 per cent in one direction congestion occurred with a count of 270 vehicles. These figures would indicate that, as the traffic becomes more unbalanced, the 4-lane road becomes less efficient.

CONCLUSIONS

The influence of the proportionate amount of traffic in one direction is not marked on 2-lane roads until the fraction increases to 80 per cent or more, when a greater volume of traffic is carried without congestion. The average working capacity for 2 -lane roads is approximately 95 per 5 -minute interval, or 1,000 per hour.

Three-lane roads appear to operate to slightly better advantage when 70 per cent of the traffic is in one direction. The average working capacity is approximately 180 per 5 -minute interval or 2,000 per hour.

Four-lane roads (estimating the capacity as 300 vehicles in five minutes when traffic is 50 or 60 per cent in one direction) have an average working capacity of 290 vehicles per 5 -minute interval.

These values give a ratio for 2-lane, 3-lane, and 4-lane roads of approximately $1: 2: 3$. That is, the traffic capacity of a 3 -lane road is twice that of a 2-lane road, and the 4-lane road has a capacity of at least three times that of the 2 -lane road and 50 per cent greater than that of the 3-lane road.

The addition of one lane to a 2-lane road increases its width 50 per cent and its capacity 100 per cent. Addition of two lanes increases the width by 100 per cent and the capacity by 200 per cent. In other words, doubling the width of a 2-lane highway triples its capacity.

It should be clearly understood and emphasized that this study relates to traffic capacity only. No consideration has here been given to the relative safety of 2 -lane, 3 -lane, and 4 -lane design in highways under varying volumes of traffic. There seems to be very general agreement among those who have observed the operation of 3-lane roads that as traffic increases the hazards increase in a greater ratio than in the case of the 2-lane or the 4 -lane roads, but this conclusion must rest upon research of an entirely different nature from that here reported.

Table 3.-List of stations occupied for traffic counts MARYLAND

Name of road	Location	Number of lanes	Date	Hours
Baltimore-W ashington Blvd., U. S. Route 1..............	100 yds . S. of S. E. Branch, Anacostia_ River, Bladensburg.	2	June 27, 1930 July 19,1930 Aug. 27, 1930	$\begin{aligned} & 3 \text { to } 6 \mathrm{p} . \mathrm{m} . \\ & 11 \mathrm{a} . \mathrm{m} . \text { to } 3 \mathrm{p} . \mathrm{m} . \\ & 3 \text { to } 6 \mathrm{p} . \mathrm{m} \text {. } \end{aligned}$
Do	College Park Experiment Station.	2	June 26, 1930	Do.
D	1 mi . N , of Laurel.	4	July 19, 1931	2 to $4 \mathrm{p} . \mathrm{m}$.
Do	S. of rd. to Dorsey -	4	June 28, 1930	3 to $6 \mathrm{p}, \mathrm{m}$.
			Aug. 31, 1930	$\begin{aligned} & 1 \text { to } 4 \mathrm{p} . \mathrm{m} \text {. } \\ & 4 \text { to } 7 \mathrm{p} . \mathrm{m} . \end{aligned}$
			Sept. 1, 1930	Do.
Baltimore-Philadelphia Rd., U. S. Route 1.	1 mi . N. of Conowingo.	2	$\begin{aligned} & \text { June } 29,1930 \\ & \text { July } 23,1931 \end{aligned}$	$\begin{aligned} & 3 \text { to } 6 \mathrm{p}, \mathrm{~m} . \\ & 4 \text { to } 6 \mathrm{p} . \mathrm{m} . \end{aligned}$
Baltimore-Philadelphia Rd., U, S. Route 40.	1 mi . N. of Baltimore city line.	2	July 18, 1930	4 to $7 \mathrm{p} . \mathrm{m}$.
Do	1 mi . S. of Havre de Grace.	2	$\begin{array}{ll} \text { July } & 6,1930 \\ \text { July } & 8,1931 \end{array}$	2 to $5 \mathrm{p} . \mathrm{m}$. 3 to $6 \mathrm{~m} . \mathrm{m}$.
	$11 / 2 \mathrm{mi}$. N. of Baltimore city line.	2	Aug. 19,1930	4 to $6 \mathrm{p} . \mathrm{m}$.
Baltimore-A nnapolis Blvd	3 mi . S. of Glenburnie.	2	July 20,1930 Aug 24,1930	1 to $4 \mathrm{p} . \mathrm{m}$.
	Opposite Brooklyn	2	July 17, 1930	4 to $7 \mathrm{p} . \mathrm{m}$.
	ball park.		Aug. 25, 1930	4 to $6 \mathrm{p} . \mathrm{m}$.
Harford Rd	10 mi . N. of Balti- more.	2	July 22,1931	Do.
Frederick Rd	$31 / 2 \mathrm{mi}$. E. of Ellicott	2	Aug. 12, 1930	Do.
Druid Hill Park Rd., Baltimore.	Opposite Flower Garden.	2	July 15, 1930	$3106 \mathrm{y} . \mathrm{m}$.
Charles St. Ave	2 mi . S. of Towson -	2	Aug. 20, 1930	$4 \text { to } 6 \mathrm{p} . \mathrm{m} \text {. }$
Reistertown Rd	1 mi . W of Baltimore city line.	2	Aug. 22, 1930	Do.
Rhode Island Ave. Ext., Mt. Rainier.	William St.	2	July 1, 1931	2.45 to $5.45 \mathrm{p} . \mathrm{m}$.
Defense Highway, U. S. Route 50.	$1 / 4 \mathrm{mi}$. E. of rd. to Landover.	2	Aug. 17, 1931	4 to $6 \mathrm{p}, \mathrm{m}$.

NEW JERSEY

White Horse Pike, U. S. Route 30.	4 mi . E. of Haddon Heights.
$\begin{aligned} & \text { Do } \\ & \text { Do } \end{aligned}$	9 mi . of E. of Berlin 10 mi . W. of Atlantic City.
	7 mi . W. of Atlantic City. 6 mi . W. of Atlantic City. 1 mi . S. of Woodbridge. 1 mi . N. of South Amboy.
Do.-...........	1 mi . S. of South Amboy.
South Amboy. Eatontown Rd., N. J. Route 35. Do \qquad	5 mi . S. of South Amboy. 1 mi . N. of Eaton-
N. J. Route 33	town. 1 mi . W. of Ocean Grove.
Point Pleasant-Eatontown Rd. N. J. Route 35.	1 mi . S. of Eatontown.
Atlantic City-Pleasantville Rd., U. S. Route 40.	$1 / 2 \mathrm{mi}$. W. of Atlantic City.
Ocean City - Cape May Rd., N. J. Route 4.	$\begin{aligned} & 10 \mathrm{mi.} \text { N. of Cape } \\ & \text { May. } \end{aligned}$
Broad St., U. S. Route 130.	3 mi . E. of Trenton.
Trenton-Jersey City Rd., U. S. Route 1.	$11 / 2 \mathrm{mi}$. S. of Cloverleaf intersection (Woodbridge).
Trenton-Jersey City Rd., U. S. Routes 9 and 1.	15.5 mi . S. of Jersey City.
Jersey City-Albany Rd., U. S. Route 9 W .	2 mi . S. of Alpine \ldots.

Table 3.-List of stations occupied for traffic counts-Continued

Name of road	Location	Number of lanes	Date	
Westfield - Dunellen Rd., U.S. Route 22 Somerville-N. Plainficld Rd., N. J. Route 29. Dover-Denville Rd., N. J. Route 6.	1 mi . W. of Westfield. 1 mi . N. of North Plainfield. 1 mi . E. of Dover ...	2 3 2	$\begin{array}{ll} \begin{array}{ll} \text { July } & 10,1930 \\ \text { July } & 13,1931 \\ \text { July } & 17,1931 \\ \text { Aug. } & 12,1931 \end{array} \end{array}$	$\begin{aligned} & 3 \text { to } 6 \mathrm{p} . \mathrm{m} . \\ & 5 \text { to } 7 \mathrm{p} . \mathrm{m} \text {. } \\ & 4 \text { to } 6 \mathrm{p} . \mathrm{m} \text {. } \end{aligned}$ Do.
PENNSYLVANIA				
Baltimore-Philadelphia Rd., U. S. Ronte 1. Do \qquad	1 mi . S. of Clifton Heights. Memorial Bridge, 3 mi. S. of Swarthmore.	2 2	$\begin{array}{\|ll} \text { July } & 1,1930 \\ \text { Aug. } & 3,1931 \\ \text { July } & 2,1931 \end{array}$	$\begin{aligned} & 3 \text { to } 6 \mathrm{p} . \mathrm{m} . \\ & 6 \text { to } 9 \mathrm{p} . \mathrm{m} \text {. } \\ & 4.20 \text { to } 8 \mathrm{p} . \mathrm{m} . \end{aligned}$
Ronsevelt Blvd., U S. Route 1 . Do	S. of Frankfort Ave N. of Vankirk St	3 3	$\begin{aligned} & \text { July } \begin{array}{r} 3,1930 \\ \text { Aug. } \\ \text { Aug. } \\ 28,1931 \\ \hline 1931 \end{array}{ }^{2} 1931 \end{aligned}$	$\begin{aligned} & 3 \text { to } 6 \mathrm{p} . \mathrm{m} . \\ & 3 \text { to } 5 \mathrm{p} . \mathrm{m} . \\ & 4 \text { to } 6 \mathrm{p} . \mathrm{m} . \end{aligned}$
Philadelphia-Trenton Rd., U.S. Route 1. Do	1 mi . N. of Philadel- phia city line. 4 mi . S. of Trenton	2	$\begin{array}{lr} \text { Aug. } & 17,1931 \\ \text { Aug. } & 22,1931 \\ \text { Sept. } & 2,1931 \end{array}$	$\begin{aligned} & 3 \text { to } 5 \mathrm{p} . \mathrm{m} \text {. } \\ & 3 \text { to } 6 \mathrm{p} . \mathrm{m} \text {. } \\ & 4 \text { to } 6 \mathrm{p} . \mathrm{m} \text {. } \end{aligned}$
River Drive, Philadelphia.	Fairmount ParkOrmiston Valley.		$\begin{array}{lr}\text { July } & 2,1930 \\ \text { July } & 3,1931 \\ \text { July } & 28,1931 \\ \text { Aug. } 27,1931\end{array}$	$\begin{aligned} & 3 \text { to } 6 \mathrm{p} . \mathrm{m} \text {. } \\ & \text { Do. } \\ & 4.30 \text { to } 6.30 \mathrm{p} . \mathrm{m} \text {. } \\ & 3 \text { to } 6 \mathrm{p} . \mathrm{m} \text {. } \end{aligned}$
City Ave., Philadelphia, U.S. Route 1.	W. of Schuylkill River.	2	July 5,1930 July 6,1931 July 24,1931 Aug. 24,1931 July 4,1930	1 to $4 \mathrm{p} . \mathrm{m}$. 3 to $5 \mathrm{p} . \mathrm{m}$. 3 to $6.30 \mathrm{p} . \mathrm{m}$ 4 to $6 \mathrm{p} . \mathrm{m}$.
Old York Rd., U. S. Route 611.	2 mi . S. of Willow Grove.	2	$\begin{aligned} & \text { Aug. } 24,1951 \\ & \text { July } 4,1930 \\ & \text { July } 29,1931 \end{aligned}$	$\begin{aligned} & 2 \text { to } 6 \mathrm{p} . \mathrm{m} . \\ & 4 \text { to } 6 \mathrm{p} . \mathrm{m} . \end{aligned}$
Susquehanna Trail, U. S. Route 22.	3 mi . N. of Harrisburg.	3	June 30,1930 Aug. 25, 1931	$\begin{aligned} & \begin{array}{l} 3 \text { to } 6 \mathrm{p} . \mathrm{m} \\ 3 \text { to } 4 \mathrm{p} . \mathrm{m} \end{array} \end{aligned}$
CONNECTICUT				
Boston Post Rd., U. S. Route 1. Do..	Greenwich \qquad Washington Bridge	4	$\begin{aligned} & \text { Aug. } \quad 6,1930 \\ & \text { July } 27,1930 \end{aligned}$	$\begin{aligned} & 4 \text { to } 6 \mathrm{p} . \mathrm{m} . \\ & 4 \text { to } 8 \mathrm{p} . \mathrm{m} . \end{aligned}$
Do	1/2 mi. W. of Milford	2	July 25, 1930	4 to $7 \mathrm{p} . \mathrm{m}$.
New Haven Ave U. S. Route 5	Woodmont S. of Hartford city line.	2	$\begin{aligned} & \text { Aug. } 5,1930 \\ & \text { July } \\ & \text { July } \\ & 26,1930 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Do. } \\ & 1 \text { to } 4 \text { p. m. } \\ & 4 \text { to } 6 \text { p. m. } \end{aligned}$

NEW YORK

$\begin{aligned} & \text { U. S. Route } 9 \mathrm{~W} \text {... } \\ & \text { U. S. Route } 9 \text {. } \end{aligned}$	$1 / 2 \mathrm{mi}$. S. of West Point. 1 mi . N. of Tarrytown.	2	$\begin{aligned} & \text { July } 22,1930 \\ & \text { July } 24,1930 \end{aligned}$	$\begin{aligned} & 4 \text { to } 6 \mathrm{p} . \mathrm{m} . \\ & 3 \text { to } 6 \mathrm{p} . \mathrm{m} . \end{aligned}$
Massachusetts				
Name of road	Location	$\begin{aligned} & \text { Num- } \\ & \text { ber of } \\ & \text { lanes } \end{aligned}$	Date	Hours
U. S. Route 1 Massachusetts 3A. U. S. Route 20	1 mi . N. of Dedham 4 mi . E. of Quincy .- 1 mi . W. of South Sudbury.	$\begin{aligned} & 2 \\ & 4 \\ & 2 \end{aligned}$	Aug. 1,1930 Aug. 2,1930 Aug. 3,1930 July 31,1930	$\begin{gathered} 4 \text { to } 7 \text { p. m. } \\ \text { Do. } \\ \text { Do. } \\ \text { Do. } \end{gathered}$
VIRGINIA				
Washington-A lexandria Rd., U. S. Route 1.	$2 \mathrm{mi}$. N. of Alexan-	2	Aug. 16, 1930	2 to $5 \mathrm{p} . \mathrm{m}$.

CORRECTION

In the April issue of Public Roads there was printed, on page 40, a table entitled "Motor-vehicle registration fees, licenses, permits, fines, etc., 1931." It has been found necessary to revise the figure given in the last column of this table for the District of Columbia, and the resulting grand total. The correct figures are as follows:

Disposition of gross receipts
District of Columbia purposes
Grand total
\$483, 900
$11,297,175$

CONCRETE PAVEMENT DESIGN FEATURES, 1931

OF THE total of 88,713 miles of roads improved with Federal aid up to June 30, 1931, 28,009 miles were paved with Portland cement concrete. This represents the greatest mileage of any type of improvement or group of related types except untreated gravel, of which 28,646 miles have been constructed. The proportion of concrete pavement to other types constructed with Federal aid during the calendar year 1931 is cuen greater, clearly indicating the increasing impertance of conerete parement.
\&

TYPICAL PLAIN CONCRETE PAVEMENT
ADDITIONAL EDGE BAR SOMETIMES PLACED 6"FROM CENTER JOINT AND AT $\frac{1}{2}$ DEPTH.
IN A FEW CASES 2 BARS ARE USED IN OUTER EDGES PLACED APPROXIMATELY $\frac{1}{3}$ AND $\frac{2}{3}$ DEPTH.

DOUBLE CURVED SECTION USED FOR PLAIN OR REINFORCED. PAVEMENT

TYPICAL SECTION USED IN MISSOURI
Figetr: 1.--Typical

Considerable progress has been made in the past few years toward standardization of the design of concrete pavements. Further progress in this direction is possible in spite of the acknowledged fact that complete uniformity of design is impracticable because of varied conditions of climate, subgrade, and loading in the various States. Starting with only a vague understanding of the structural requirements of cement concrete as a pavement material, intensive rescarch and observation of the earlier designs has pointed the way to rational methods of design affecting not only the shape of the pavement cross section and its dimensions but also the proportions of cement and aggregates, amount and
location of steel, and character and location of joints.
A study of concrete parement designs submitted by the several states during 1931 for use on Federal-aid projects has been made ; and in order to facilitate comparison of the different State designs and also comparison with earlier studies, the attached table has been prepared.

The data presented in the table cover the designs for only 43 States, since 5 States either did not submit any projects during 1931 involving the construction of con-

TYPICAL REINFORCED CONCRETE PAVEMENT
EDGE SARS USED IN PLAIN CONCRETE DESIGN COMMONLY RETAINED IN REINFORCED DESIGN AND END BARS ADDED. "HAIR-PIN"AND RIGHT ANGLE CORNER BARS FREQUENTLY adoed.

DOUBLE PLANE SECTION
USED FOR PLAIN OR REINFORCED PAVEMENT

TYPICAL SECTION USED IN CALIFORNIA

In all cases where pavements of more than two lanes are built, the width is a multiple of 10 feet

In the matter of depth of pavement it is found that parements of uniform depth are still constructed to some extent, particularly in the northeastern States and in connection with rather heavy steel reinforcement. Nlthough there is no question that these designs have proved adequate as to strength there would appear to be grounds to warrant doubt as to the economy of the design. The edge thickness most commonly used on thickened edge designs is 9 inches, although nine States use an edge thickness of 8 inches, one $7 \frac{1}{2}$ inches, two 7 inches, and one State occasionally uses a 6 -inch uniform depth. Only two States use a double-thickened section. Seventeen States use a 6 -inch center depth either as a standard design or for their less important roads. Five States us a $61 / 2$-inch center depth, eighteen use 7 inches, and no State uses more than 7 inches at the center except those which use the double-thickened section or uniform 8 -inch or 9 -inch pavements.

Figure 2.-Diagram Showing True Ordinates for Parabolic Crown of 1 Inch in 10 Feet and Practicablaf Ordinaten for Both Crown and Subgrade

The use of a curved subgrade, usually parabotic, in connection with thickened edge designs, has become a more general practice in the past few years because of the greater ease with which a subgrade of this shape is prepared and properly compacted as compared with the angular-shaped subgrade. Ten States now use the curved subgrade with thickened edge designs. One State uses a 2-plane subgrade, the pavement depth increasing uniformly from the center to the edges. The transition distance between edge and center depth in other designs varies from 2 feet to 4 feet. One State uses a uniform edge depth for the outer 2 feet of width, reducing the thickness in the next 2 feet to the center depth.

The reduction in the amount of crown used in concrete pavements in the past five years is notable. In 1926 only two States used a crown as low as 1 inch for a 20-foot pavement and only three used 1 inch for an 18-foot pavement. In 1931, 14 States regularly used a 1 -inch crown for a 20 -foot pavement and only four use as much as 2 inches. The crown shape is usually parabolic or circular although there is no apparent advantage in this shape over a straight or uniform slope. In case a two-lane pavement with parabolic crown is to be widened by building an additional lane on either side it will be found that this crown shape is objectionable because it produces a break in the parement slope at the edge of the old pavement unless an

Figure 3.-Lip or Sloping Curb Designs
unnecessarily heavy crown is used on the new outer lanes.

On 4-lane pavements a parabolic crown produces an excessive slope in the outer lanes and a straight crown is much to be preferred. A crown of 3 or $3 \frac{112}{2}$ inches for a 40 -foot pavement is adequate for all ordinary conditions. Of this total crown 1 to $1 \frac{1 / 2}{2}$ inches may be used on the inner 10 -foot lane and 2 inches in the outer lane. On the Mount Vernon Memorial Highway the normal width of pavement is 40 feet, the center 18 feet of which is crowned to conform to the are of a circle with a rise of 1 inch in 9 feet. The outer lanes are 11 feet wide, the crown being straight and having a rise of $2 \frac{1}{2}$ inches. This crown treatment gives a pleasing appearance and lends itself readily to future widening of the pavement.

In recognition of the public demand for smooth riding qualities and also with a view to reducing impact stresses, the surface trueness requirement has been set at not more than $\frac{1 /}{1}$-inch variation in 10 feet in 11 States. With machine methods of finishing and reasonably close attention to finishing details there does not appear to be any difficulty in meeting this requirement. It is anticipated that many of the States which now permit a variation of $1 / 4$-inch in 10 feet will soon adopt a more stringent requirement.

Steel has been used as a reinforcing element in cement concrete for buildings, bridges, and other structures for a long time and quite definite design requirements for such structures have been established. A concrete pavement, however, presents conditions considerably at variance with such structures. The parement slab receives more or less continuous support from the subgrade but frictional stresses and volumetric changes in the subgrade introduce variable tensile stresses indicating the use of steel. In determining the classification of the various pavement desions as between reinforced and plain, it was considered that a reinforced pavement is one in which the steel is used as a network bonded with the concrete and distributed generally.throughout the slab. Marginal bars, end bars, and corner bars when
used alone are not considered as reinforcement but when used in addition to a bar mat or mesh reinforcement their weight is included in the tabular data as reinforcement.

Reinforcement is most commonly placed 2 inches from the top of the parement. Two of the New England States, however, place the reinforcement 2 inches; from the bottom and two other New England States use double reinforcement; that is, in both the top and the bottom of the pavement. The severe climatic con-

Figure 4.-Typical Bar Mat for Relnforeed Pavement; Bars $1 / 4$ to $1 / 2$ Inch Round, Welded, Clipped, or $W_{1 r e d}$ at All Points of Intersection; Mats Lapped 12 to 14 Inches
ditions in these States are undoubtedly accountable for these departures from the general practice. Fifteen States used reinforced designs exclusively, while eight others used the reinforeed design only on certain projects. The use of reinforcement is not confined to any geographical area, but most of the States using this design are in the area where frost conditions are rather severe. The smallest amount of steel used in reinforced designs is 25 pounds per 100 square feet and the maximum is 119 pounds. There is a noticeable tendency toward the use of reinforecment for crack control.

Figute 5.-Desigin of Sfmireinforced Slab
In the 28 States submitting plain concrete parement designs, 13 used varying amounts of steel in the form of edge bars, end bars, and corner bars. In some cases the amount of steel so used exceeds the amount used in reinforced designs in other States.

The use of the longitudinal joint is the most universally accepted feature of concrete parement design. Only two states now build two lane parements without longitudinal joints. I few years ago it was the standard practice to use a deformed metal plate in the longitudinal joint but the dummy joint or bituminous impressed joint is now permitted as an alternate with the steel plate in 17 States and is used exclusively in four

TRANSVERSE OR LONGITUOINAL WEAKENED PLANE

LONGITUDINAL OR TRANSVERSE BITUMINOUS IMPRESSEO JOINT

LONGITUDINAL WEAKENED PLANE USEO IN CALIFORNIA
Figure 6.-Typical Designs of Weakened Plane ur Demmy Joint
other States. In four States the longitudinal joint is a simple expansion joint without tie hars or dowels. Five States use a construction joint with or without tie bars and 11 States still specify the deformed metal separator.

The practice with reference to transverse joints continues to vary greatly among the States, but there is a definite trend toward the use of expansion joints and the use of intermediate dummy contraction joints. Two States use wide expansion joints, 3 inches and 4 inches, spaced at wide intervals, and four States do not proride for any transwerse joints except necessary construction joints when the mixer is stopped for 30 minutes or more. The majority of the States use slip dowels across the expansion joints, but no dowels or tie hars across transverse dummy joints. Twenty States permit the use of either premolded expansion joint material or a poured mastic, at the option of the contractor. Four States specify a poured mastic and 15 sperify premolded material.

No attempt was made to tabulate data with referenee to the mix proportions of the concrete used in the several States for the reason that no simple and satisfactory basis of comparison has been established. Becrinning with the construction season of 1930 it has been required that weight batching of aggregrates be used on Federal-aid projects. In some States volumetrie proportions are converted directly to batch weights for the job aggregates but the principles of a designed mix are more commonly used. It is believed that the requirement of weight batching is well justified as it produres more uniform concrete at no increase in cost and in the States which have adopted the principle of a designed mix considerable economy has resulted from redurtion in the cement content while maintaining high strength.

(IENERAL FEATURES OF DESIGN OF CROSS SECTION OF CONCRETE PAVEMENTS ON FEDERAL-AID PROJECTS

 SUBMITTED IN 1931

[^0]One panel (5 feet 2 inches wide) of reinforcement placed 2 inches from tor, adjacent to transverse ioint on each sice
 section with gravel aggregate

- In 16 feet

GENERAL FEATCRES OF DESIGN OF CONCRETE PAVENENTS ON FEDERAL-AID PROJECTS STBMITTED IN 1931

${ }^{1}$ For reinforced type, 30 -foot sparing, 3^{3}-incll width; for blain type, 40 -foot spacing, ${ }^{1}, 2$ inch width.
${ }_{3}$ Dummy joints at third points hetween expansion joints
${ }^{3}$ spacine and width of expansion joints delentent on type of agsremate
G Gage of metal strip not sperified.
${ }^{5}$ Dummy joints at fourth boints between expansion joints
${ }^{6}$ Dimmy joint halfway between explasion joints.
\& Alternate expansion and contrastion dowels; no short dowels used. 15 , at 50 -font spacing; expransion joints at 50 -font spacing, ()ct. 15 to . Apr. 15 .

- Atternate expansion
on clay subgrade

GENERAL FEATURES OF DESIGN OF CONCRETE PAVEMENTS ON FEDERAL-AID PROJECTS SUBMITTED IN 1931-Continned

${ }^{2}$ Dummy joints at third points hetween expansion joints.
Dummy joints halfway between expansion joints.

pUBLICATIONS OF THE BUREAU OF PUBLIC ROADS

U. S. DEPARTMENT OF AGRICULTURE

PRACTICALLY all of the research reports of the bureau are now published in the magazine Public Roads. The following list includes the more important reports which have been issued.

The bureau will supply without charge only selected issues of the magazine for the current year. Earlier issues (and current issues if desired) can be purchased from the Superintendent of Documents, Government Printing Office, at 10 cents per copy (stamps not accepted).

Certain publications are marked "Free supply" and single copies can be obtained from the bureau or they can be purchased from the Superintendent of Documents in those cases where a price is indicated. Those marked "Available by purchase only" should be pur-
chased from the Superintendent of Documents. Where more than one copy of any publication is clesired it should be obtained by purchase.

Important articles in Public Roads of which the entire supply is exhausted are so indicated and are included in the list for the convenience of investigators who may wish to consult them in libraries. Upon request, correspondents will be advised of near-by libraries receiving the magazine.

The bureau has discontinued the issuance of a series of bulletins describing current practice in constructing the various types of road, since this subject is now covered by numerous textbooks. A list of books on highway engineering subjects can be supplied on request.

HIGHWAY LOCATION, SURVEYS, AND GENERAL DESIGN

Miseellaneous Circular 62 MC. Standards Governing Plans, Specifications, Contract Forms, and Estinates for FederalAid Highway Projects. 5c. (Free supply available.)
Tentative Standard Specifications for Highway Materials and Methods of Sampling and Testing, published by American Association of State Highway Officials, National Press Building, Washington, D. C. These specifications have been approved for use in Federal-aid work. (Available only by purchase from puslishers, \$1.50.)

REPORTS IN PUBLIC ROADS

*Superelevation and Easement as Applied to Highway Curves, hy A. L. Luedke and J. L. Harrison, vol. 3, No. 31, November, 1920.
*Effect of Increased Speed of Vehicles on the Design of Highwars, 1) A. (i. Bruce, vol. 10, No. 1, March, 1929.

SUBGRADE AND SOIL STUDIES

Reports on Suhorade Sosil Studies. Reprint from Public Roads, bol. 12, Nos. 4, 5, 7 athd 8. 40c. (Free supply available.)

Available only hy purchase from Superintendent of locuments.

REPORTS IN PUBLIC ROADS

*Practical Field Tests for Sulbgrade Soils, by A. C. Rose, vol. 5, No. 6, August, 1924. (Supply exhausted.)
*The Supporting Value of Soil as Influenced by the Bearing Area, by A. T. Goldbeek and M. J. Bussard, vol. 5, No. 11, January, 1925. (Supply exhausted.)
*Vertical Pressure of Earth Fills Measured, hy C. N. Connor, vol. 6, No. 1, March, 1925.
*Field Methods Used in Subgrade Surveys, by A. C. Rose, vol. 6, No. 5, July, 1925.
*Earth Pressures Against Ahutment Walls Measured With Soil Pressure Cells, by J. V. MeNary, vol. 6, No. 5, July, 1925.
*The Present Status of Subgrade Studies, by A. C. Rose, vol. 6, No. 7, September, 1925. (Supply exhansted.)

* Adaptation of Atterberg Plasticity Tests for Subgrade Soils, by A. M. Wintermyer, vol. 7, No. 6, August, 1926 . (Supply exhansted.)
*Simplified Soil Tests for Subgrades and Their Physical Significance, by Dr. Charles Terzaghi, vol. 7, No. 8, October, 1926.
*Earth Pressures on Culvert Pipes, by G. M1. Braune, vol. 7, No. 11, January, 1927. (Supply exhausted.)
*Fill Settlement in Peat Marshes, by V. R. Burton, vol. 7, No. 12, February, 1927.
* Determination of Consistency of Soils hy Means of Penetration Tests, by Dr. Charles Terzaghi, vol. 7, No. 12, February, 1927.
* Landslides and Their Relation to Highways-Report of Obserrations Made in West Virginia and Ohio to Determine the Canse of Slides and Devise Means of Control. Part I, by Dr. George E. Ladd, vol. 8, No. 2, April, 1927.
* Principles of Final soil Classification, by Dr. Charles Terzaghi, rol. 8, No. 3, May, 1927.
*Elementary Proof of Shale Likmess of Clay Particles, by Dmitry P. Krmine, vol. 8, No. 11, Janary, 1928.
* Present Staths of Subgrade Suil Testing, by C. A. Hogentogler, Dr. Charles Ter\%aghi, and A. M. Wintermyer, vol. 9, No. 1, March, 1928.
* Landslides and Their Relation to Highways-Report of Observations Made in West Virginia, Ohio, and southwestern Pemsylvania. Part II, by Dr. George E. Ladd, vol. 9, No. 8, Octuber, 1928.
*Interrelationship of Load, Road, and Subgrade, by C. A. Hogentogler and Dr. Charles Terzaghi, vol. 10, No. 3, May, 1929.
* Simple Laboratory Experiments on Capilhary Mowencent and Entrapped Air in Clays, by Dmitry P'. Krynine, vol. 10, No. 6. August, 1929.
* Earth Pressure Experiments on Culvert Pipe, by Ci. M. Branne, Willian Cain, and H. F. Janda, vol. 10, No. 9, Nosember, 1929.
*The Mechanics of Shear Failures on Clay Slopes and the Creep of Retaining Walls, by Dr. Charles Terzaghi, vol. 10, No. 10, December, 1929.
*Illustrations of frost and ice phenomena, by Ira B. Mullis, vol. 11, No. 4, June, 1930.
*Some Points of Contact Between Soil Science and Highway Engineering, by J. s. Joffe, vol. 11, No. 4, June, 1930.
*Freezing and Thawing of Soils as Factors in the Destruction of Road Pavements, hy Stephen Taber, vol. 11, No. 6, August, 1930.
*Subgrade Soil Constants, Their Significance, and Their Application in Practice, by C. A. Hogentogler, A. M. Wintermyer, and E. A. Willis:

Part I, vol. 12, No. 4, June, 1931.
Parts II and III, vol. 12, No. 5, July, 1931.
*The Soil Profile and the Subgrade Survey, by IV. I. Watkins and Henry Aaron, vol. 12, No. 7, September, 1931.

* Procedures for Testing Soils for the Determination of the Subgrade Soil Constants, by A. M. Wintermyer, E. A. Willis, and R. C. Thoreen, vol. 12, No. 8, October, 1931.
*Graphical solution of the Data Furnished by the Hydrometer Method of Analysis, by E. A. Willis, F. A. Robeson, and C. M. Johnston, vol. 12, No. S, October, 1931.

EARTH, SAND-CLAY, GRAVEL, AND LOW-COST BITUMINOUS MIXES

REPORTS IN PUBLIC ROADS

*Rythmic Corrugations in Ciravel Roads, by Dr. George E. Ladd, vol. 5, No. 7, September 1924. (Supply exhausted.)
*Oiled Earth Roads on Long Island, by A. T. Goldbeck, vol. 5, No. 7, September 1924 . (Supply exhausted.)

* Tar surface Treatment of (iravel Roads, by N. M. Isabella, vol. 6, No. 2, April, 1925. (Supply exhausted.)
*Light Asphaltic Oil Road Surfaces, by (\%. L. MeKesson and IV. N. Friekstad, vol. 8, No. 7, September, 1927. (Supply exhausted.)
*Surface Treatment of Topsoil roads, by J. T. Pauls, vol. S, No. 9, November, 1927.
* Study of Gravel, Topsoil, and Sand-Clay Roads in Georgia, by Dr. C. M. Strahan, vol. 10, No. 7, September, 1929.
*Bituminous Surface Treatment of Sand-Clay and Topsoil RoadsReport on a cooperative study by the Burean of Public Roads and the Asphalt Industry, vol. 10, No. 11, January, 1930.
*Investigation of Oil-Treated Earth Roads in Missouri, by F.V Reagel, Henry Aaron, and II. I. Watkins, vol. 12, No. 3, May, 1931.
Bituminous Treatments on Sand-Clay and Marl Bases in Soutl: Carolina, by H. C. Jones and E. L. Tarwater, vol. 12, No. 9, November, 1931.

BITUMINOUS SURFACES, MATERIALS, AND MIXTURES

REPORTS IN PUBLIC ROADS

*Stability Test for Bituminous Mixtures, by Wr. J. Emmons, vol. 6, No. 4, June, 1925. (Supply exhausted.)

[^1]*Study of the Effect of Temperature on the Stability of Amphaltic: P'avements, by WV. J. Emmons, vol. 7, No. 2, April, 1926.
*Rescarches on Bituminons Paring Mixtures, by II. .J. Vmmons, vol. 7, No. 10, December, 1926 .
*Report on Commecticut Aremue Experimental Road, rol. 9, No. 3, Маy, 1925.
*Bradley Lathe Experimental Road, vol. 9, No. 12, Feboruary, 1929.

* Machine for Molding Laboratory Speecimens of Bitmminons Paving Mixtures, hy J. T. Pauls, vol. 10, No. ᄅ2, April, 1929.
* Bituminous surface lireatment Experiments in Department of Agriculture Grounds, hy J. T. Pauls and Panl F". ('ritz, vol. 10, No. S, October, 1929.
*Progress Report of the Commerticut I venue Experimental Road, by Paul F. (rit\% and J. H. Fldridge, vol. 11, No. 4, June, 19:30.
*Bituminous Treatments Tsed on Roands of Sntermediate Type in the Western States, by J. T. Pauls, vol. 11, No. 10, Dereerbber, 1930 .
*The Most Recent Methods Aclopted for the Lse of Tar, Bitumen, and Asphalt, in Road Construction- Report by Imerican Engineers to the Sixth International Road ('ongress, vol. 11, No. 10, December, 1930.

CONCRETE, CONCRETE MATERIALS, AND CONCRETE ROADS

*Department Bulletin 532 D . The Expansion and contraction of Concrete and Concrete Roads, 10e.

reports in public roads

* Accelerated Wear Tests by the Burean of Public Roads, by F. H. Jackson and C. A. Hogentogler, vol. 4, No. 2, June, 1921.
*Wear of Concrete Pavements Tested, by F. H. Jackson, vol. 5, No. 3, May 1924. (Supply exhausted.)
*Friction Tests of Concrete on Various Subhases, hy A. T. Goldbeck, vol. 5, No. 5, Juls, 1924.
*Reinforcing and the Subgrade as Factors in the Design of Concrete Pavements, by J. T. Pauls, vol. 5, No. S, October, 1924. (Supply exhausted.)
*Static Load Tests on Pavement Slabs, by J. T. Thompson, vol. 5, No. 9, November, 1924. (s'upply exhausted.)
*Comparisons of the Strength of Concrete in Tension and Compression, by N. M. Finkbiner, vol. 5, No. 11, January, 1925. (Supply exhausted.)
*Reinforced Concrete Pavement Survey, by (. A. Hogentogler. vol. 5, No. 12, February, 1925.
*Effect of Grading on Sand Strength Ratios, by C. E. Proudley, vol. 6, No. 4, June 1925. (Supply exhausted.)
*The Interrelation of Longitudinal Steel and Transverse Cracks in Concrete Roads, by A. T. Goldbeck, vol. 6, No. 6, August, 1925. (Supply exhausted.)
*A New Test for Consistency of Concrete Applicable to Dry Paving Mixtures, by F. Hï. Jackson, vol. 6, No. 6, Augusi, 1925. (Supply exhausted.)
*The Six-Wheel Truck and the Pavement, by L. W. Teller, vol. 6. No. S, October, 1925.
*Action of Sulphate Water un Concrete, by Dalton (i. Miller, vol. 6, No. 8, October, 1925.
*Protection of Concrete Against Alkali, by Dr. E. C. E. Lurd. vol. 6, No. 11, January 1926. (Supply exhausted.)
* Stresses in Concrete Pavements Computed by Theoretical Analysis, by Dr. H. M. Westergaard, vol. 7, No. 2, April, 1926.
*Tests of Vibrolithic Concrete, by L. IV. Teller, vol. 7, No. 2. April, 1926.
*Comparison of Transterse and Compressive tests of Concrete. by H. F. Clemmer, vol. 7, No. 3, May 1926. (Supply exhausted.)
*Tests of Concrete in Tension, by A. N. Johnson, Vol. 7. No. 4, June, 1926. (Supply exhausted.)
*Strength of Mortar and Concrete as Influenced by the Grading of the Sand, by J. G. Rose, vol. 7, No. 5, July, 1926. Discussion by T. C. Powers, vol. 7, No.'s, October, 1926.
*Tests of Concrete Curing Methods, by J. T. Pauls, vol. 7, No. 10, December, 1926.
* - Letion of Calcium Chloride on Cements, vol. 7, Nu. 12, February, 1927.
*Proportioning Concrete Aggregates by Weight, by R. W. Crum, vol. S, No. 1, Mareh, 1927. (Supply exhansted.)
*Standard Sizes of Crushed Stone, by F. H. Jackson, rol. \&, No. 2, April, 1927.
* Analysis of Stresses in Concrete Roads Cansed by Variations of Temperature, by Dr. H. M. Westergaard, vol. S, No. 3, May, 1927.
*Effect of Salts in Mixing Water on Strength of Mortar Studied, vol. 8, No. 5, July, 1927.
*Protection of Concrete Against Alkali, By Dr. E. C. E. Lord, vol. 8, No. (i, August, 1927.
*Effect of Quality of Portland Cement upon the Strength of Concrete, by F. H. Jackson, vol. 8, No. 6, August, 1927.
*Further Tests of Vibrolithic Concrete, by L. W. Teller and C. E. Proudley, vol. 8, No. S, October, 1927
*The Action of sulphate Water on Concrete, by Dalton G. Miller, vol. 8, No. 9, November, 1927.
*Effect of tialts in Mixing Water on Compressive Strength of Muctar, vol. \&, No. 11, Jamuary, 1928.
* Cimparative Tests of Crushed Stone and Gravel Concrete i's New Jersey, by F. H. Jackson, vol. S, No. 12, February, 1928. (ふupply exhausted.)
* Report on Connecticut Avenue Experimental Road, vol. 9, No. 3, May, 1925.
*Virginia Demonstration Ruad, by A. C. Benkelman, vol. 9, No. 4, June, 192 S.
*Resistance of Portland Cement Concrete to the Action of Sulphate Waters as Inflnenced by the cement, hy Dalton G. Miller, vol. 9, No. 4, June, 1928.
* Determination of Proportions of Constituents in Concrete, by L. G. Carmick, vol. 9, No. 4, Jume, 1928.
*Lip Curb for Concrete Pavements, by St. Clair T. Thomas, vol. 9, No. 5, July, 192 s.
*The Design of Pavement Concrete by the Water-Cement Ratio Method, by F. H. Jackson, vol. 9, No. 6, August, 1928.
*Field Experiments in the Curing of Concrete Pavements-Rep.nt on Cooperative Experiments Conducted by the Maryland State Roads Commission and the U. S. Bureau of Public Roads, by F. H. Jackson and Genrge Werner, vol. 9, No. 7, September, 1928.
*Strength Characteristics of Concrete as Indicated by Core Tests-Results of Compression Tests on Cores Drilled from Maryland Highways Analyzed, by A. N. Johnson, vol. 9, No. 7, September, 192 S .
* Modulus of Elasticity of Cores from Concrete Roads-Results of Determinations Made on Cores Drilled from Maryland Highways, by A. N. Johnson, vol. 9, No. 8, October, 1928.
*Strength Characteristics of Concrete-Results of Study of Mudulus of Elasticity, Effect of Moisture on Strength , and Behavior under Repeated Loading, by A. N. Johnson, vol. 9, No. 9, November, 1928.
* Influence of Mineral Composition of Sand on Mortar Strength, by Dr. E. C. E. Lord, vol. 9, No. 11, January, 1929.
*Concrete in Tension, by A. N. Johnson, vol. 9, No. 12, February, 1929.
*Qualities Required in Paving Concrete, by F. H. Jackson, vol. 9, No. 12, February, 1929.
* Mechanics of Progressive Cracking in Concrete Pavements, by Dr. H. M. Westergaard, vol. 10, No. 4, June, 1929.
*Effect of Type and Gradation of Coarse Aggregate Upon the Strength of Concrete, by W. F. Kellermann, vol. 10, No. 4, June, 1929.
* A Test for Indicating the Surface Hardness of Concrete Pavements, by L. W. Teller, vol. 10, No. 5, July 1929.
* General Features of Design of Cross Section of Concrete Parements on Federal-aid Projects Submitted in 1928, vol. 10, No. 5, July, 1929.
*Effect of Method of Fabrication on Strength and Uniformity of Concrete Flexure specimens, by L. W. Teller, vol. 10, No. 6. Angust, 1929.
*Effect of Moisture Content on the Strengtn of Cement Mortar Specimens, by D. O. Woolf and Baxter Smith, vol. 10, No. 6, August, 1929.
*Need for Simplification of Sizes of Sand and Gravel Industry, by F. H. Jackson, vol. 10, No. 12, February, 1930.
*The Arlington Curing Experiments, by L. W. Teller and H. L. Bosley, vol. 10, No. 12, February, 1930.
* Progress Report of the Comecticut Avenue Experimental Road, by Paul F. Critz and J. H. Eldridge, vol. 11, No. 4, June, 1930.
*Results Obtained by the Use of Cement-Report of American Engineers to the Sixth International Road Congress, vol. 11, No. 9, November, 1930.
* A Study of Methods of Curing Concrete Pavements-Report of a Field Investigation in Teunessee Conducted Jointly by the Temnessee Department of Highways and the U. S. Bureau of Public Roads, by F. H. Jackson and E. W. Bamman, vol. 11, No. 11, January, 1931.
* Effect of Vibration on the Pressure of Concrete Against Form Work, by L. W. Teller, vol. 12, No. 1, March, 1931.
* Effect of the Dimensions of Test Specimens on the Flexural strength of Concrete, by F. V. Reagel and T. F. Willis, vol. 12, No. 2, April, 1931.
* Action of Sulphate Water on Concrete, by Dalton G. Miller and Philip Manson, vol. 12, No. 3, May, 1931.
*Effert of Water-gas Tar on the Strength and Alkali Resistance of Comerete, by Dr. E. C. E. Lord, vol. 12, No. 4, June, 1931.
*Studies of Paving Concrete, by F. H. Jackson and W. F. Kellermamn, vol. 12, No. 6, August, 1931.
* Some Observations on the Modulus of Rupture of Frozen Conarete Beams, by Andrew P. Anderson, vol. 12, No. 7, September, 1931.
*The Iffect of Materials and Methods of Placing on the Strength and Other Properties of Concrete Bridge Floor slabs, by L. W. Teller and George W. Davis, vol. 12, No. 10, December, 1931. Relation Between the Strength of Cement and the Strength of Concrete, by F. H. Jackson, vol. 12, No. 11, January, 1932.
The Resistance of Concrete to Frost Action, by F. H. Jackson, vol. 13, No. 2, April, 1932.

BLOCK PAVEMENTS (BRICK, ETC.)

REPORTS IN PUBLIC ROADS

*Brick Pavements in the Middle West, by A. T. Goldbeck and F. H. Jackson, vol. 1, No. 10, February, 1919. (Supply exhausted.)

* Accelerated Wear Tests by the Bureau of Public Roads, by F. H. Jackson and C. A. Hogentogler, vol. 4, No. 2, June, 1921.
'Rolled-Base" Brick Roads in Ohio, by A. T. Goldbeck and F. H. Jackson, vol. 4, No. 7, November, 1921. (Supply exhausted.)
*Brick Roads of Florida, by C. A. Hogentogler, vol. 5, Nu. 2, April, 1924. (Supply exhausted.)
*Effect of Size of Brick on Rattler Loss, by F. H. Jackson, vol. 7, No. 5, July, 1926.
*Thin Brick Pavements Studied, by L. W. Teller and J. T. Pauls, vol. 7, No. 7, September, 1926. (Supply exhausted.)

MOTOR VEHICLE IMPACT

REPORTS IN PUBLIC ROADS

* Motor-Truck Impact as Affected by Tires, Other Truck Factors, and Road Roughness, by J. A. Buchanan and J. W. Reid, vol. 7, No. 4, June, 1926. (Supply exhausted.)
*Static and Impact Strains in Concrete, by J. T. Thompson, vol. 7, No. 5, July, 1926.
* An Instrument for the Measurament of Relative Road Roughness, vol. 7, No. 7, September, 1926. (Supply exhausted.)
*Downward Kick of the Rear Wheels of Vehicles in Starting from Rest to Motion, by Thomas K. A. Hendrick, vol. 7, No. 11, January, 1927. (Supply exhausted.)
*Static and Impact Loads Transmitted to Culverts, vol. 8, No. 6, August, 1927.
*Effect of Parement Type on Impact Reaction, by J. T. ThompSon, vol. 9, No. 6, August, 1928.
*Calibrations of Accelerometers for Use in Motor Truck Impact Tests, by J. A. Buchanan and G. P. St. Clair, vol. 11, No. 5, July, 1930.
* Motor Truck Impact as Affected by Rubber Tread Thickness of Tires, by J. A. Buchanan, vol. 11, No. 7, September, 1930.
*Interrelated Effects of Load, Speed, Tires, and Road Roughness on Motor Truck Impact, by J. A. Buchanan, Vol. 11, No. 7, September, 1930.
*Impact Reactions Developed by a Modern Motor Bus, by J. A Buchanan, vol. 12, No. 2, April, 1931.

HIGHWAY CONSTRUCTION COST AND EFFICIENCY STUDIES

*Miscellaneous Circular 93 MC . Direct Production Costs of Broken Stone. 25c.

REPORTS IN PUBLIC ROADS

Effect of Haul on the Cost of Earthwork, by J. L. Harrison, vol. 5, No. 7, September, 1924. (Supply exhausted.)
Cost of Grading with Fresmoes, by J. L. Harrison, vol. 5, No. 8, October, 1924. (Supply exhausted.)
Economical Use of Wheel Scrapers, by J. L. Harrison, vol. 5, No. 10, December, 1924. (Supply exhausted.)
The Wagon and the Elevating Grader, by J. L. Harrison:
Part I. An Economic Study of the Wagon-Elevating Grader Combination, vol. 6,No. 2, April, 1925. (Supply exhausted).
*Part II. The Influcnce of Design on Elevating Grader Costs, vol. 6, No. 3, May, 1925.
Part III. Estimating the Cost of Elevating Grader Work, vol. 6, No. 4, June, 1925 . (Supply exhausted.)

[^2]Efficiency in Concrete Road Construction, by J. L. Harrison: *Part I. Efficient Production, vol. 6, No. 9, November, 1925.

Part II. Transportation of Materials, vol. 6, No. 10, December, 1925. (Supply exhausted.)
Part III. Efficiency of Equipment, vol. 6, No. 11, January, 1926. (Supply exhausted.)
*Part IV. Organization and Equipment of a Concrete Paving Operation, vol. 6, Nu. 12, February, 1926.
*Part V. Speeding up Construction Work, vol. 7, No. 1, March, 1926.
*The Value of the Foreman on Fresno and Wheel Scraper Work, by Andrew P. Anderson, vol. 7, No. 3, May, 1926. (Supply exhausted.)
*Direct Production Costs of Broken Stone, by Dr. George E. Ladd, vol. 7, No. 8, October, 1926.
*Time Losses in Concrete Road Construction, by Andrew P. Anderson, vol. 7, No. 10, December, 1926.
*Power-Shovel Operation in Highway Grading, by T. Warren Allen and Andrew P. Anderson.
Part I. Vol. 8, No. 12, February, 1928. (Supply exhausted.) Part II. Vol.. 9, No. 1, March, 1928.
Part III. Vol. 9, No. 2, April, 1928.
*Effect of the Length of the Mixing Period on the Quality of Concrete Mixed in Standard Pavers, by J. L. Harrison, vol. 9, No. 5, July, 1928.
*Truck Operation and Production in Concrete Paving Work, by Andrew P. Anderson, vol. 11, No. 12, February, 1931
*High-Speed Production on Asphalt Concrete Paving Work, by R. W. Edwards and N. L. James, vol. 11, No. 12, February, 1931.
Effect of Size of Batch and Length of Mixing Period on Rate of Production and Quality of Concrete Mixed in Standard 27E Pavers, by T. C. Thee, vol. 12, No. 11, January, 1932.
Some Studies of Drilling and Blasting in Highway Grading, by Andrew P. Anderson, vol. 12, No. 12, February, 1932.

HIGHWAY FINANCE AND ADMINISTRATION

Statistical tables, annual. (Free supply.) Motor vehicle registrations and fees. Gasoline taxes.
State highways built during year.
State highways existing at end of year.
State highway income during year.
State highway expenditures during year.
Local roads built during year.
Local roads existing at end of year.
Local highway income during year.
Local highway expenditures during year.
Annual reports. (Free supply.)
Report of the Chief of the Bureau of Public Roads, 1924. Report of the Chief of the Bureau of Public Roads, 1925. Report of the Chief of the Bureau of Public Roads, 1927. Report of the Chief of the Bureau of Public Roads, 1928. Report of the Chief of the Bureau of Public Roads, 1929.
*Department Bulletin 136 D, Highway Bonds, 20c.

* Department Bulletin 660 D. Highway Cost Keeping, 10c.

Department Bulletin 1279 D, Rural highway mileage, income and expenditures 1921 and 1922. 15c. (Free supply available.)
Miscellaneous Circular 109, Federal Legislation and Regulation Relating to the Improvement of Federal-Aid Roads. (Free supply available.)

REPORTS IN PUBLIC ROADS

*Road Bond Issues in Relation to Total Debt, by Henry R. Trumbower, vol. 5, No. 3, May, 1924. (Supply exhausted.)
*The Incidence of the Highway Tax Burden, by Henry R. Trumbower, vol. 5, No. 4, June, 1924. (Supply exhausted.)
*Regulation of Motor Vehicles as Common Carriers, by Henry R. Trumbower, vol. 5, No. 6, August, 1924. (Supply exhausted.)
*Motor Vehicle Fees and Gasoline Taxes, by Henry R. Trumbower, vol. 5, No. 7, September, 1924. (Supply exhausted.)
*Constitutionality of Motor Vehicle License Fees and the Gasoline Tax by Henry R. Trumbower, vol. 5, No. 9, November, 1924. (Supply exhausted.)
*Highway Income from the Motor Vehicle, by Henry R. Trumbower, vo!. 5, No. 11, January, 1925. (Supply exhausted.)

* A vailable only by purchase from Superintendent of Documents.
*Common Carrier Truck Fees and Taxes, by Henry R. Trumbower, vol. 6, No. 11, January, 1926. (Supply exhausted.)
*Urban Aspects of Highway Finance, by Jacob Viner, vol. 6, No. 11 (supply exhausted), and No. 12, January and February, 1926.
*Collection and Disposition of Motor Vehicle Revenues, by Henry R. Trumbower, vol. 7, No. 11, January, 1927. (Supply exhausted.)
*Technical Basis for Apportioning Motor Vehicle Taxes, by Charles F. Marvin, jr., vol. 11, No. 3, May, 1930.
*North Carolina County Road and Finance Survey-Report of a Cooperative Investigation by the North Carolina State Highway Commission, the North Carolina State Tax Commission, and the U. S. Bureau of Public Roads, vol. 11, No. 12, February, 1931.
*Toll Roads, by H. H. Kelly, vol. 12, No. 1, March, 1931.

HIGHWAY TRANSPORT AND TRAFFIC

The following traffic reports are available from the bureau without charge (not available from Superintendent of Documents)
Report of a Survey of Transportation on the State Highway System of Ohio, 1927.
Report of a Survey of Transportation on the State Highways of Vermont, 1927.
Report of a Survey of Transportation on the State Highways of New Hampshire, 1927
Report of a Plan of Highway Improvement in the Regional Area of Cleveland, Ohio, 1928.
Report of a Survey of Transportation on the State Highways of Pennsylvania, 1928.
Report of a Survey of Traffic on the Federal-aid Highway Systems of Eleven Western States, 1930.

REPORTS IN PUBLIC ROADS

*Transportation of Milk by Motor Truck, by H. R. Trumbower, vol. 5, No. 5, July, 1924.
*Traffic Control and Safety, by E. W. James, vol. 5, No. 6, August, 1924. (Supply exhausted.)
*Transportation of Hogs by Motor Truck, by E. L. Browne, vol. 5, No. 6, August, 1924. (Supply exhausted.)
*A Study of Motor Vehicle Accidents in Montana, Oregon, and Washington, by A. C. Rose, vol. 5, No. 12, February, 1925.
*Transverse Distribution of Motor Vehicle Traffic on Paved Highways, by J. T. Pauls, vol. 6, No. 1, March, 1925.
*Maine Highway Transportation Survey-Preliminary Report, by J. G. McKay and O. M.Elvehjem, vol. 6, No. 3, May, 1925
*Transportation of Milk by Motor Truck in the Chicago Dairy District, by E. L. Browne, vol. 6, No. 5, July, 1925.
*Commodity Transportation by Motor Truck, by J. G. McKay, vol. 6, No. 6, August, 1925. (Supply exhausted.)
*Colors and Forms of Traffic Signals, vol. 6, No. 6, August, 1925. (Supply exhausted.)
*Railroad Abandonments and their Relation to Highway Transportation, by H. R. Trumbower, vol. 6, No. 8, October, 1925.
*Motor Bus as a Common Carrier, by H. R. Trumbower, vol. 6, No. 10, December, 1925. (Supply exhausted.)
*Cook County Transportation Survey, by J. G. McKay, vol. 7, No. 1, March, 1926.
*Modern Highway Traffic and the Planning of State Highway Systems, by J. G. McKay, vol. 7, No. 9, November, 1926.
*The Use of Hiring Cars and Busses on Rural Highways, by H. R. Trumbower, vol. 7, No. 9, November, 1926.
*Comparison of Truck and Railroad Tonnage Between Columbus and Selected Ohio Cities, vol. 8, No. 5, July, 1927
*Statistical Analysis of Highway-Railroad Grade-Crossing Accidents in 1926, by A. B. Fletcher and W. G. Eliot, 3d., vol. 8, No. 11, January, 1928.
*Highway Transportation an Important Factor in Marketing Fruits and Vegetables, vol. 9, No. 4, June, 1928.
*Truck is a Big Factor in Fruit Transport, vol. 9, No. 6, August, 1928.
*Highway Traffic Analysis Methods and Results, by L. E. Peabody, vol. 10, No. 1, March, 1929.

HIGHWAY BRIDGE DESIGN

Standard Specifications for Highway Bridges and Incidental Structures, published by American Association of State Highway Officials, National Press Building, Washington, D. C. (Available only by purchase from publishers, $\$ 1.25$.)

Department Bulletin 1486 D, Highway Bridge Location. (Free supply available.)
Technical Bulletin 55 T, Highway Bridge Surveys. (Free supply available.)
Technical Bulletin 265 T, Electrical equipment on Movable Bridges. 35c. (Free supply available.)
Reprints from Journal of Agricultural Research. (Free supply available) :

Tests of Three Large-Sized Reinforced-Concrete Slabs under Concentrated Loading. Vol. 6, No. 6, D-8.
Tests of a Large-Sized Reinforced-Concrete Slab Subjected to Eccentric Concentrated Loads. Vol. 11, No. 10, D-15.

REPORTS IN PUBLIC ROADS

*Earth Pressures Against Abutment Walls Measured with Soil Pressure Cells, by J. V. McNary, Vol. 6, No. 5, July, 1925.

* Progress Report of Skew Arch Tests, by George W. Davis, Vol. 6, No. 9, November, 1925.
*Effective Width of Concrete Bridge Slabs Supporting Concentrated Loads, by E. F. Kelley, Vol. 7, No. 1, March, 1926
*Concrete Compared with Timber for Highway Bridge Floors, by O. L. Grover, Vol. 7, No. 8, October, 1926.
* Analysis of Concrete Arches, by W. P. Linton and C. D. Geisler. Part I, vol. 8, No. 4, June, 1927; Part II, vol. 8, No. 5, July, 1927. Available as a reprint from Public Roads under a single cover, 10 c .
*Tests of the Delaware River Bridge Floor Slabs, by George W. Davis, vol. 8, No. 8, October, 1927.
*Foundation Pile-Head Bond and Anchorage Tests, by George W. Davis, vol. 9, No. 9, November, 1928.
*Loading Tests on a Reinforced Concrete Arch-Report on Tests Made on Yadkin River Bridge in North Carolina, by Albin L. Gemeny and W. F. Hunter, vol. 9, No. 10, December, 1928.
*Model Analysis of a Reinforced Concrete Arch-Report on a Cooperative Study by the Johns Hopkins University and the United States Bureau of Public Roads in Connection with Yadkin River Bridge Tests, by J. T. Thompson, vol. 9, No. 11, January, 1929.
*Freyssinet Method of Concrete Arch Construction, by Albin L. Gemeny, vol. 10, No. 8, October, 1929.
*Computation of stresses in Bridge Slabs Due to Wheel Loads, by Dr. H. M. Westergaard, vol. 11, No. 1, March, 1930.
*The Effect of Materials and Methods of Placing on the Strength and Other Properties of Concrete Bridge Floor Slabs, by L. W. Teller and George W. Davis, vol. 12, No. 10, December, 1931.

FLOW OF WATER IN RELATION TO HIGHWAY STRUCTURES

REPORTS IN PUBLIC ROADS

*Flow of Water Through Pipe Culverts, by D. L. Yarnell, Sherman S. Woodward, and Floyd A. Nagler, vol. 5, No. 1, March, 1924. (Supply exhausted.)
*General Formula for Waterways, by C. S. Jarvis, vol. 6, No. 12, February, 1926.
*Retards in 'Stream Control, by John R. Chamberlain, vol. 7, No. 3, May 1926. (Supply exhausted.)
*Maximum Stream Flow-Formula for General Use, by C. E. Grunsky, vol. 7, No. 4, June 1926. (Supply exhausted.)
*Flow of Water Through Culverts, vol. 7, No. 7, September, 1926. (Supply exhausted.)

[^3]*Some Aspects of Flow of Water Around Bends and Bridge Piers, by D. L. Yarnell, vol. 10, No. 2, April, 1929.
*Flow of Flood Water over Railway and Highway Embankments, by D. L. Yarnell and Floyd A. Nagler, vol. 11, No. 2, April, 1930.

LABORATORY METHODS

Tentative Standard Specifications for Highway Materials and Methods of Sampling and Testing, published by American Association of State Highway Officials, National Press Building, Washington, D. C. These specifications have been approved for use on Federal-aid work. (Available only by purchase from publishers, \$1.50.)
*Department Bulletin 347 C. Methods for the Determination of the Physical Properties of Road-Building Rock, 10c.

REPORTS IN PUBLIC ROADS

* Design of a Constant Temperature Moist Closet, by Wallace F. Purrington, vol. 7, No. 12, February, 1927.
*Relation between sodium sulphate soundness test and absorption of sedimentary rock, by D. O. Woolf, vol. 8, No. 10, December, 1927.
*Cantilever testing apparatus for mortar beams, by D. O. Woolf, vol. 9, No. 3, May, 1928.
*New moist closet and storage tank apparatus, by D. O. Woolf, vol. 9, No. 4, June, 1928.
*Relation between the standard abrasion tests for stone and gravel, by D. O. Woolf, vol. 9, No. 7, September, 1928.
* Accuracy of specific gravity and absorption tests of coarse aggregate investigated, by D. O. Woolf, vol. 10, No. 8, October, 1929.
* Methods for the measurement of water for cement briquet tests, vol. 11, No. 9, November, 1930.
Effect of Type of Breaking Machine on the Modulus of Rupture of 6 by 6 Inch Concrete Beams, by O. K. Normann, vol. 12, No. 12, February, 1932.

ROADSIDE IMPROVEMENT

REPORTS IN PUBLIC ROADS

*Need for Tree Planting Along the Public Highways, by F. W. Besley, vol. 4, No. 5, September, 1921. (Supply exhausted.)
*How Massachusetts is Improving Her Roadsides, by R. E. Tribou, vol. 9, No. 2, April, 1928.
*Parkway features of interest to the highway engineer, by E. W. James, vol. 10, No. 2, April, 1929.
*Roadside plan and progress in Massachusetts, by James H. Taylor, vol. 10, No. 6, August, 1929.
*Drinking fountains along Oregon highways, by T. M. Davis. vol. 11, No. 2, April, 1930.

MISCELLANEOUS

Miscellaneous Publication 76 M . The results of Physical Tests of Road-Building Rock, 25c. (Free supply available.)
*Department Bulletin 583 D. Report on Experimental Convict Road Camp, Fulton County, Georgia, 25c.

REPORTS IN PUBLIC ROADS

*Cooperative Survey of Corrugated Metal Culverts on the Austin-San Antonio Post Road, by E. F. Kelley, vol. 11, No. 9, November, 1930.
Where the Highway Dollar Goes, by J. L. Harrison, vol. 13, No. 2, April, 1932.
UNITED STATES DEPARTMENT OF AGRICULTURE
CURRENT STATUS OF FEDERAL-AID ROAD CONSTRUCTION
APRIL 30,1932

[^0]: - Two 9-7-9-inch sections, 9 feet wide.

[^1]: * A vailable only by purchase from Superintendent of Documents.

[^2]: A vailable only by purchase from sumerintendent of Documents.

[^3]: * Available only by purchase from Superintendent of Documents.

