

VOL. 9, NO. 5

MAKING CYLINDERS AND SLUMP TEST IN STUDIES OF MIXING TIME

U. S. GOVERNMENT PRINTING OFFICE: 1928

PUBLIC ROADS

U. S. DEPARTMENT OF AGRICULTURE

BUREAU OF PUBLIC ROADS

CERTIFICATE: By direction of the Secretary of Agriculture, the matter contained herein is published as administrative information and is required for the proper transaction of the public business

The reports of research published in this magazine are necessarily qualified by the conditions of the tests from which the data are obtained. Whenever it is deemed possible to do so, generalizations are drawn from the results of the tests; and, unless this is done, the conclusions formulated must be considered as specifically pertinent only to the described conditions

VOL. 9, NO. 5

JULY, 1928

R. E. ROYALL, Editor

TABLE OF CONTENTS

The	Effect of	the	Lengt	h of	the I	Mixing	Perio	d on	the Q	uality	of Co	ncrete	e Mixed	d in	Stand	lard	Page
	Pavers		•			•				•		0		0		• •	93
Lip	Curb for	Cond	crete	Pave	ment	s.	•										112

THE U. S. BUREAU OF PUBLIC ROADS Willard Building, Washington, D. C.

REGIONAL HEADQUARTERS Mark Sheldon Building, San Francisco, Calif.

DISTRICT OFFICES

DISTRICT No. 1, Oregon, Washington, and Montana. Box 3900, Portland, Oreg.

DISTRICT No. 2, California, Arizona, and Nevada. Mark Sheldon Building, San Francisco, Calif.

DISTRICT No. 3, Colorado, New Mexico, and Wyoming. 301 Customhouse Building, Denver, Colo.

DISTRICT No. 4, Minnesota, North Dakota, South Dakota, and Wisconsin. 410 Hamm Building, St. Paul, Minn.

DISTRICT No. 5, Iowa, Kansas, Missouri, and Nebraska. 8th Floor, Saunders-Kennedy Bldg., Omaha, Nebr.

DISTRICT No. 6, Arkansas, Oklahoma, and Texas. 1912 Fort Worth National Bank Building, Fort Worth, Tex. DISTRICT No. 7, Illinois, Indiana, Kentucky, and Michigan. South Chicago Post Office Building, Chicago, Ill.

DISTRICT No. 8, Louisiana, Alabama, Georgia, Florida, Mississippi, South Carolina, and Tennessee.

Box J, Montgomery, Ala.

DISTRICT No. 9, Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, and Vermont. Federal Building, Troy, N. Y.

DISTRICT No. 10, Delaware, Maryland, North Carolina, Ohio, Pennsylvania, Virginia, and West Virginia.

Willard Building, Washington, D. C.

DISTRICT No. 11, Alaska.

Goldstein Building, Juneau, Alaska.

DISTRICT No. 12, Idaho and Utah. Fred J. Kiesel Building, Ogden, Utah

Owing to the necessarily limited edition of this publication it will be impossible to distribute it free to any persons or institutions other than State and county officials actually engaged in planning or constructing public highways, instructors in highway engineering, periodicals upon an exchange basis, and Members of both Houses of Congress. At the present time names can be added to the free list only as vacancies occur. Others desiring to obtain PUBLIC ROADS can do so by sending 10 cents for a single number or \$1 per year to the Superintendent of Documents, U. S. Government Printing Office, Washington, D. C.

THE EFFECT OF THE LENGTH OF THE MIXING PERIOD ON THE QUALITY OF THE CONCRETE MIXED IN STANDARD PAVERS

BY THE DIVISION OF MANAGEMENT, BUREAU OF PUBLIC ROADS 1

Reported by J. L. HARRISON, Highway Engineer

RECENT survey of the specifications governing the mixing of concrete for highway pavement indicates that 33 States require a one-minute mix, 6 a one and one-fourth minute mix, and 9 a one and one-half minute mix. Specifications are constantly being changed and a summary of this kind may be in error before it is published. This is mentioned only to indicate the lack of standardization now prevailing.

It may be admitted at once that absolute standardization of highway practice in all of its elements is neither practicable nor desirable. Conditions vary from place to place and as a general rule are not so uniform over an area as large as the United States as to justify the adoption of uniform requirements. But in respect to the mixing time of concrete a somewhat different condition prevails. The same kinds of mixers are used from one coast to the other and their mixing action is not subject to regional variation. Cement is a relatively uniform product, and water outstandingly so. Aggregates differ considerably and are used in different proportions, but there is very little reason to suppose that the variations permitted have any important effect on the physical processes involved. These and other minor considerations suggest that the commonly accepted reason for varying specified practices from region to region—namely, that variations in the effect of mixing periods of from 45 seconds to 90 controlling conditions compel these variations—does seconds on quality, it may be well to repeat that the not properly apply here.

EFFECT OF MIXING TIME UPON QUALITY OF CONCRETE ONLY FIRST PHASE OF INVESTIGATION

The required mixing period establishes a limit on the amount of concrete which can be placed during any given period of time. Previous studies have shown that with a mixing period of one and one-half minutes, only 34 batches can be placed per hour, which is 340 batches per 10-hour day; or, for a standard 18-foot Maricopa section, about 910 lineal feet of pavement if a 6-bag batch $(1:2:3\frac{1}{2} \text{ mix})$ is used.² If a one-minute mixing period is specified, 48 batches can be placed per hour which, under the same conditions, is about 1,290 lineal feet. If operating costs (labor, equipment operation, depreciation, etc.) run about \$400 per working day-and, while these costs differ somewhat from place to place and from job to job, this figure is as fair as any, the labor and equipment costs, overhead, etc., incident to laying concrete pavement can not in the first case be cut much under 22 cents a square yard, while in the second case, they can be forced down to about 15 cents-a saving which runs into large figures when the amount of pavement laid annually under a long-time mixing requirement is considered.

The ultimate objective of the investigation of which this paper is a partial report is the more accurate determination of the effect of variation in the mixing time upon the cost of concrete production. At the outset, however, it has been recognized that requirements of strength and uniformity probably impose a definite limit below which it is not safe to reduce the mixing time in order to obtain further reduction of cost. Hence, as a first phase of the investigation, a study has been made of the effect of several mixing periods upon the quality of the resulting concrete product.

In a general way research has indicated that there is a difference between the strength of concrete mixed for very short periods and that mixed a long time. This investigation is not designed to attack this conclusion and does not set it aside. Rather, a situation is faced in which at the moment our interest is neither in the effect of very short-time mixing, because modern pavers can not be served fast enough to make any real use of a mixing period shorter than 45 seconds, nor in mixing periods beyond about 90 seconds, because these already have been generally abandoned as obviously too expensive to justify whatever benefit to quality may result from their use.

But, while the question directly involved is as to the seconds on quality, it may be well to repeat that the controlling purpose of the investigation has been to determine whether the cost of concrete pavements can be reduced through modifications in the prevailing specifications as to the time concrete must be mixed. In other words, this is not to be considered as a research on the general relationship existing between mixing time and strength. No effort has been made to extend the scope of the investigation much beyond the rather narrow range of time limits which may be applicable in the paving field, or to examine ranges in water content not appropriately used in this field.

On account of the deliberately limited scope of the investigation this report is not to be accepted as justifying a shortened mixing period when types or sizes of mixers other than the standard 21E and 27E pavers are used; nor do the conclusions which are drawn apply to concrete of other mixes (including water) than those in general use in highway work. The writer does not know that the results do not apply to these other conditions. These simply have not been examined, and conclusions can not be drawn.

THE EFFECT OF MIXING TIME ON PRODUCTION

Under current specifications, as commonly enforced, the minimum time required per batch for various mixing periods and the number of batches that could be produced in an hour if the rates shown could be maintained without interruption or loss of time, are given in Table 1. To produce concrete at the rates

¹ This study was made possible through the hearty cooperation of the several State highway departments and the contractors doing the construction. Among the field men of the bureau engaged on the work were A. C. Taylor, C. F. Rogers, R. E. Tribou, W. A. Blanchette, T. E. Kesting, F. R. Hall, F. W. Pierce, Jr., and T. C. Thee.
¹ HARRISON, J. L. EFFICIENCY IN CONCRETE ROAD CONSTRUCTION, Public Roads, vol. 6, Nos. 9, 10, 11, 12, and vol. 7, No. 1.

²¹³⁻²⁸⁻¹

shown for the several mixing periods it must be assumed that there is no loss of time between batches, and that the mixer is operated continuously for the full length of the working day. In practice, such full production is seldom if ever attained; and production averaging 70 per cent of the theoretical maximum would ordinarily be considered quite satisfactory.

TABLE 1.-Minimum time required per batch for various mixing periods

Specified mixing time	1½	1 ¹ / ₄	1	³ ⁄ ₄
	minutes	minutes	minute	minute
To raise skip Charging lag (to permit all material to run	Seconds 10	Seconds 10	Seconds 10	Seconds 10
into drum) Actual mixing time, all other operations fully overlapped	5 90	5 75	5 60	5 45
Total time required	105	90	75	60
Batches to be had per hour	34	40	48	60

Whether the mixing period be one and one-half minutes or three-fourths minute, therefore, it must be recognized at the outset that the full production corresponding to the two periods can not be hoped for. From a practical standpoint the important questions are whether the reduction in the mixing period can be utilized to increase production and how fully it can be utilized. These are questions which are being studied in another phase of the current investigation.

It must be admitted that it is much easier to organize a job to serve the mixer fully for a one and one-half minute mix than it is to serve a three-fourths minute mix. Still, records collected by the bureau's representatives on 19 jobs in a State where a one and one-fourth minute mix is required, show an average hourly output of only 22 batches during periods when work is under way, while an average hourly production of over 40 batches is rather common in another section where a one-minute mix is permitted, and averages of over 45 batches per hour are known to have been sustained over considerable periods of time. This suggests that there is a tendency for the actual rate of production to fall below the maximum permissible rate whether the latter be relatively low or high, and that the actual rate rises as the permissible rate is raised. If this be true, then the questions that remain to be determined are (1) to what minimum period is it possible to reduce the mixing time and economically utilize the time saved to increase production, and (2) what is the minimum period of mixing that will produce a concrete of satisfactory strength and uniformity. The first of the questions is being attacked in the other phase of the investigation, previously mentioned; the second is the subject of this report.

STUDIES COVER A WIDE SCOPE

In collecting the data reported in this article studies have been made on projects in Michigan, Missouri, Kansas, Tennessee, Texas, South Carolina, and Oklahoma. Over 2,000 cylinders have been broken, records on some 1,500 of which are reported in this article, together with a considerable number of beams and cores.

All of this work has been done in cooperation with the State highway departments of the States where

suggestions of the State engineers. Numerous contractors have cheerfully furnished concrete for the cylinders and the beams without charge, and often have contributed labor and in other ways assisted in making this study a success.

The prevailing opinion as to the importance of mixing time is based almost entirely on determinations of compressive strength which is the most generally accepted criterion of quality, and it has been freely used in this series of studies. To have done otherwise would have raised a reasonable question as to what the results mean in terms known and accepted by the industry generally.

The use of cores taken from the finished work has some advantages over the use of cylinders as a means of determining what strength is actually being obtained. Where it has been possible to do so, cores have been taken as a check on the results obtained from the cylinders.

The modulus of rupture has recently come into some use as a means of studying quality. While it is by no means well established as such, or as well standardized as the compression test, it has been deemed wise to use both cylinders and beams on a few of the jobs where studies were conducted, the purpose being to learn whether transverse bending tests would show results clearly different from those obtained by using standard compression tests.

The general plan of this study follows the usual practice in studies of this sort, in that it is a series of determinations of compressive strength of molded cylinders, but the compressive-strength data which has been secured has been amplified and confirmed by tests on cores and on beams as often as field conditions permitted. It should, therefore, be somewhat more conclusive than a study based on only one of these methods of determining quality.

PROCEDURE IN FIELD STUDIES DESCRIBED

The details of these studies have varied a little from job to job, these variations having been dictated in part by the information gathered as a result of the earlier tests, and in part by the preferences of the State authorities whose cooperation was secured. On the first projects studied, cylinders were taken for 30second, 45-second, 60-second, 90-second, 120-second and 180-second mixes. On later jobs the work was limited to 45-second, 60-second, and 90-second mixes. On occasional jobs a 75-second mix was used instead of or in addition to a 90-second mix.

As a general rule the full batch was dumped on the subgrade at the end of the mixing period, material for one cylinder and for a slump test being taken from about the center of the batch. In a few instances more than one cylinder was taken from the batch. Generally no objection has been raised to the use of a limited number of short-time batches in the finished road but in a few cases the State authorities preferred not to do this, and in these cases the effect of short-time mixing (30 and 45 seconds) was determined by discharging only a portion of the batch from which a fair sample was selected. On two jobs (Michigan Federal-aid projects 187A and 187B) a full series of cylinders (one-half minute to three minutes) was taken each day from a single batch, a sample of the concrete being discharged into a galvanized-iron bucket after each mixing period studies were made and in harmony with the technical in the series, the balance of the material being retained

in the drum and discharged after the three-minute of Missouri, cylinders were broken in the university sample had been taken. While this sort of sampling laboratory by one of the bureau's engineers. All test is hardly to be recommended, no significant variations in results appear to have resulted from it or from any of the other differences in the manner of taking samples.

Cylinders were prepared as required by the A.S.T.M. standards and, except as otherwise noted, were cured in moist earth until shipped to the laboratory. They were broken, as were all cores, under the practices prevailing in the laboratories to which they were sent, vals. The operation of the water tank was checked except in the case of work done in Missouri, where, from time to time and the accuracy of the water through the courtesy of authorities of the University gauges checked as often as conditions required.

cylinders and beams were broken at 28 days except in a few instances where they were broken at 27 or 29 days.

Slump tests were made regularly as were moisture determinations and analyses of the aggregates used. A record was kept of the quality of the cement. The number of revolutions per minute at which the mixer drum was operated was determined at frequent inter-

ORGANIZATION ON ONE OF THE JOBS STUDIED. PRACTICALLY ALL OF THE JOBS STUDIED WERE WELL ORGAN-IZED AND EQUIPPED

ABLE 2	2Data	on cylind	lers taken o	on Fee	deral-aid	project	136X	in Kau	fman (County, !	Tex.
--------	-------	-----------	--------------	--------	-----------	---------	------	--------	--------	-----------	------

30-se	econd mi	x	45	-second 1	nix	60-	-second 1	nix	90	-second	mix	120-second mix			180-second mix		
Slump	W C	Com- pressive strength	Slump	W C	Com- pressive strength	Slump	W C	Com- pressive strength	Slump	W C	Com- pressive strength	Slump	WC	Com- pressive strength	Slump	W C	Com- pressive strength
Inches 1 1 2 1 1 1 1	0. 67 71 63 63 62 67 .71	Lbs. per 8q. in. 5, 470 5, 720 5, 880 6, 220 5, 000 5, 470 5, 720	Inches 134 134 234 434 134 134 134 134 134	0. 69 . 66 . 69 . 74 . 75 . 55 . 55 . 55	Lbs. per sq. in. 5,620 6,670 6,430 5,470 5,775 6,575 6,110 6,820	$ \begin{array}{c} Inches \\ 11/8 \\ 11/4 \\ 12 \\ 22 \\ 21/4 \\ 11/2 \\ 22/4 \\ 11/2 \\ 23/4 \\ 11/2 \\ 24/4 \\ 22 \\ 11/2 $	$\begin{array}{c} 0.\ 66\\ .\ 667\\ .\ 67\\ .\ 67\\ .\ 67\\ .\ 66\\ .\ 66\\ .\ 66\\ .\ 66\\ .\ 66\\ .\ 57\\ .\ 57\\ .\ 57\\ .\ 57\\ \end{array}$	$\begin{array}{c} Lbs. \ per\\ sq. \ in.\\ 5, 880\\ 6, 980\\ 5, 310\\ 5, 520\\ 6, 550\\ 6, 280\\ 6, 670\\ 6, 280\\ 6, 670\\ 6, 210\\ 5, 870\\ 5, 770\\ 5, 870\\ 5, 320\\ $	Inches 21/4 2 2 2 1 1/2 1 1/2 1 1/2 1 1/2 1 1/2	0.68 .68 .65 .66 .58 .58 .58	Lbs. per sq. in. 5, 660 5, 520 6, 360 6, 050 6, 220 6, 310 6, 565 6, 420	Inches 1 ³ / ₄ 2 2 ³ / ₄ 1 ³ / ₂ 1 ³ / ₂	0. 66 .63 .68 .68 .57 .57 .57 .57	Lbs. per sq. in. 5, 480 6, 125 6, 550 4, 015 4, 820 4, 820 5, 670 4, 485 	Inches 114 114 214 214 214 214 214 22 2 2	0.71 .71 .68 .68 .68 .66 .66 .66 .66	Lbs. per sq. in. 6, 410 6, 460 5, 570 6, 180
Av. 1.25	. 664	5, 641	1.25	. 639	6, 172	1.54	, 545	5, 867	1.39	. 626	6, 118	1.36	. 618	5, 168	1.94	, 68	6, 378

[Mix 1:2:3.4; gravel coarse aggregate; Koehring mixer in good condition]

¹ Water-cement ratio controlled at low point for test purposes.

5,5,5,5,5,5,5,6,6,6,6,5,6

DATA SECURED INDICATES STRENGTH NOT INCREASED BY LONGER MIXING PERIODS

The tables which follow, together with the comments on them, give most of the results obtained during the study and discuss the manner in which these tables bear on the question of appropriate mixing time.

MAKING SLUMP TEST AND CASTING BEAMS ON OKLAHOMA FEDERAL-AID PROJECT 148E

The cylinders and the cores recorded in Tables 2 and 3 were taken from Texas Federal-aid project 136, Kaufman County, Tex., which was constructed under the direct supervision of S. J. Treadaway, county engineer, through whose courteous assistance this work was made possible. The high strength as well as the unusual uniformity of the results deserve special note. Except as otherwise noted, the cylinders taken on this job represent the normal run of concrete, no special precautions having been taken to insure a more uniform water content than was in ordinary use. Each cylinder represents a separate batch of concrete. Table 3 gives the strength of a group of cores cut from this pavement. The crushing strength of these cores entirely confirms the high quality of this concrete. The tendency of long-time mixing to slightly increase the slump should be noted.

Table 4 gives the breaking strengths of a number of cylinders taken by the regular inspector, all of which were mixed one minute. These, too, confirm the high quality of this work.

There is little to be said in explanation of the results shown by this series of cylinders. The average strength of cylinders mixed one-half minute is a little less than 10 per cent lower than the strength of those mixed three-fourths minute. The average strength of the cylinders taken from batches mixed three-fourths minute is higher than the average strength of any other group except those mixed three minutes. However, there is no significance in these differences as the three-minute cylinders average only about 3 per cent stronger than the 45-second cylinders, a difference so much less than the margin of error which must be allowed in work of this kind that it must be ignored unless it can be shown to persist through a long series of tests.

stronger than those taken from the three-minute standard tests, depended on other factors.

TABLE 3.—Results of compressive-strength tests made on cores taken from Federal-aid project 136 in Kaufman County, Tex.—Cores taken at ages varying from 28 to 55 days and tested within a few days after being drilled

45- second mix	60- second mix	90- second mix	120- second mix	180- second mix
Lbs. per sq. in.	Lbs. per sq. in.	Lbs. per sq. in.	Lbs. per sq. in.	Lbs. per sq. in.
5, 670 6, 080 6, 240	¹ 4, 740 6, 250 1 3, 790	7, 280 5, 690	6, 320 5, 800 6, 590	6, 210 5, 550
	6, 160 6, 090 5, 900			
	5,860 5,800 5,700			
	5, 430 5, 700			
Av. 5997	5, 877	6, 485	6, 237	5, 880

¹ Probably damaged; omitted from average.

 TABLE 4.—Compressive strengths of cylinders taken by regular inspector on Federal-aid project 136 in Kaufman County, Tex.
 [All batches were mixed 1 minute]

	(In pounds	per square inch)	
830	5,450	6,270	5, 530
840	5,750	6, 680	5,950
490	5,620	6, 440	5, 610
470	6,300	6,810	5,800
700	6.750	6, 230	5 600
320	6.560	6, 630	6 150
300	6,000	6, 280	5 845
900	6,860	5 480	6 140
960	5 730	6 450	6,500
210	4 990	6 150	6 540
330	4 870	5 750	5 620
530	5 140	6,500	6 035
020	6 360	5 830	0,000
540	6 720	5 300	A TT 5 000
630	6 690	4 970	11 1.0, 000
000	0,000	4,010	

batches. As in the case of the cylinders, this difference is due to the wide difference between the maximum and minimum strength that is usually found in a series of cylinders or cores. A few more than the ordinary proportion of good or bad specimens will yield an average that is out of line. Taking this fact into consideration it does not appear that there is any significant difference in the strengths obtained under the various mixing times from 45 seconds up, either as indicated by the cylinders or by the cores.

Another matter to be noted is that the uniformity of the results has not been increased by the longer mixing. The maximum variation in the strength of 45-second cylinders is about 1,350 pounds. The maximum variation in the strength of the three-minute cylinders is 1,360 pounds. This condition persists throughout this study.

The matter of most importance is that concrete of the highest quality-averaging more than twice the strength commonly called for in specifications governing this work-was obtained with a mixing time of 45 seconds and that concrete having a strength of 5,600 pounds and with a uniformity in test results equal to that secured by mixing the batch three minutes was mixed in 30 seconds. Time in this work was read from the instant the timer was set with no allowance for lag in getting materials into the drum. The mixing time, as used here, is, therefore, about two seconds less than the time required as specifications are commonly interpreted. This series of cylinders and cores suggests that mixing in excess of threefourths minute, was not a factor in obtaining either strength or uniformity in test results and that the The cores taken from the 45-second batches were strength, at least as far as it can be determined by

NO DIFFERENCE IN RESULTS SECURED WITH STANDARD 21E AND 27E MIXERS

Table 5 gives the strength of a few cylinders obtained from a job in Bowie County, Tex., which was constructed under the immediate supervision of D. K. Caldwell, consulting engineer.

 TABLE 5.—Results of compression tests on cylinders from Texas

 Federal-aid project 415C in Bowie County, all batches mixed
 1 minute

[Mix 1:2:31/2; gravel coarse aggregate; Koehring mixer in good condition and new Ransome mixer]

Slump	Compres- sive strength— Koehring mixer	Compres- sive strength— Ransome mixer	Slump	Compres- sive strength— Koehring mixer	Compres- sive strength- Ransome mixer
$Inches \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	Lbs. per sq. in. 6, 370 6, 380 6, 790 6, 000 6, 010	Lbs. per sq. in. 6, 450 6, 060 5, 510 4, 750 5, 440 5, 820	Inches 1 ³ / ₄ 2 2 3 3 3 Average	Lbs. per sq. in. 5,580 	Lbs. per sq. in. 7,000 7,620 5,875 6,490 6,101

¹ Notlincluded in average because of high water content.

6-bag mixers used on Texas project 415C. In this case the average strength of concrete mixed 45 seconds was higher than that mixed a longer or a shorter period. There was some difference in the materials used on this and the preceding job but the cement tested as high on this job as on the other. The water content as determined in the field was low. It will also be noted

DRYING OUT A BATCH OF FRESH CONCRETE TO CHECK PROPORTIONS AND WATER-CEMENT RATIO

TABLE	6.—Data on	cylinders	taken	onF	ederal-aid	project	479	in	Bowie	County,	Tex
-------	------------	-----------	-------	-----	------------	---------	-----	----	-------	---------	-----

[Mix 1:2:31/2; gravel coarse aggregate	Koehring and Ransome	mixers in good condition]
--	----------------------	---------------------------

30-s	econd m	ix	45	-second :	mix	60	-second	mix	90	second	mix	12)-second	mix
Slump	W C	Com- pressive strength	Slump	W Ĉ	Com- pressive strength	Slump	W C	Com- pressive strength	Slump	w	Com- pressive strength	Slump	W C	Com- pressive strength
Inches 1½ 3 ¼ 1 1¼ 3¼ 1¼ 1¼ 1¼ 1¼ ½	$\begin{array}{c} 0.\ 414\\ .\ 469\\ .\ 462\\ .\ 498\\ .\ 478\\ .\ 484\\ .\ 480\\ .\ 477\\ .\ 477\\ .\ 465\end{array}$	Lbs. per sq. in. 3, 420 3, 280 4, 480 4, 240 4, 920 5, 200 3, 920 4, 450 3, 070 4, 600	Inches 1^{3}_{4} 1^{1}_{2} 2^{1}_{4} 1^{1}_{4} 1^{1}_{4} 2^{1}_{4} 3^{1}_{4} 2^{1}_{4} 1^{1}_{4}	0. 649 . 649 . 677 . 605 . 617 . 537 . 632 . 550 . 610 . 572	Lbs. per sq. in. 4, 150 4, 380 4, 400 4, 510 4, 330 4, 800 5, 010 4, 660 4, 560 4, 010	Inches $1\frac{1}{2}$ $1\frac{1}{2}$ $1\frac{3}{4}$ 2 $1\frac{3}{4}$ 2 $1\frac{1}{2}$ $2\frac{1}{2}$ $2\frac{1}{4}$	$\begin{array}{c} 0.\ 402\\ .\ 425\\ .\ 369\\ .\ 515\\ .\ 500\\ .\ 468\\ .\ 468\\ .\ 515\\ .\ 491\\ .\ 515\end{array}$	Lbs. per sq. in. 4, 830 4, 950 4, 680 3, 440 3, 750 3, 650 3, 640 3, 920 1 2, 600 3, 950	Inches 2 3 ¹ / ₂ 2 ³ / ₄ 3 ⁴ 1 ³ / ₄ 2 ¹ / ₂ 2 2 2	$\begin{array}{c} 0.560\\ .618\\ .591\\ .612\\ .537\\ .543\\ .595\\ .566\\ .582\\ .617\end{array}$	Lbs. per sq. in. 4, 790 3, 920 4, 590 4, 100 4, 920 4, 560 4, 600 4, 910 3, 860 4, 516	Inches 2 34 114 1 2 114 114 114 114	0. 532 . 534 . 503 . 459 . 557 . 523 . 437 . 503	Lbs. per sq. in. 3, 360 4, 750 3, 440 4, 850 3, 630 3, 870 3, 820 3, 090
Av. 1. 17	. 470	4, 158	1.62	. 610	4, 481	1.72	. 467	4, 090	2.20	. 582	4, 477	1.34	. 506	3, 851

¹ Omitted from average.

As in the Kaufman County work, the high strength that the water-cement ratio as determined varied quite of the concrete and the uniformity of test results deserve special notice. No effort was made to vary the the water-cement ratio. The results of the field dewater content of the batches from which cylinders were taken from that used in normal operation. The significant fact in this series of tests is that two mixers were used. The job was started with a 5-bag machine of the same type as used on the Kaufman County job which was replaced by a new 6-bag paver of a different make. The data secured show no material difference in the efficiency with which these mixers operate. It has not been possible to find any significant difference in the efficiency with which the standard 21E and 27E pavers of the different recognized makes mix concrete, once the materials are in the drum. There is a little difference in the rate at which the materials are fed into the drum and in the case of the older models of one or two of the standard pavers, the drum is charged so slowly that this fact must be taken into consideration in determining the actual mixing time.

another job where the concrete was mixed by the same production standpoint.

a little and that the slump does not always agree with terminations of water content on this project are published in spite of the fact that they vary a good deal and in some instances are rather low, because they show the kind of variations almost certain to be encountered on a paving job and the difficulty which is faced in securing uniform water content and uniform concrete. The inspection on this job was far above average, the superintendent for the contractor, a man of outstanding ability, and the contractor, himself an engineer, a man whose first purpose appeared at all times to be the delivery of the best quality of work engineering skill could produce. The bureau's work on this project was done by the same men who secured the data given in Tables 2, 18, and 21. These facts appear to warrant the statement that the control of the major factors affecting strength requires more study in order to devise methods of construction that protect strength and uni-Table 6 gives results secured from cylinders taken on formity and at the same time are practical from the

SLOW CHARGING OF MIXER REFLECTED IN RESULTS

Table 7 gives the strength of a number of cylinders taken on another job where the conditions prevailing were quite similar to conditions on the job from which the cylinders listed in Table 6 were taken. In this case the mixer-an old 5-bag machine-was about worn out. The machine charged so slowly-often requiring 20 seconds or more for the complete discharge of the skip—that about 15 seconds should be deducted from the mixing time as recorded to make the results directly comparable with those secured on other jobs. Here, again, it is apparent that 45 seconds of actual mixing on any paving job, the loss of strength as between a

is sufficient to develop about all of the strength the mix will produce.

In general, the mixers which have been studied developed practically the full strength of the concrete within 45 seconds after the skip reaches full vertical position-if the charging is slower than normal, that is, if emptying the skip actually takes much over five seconds-this has the effect of reducing the mixing time and, if an arbitrary 45-second mixing period is in use, may have a small adverse effect on strength. It may be well to note, however, that even in this case where the mixer was one of the most dilapidated found

TABLE 7.—Data on cylinders taken on Federal-aid project 475 in Bowie County, Tex.

[Mix 1: 2: 3¹/₂; gravel coarse aggregate; Foote mixer in poor condition]

45-second	mix	60-seco	nd mix	75-seco	nd mix	90-seco	nd mix	120-seco	ond mix	180-second mix		
Slump	Com- pressive strength	e Slump Com- pressive strength		Slump	Slump Com- pressive strength		Com- pressive strength	Slump	Com- pressive strength	Slump	Com- pressive strength	
$Inches \\ 1, 25 \\ 1, 25 \\ .50 \\ .50 \\ 2, 00 \\ 2, 00 \\ 2, 00 \\ .50$	Lbs. per sq. ins. 4, 700 5, 330 4, 700 5, 080 4, 910 4, 210	Inches 1, 50 1, 50 2, 00 2, 00 4, 75 4, 75	Lbs. per sq. in. 5, 610 5, 450 5, 050 5, 200 3, 100 3, 950	Inches 1. 25 1. 25 2. 50 2. 50 	<i>Lbs. per</i> <i>sq. in.</i> 5, 250 5, 120 4, 410 4, 230	Inches 2, 50 2, 50 5, 00 5, 00 2, 75 2, 75	Lbs. per sq. in. 4, 520 4, 860 4, 740 4, 980 5, 160 5, 560	<i>Inches</i> 2,00 2,00 5,50 5,50 2,00 2,00	Lbs. per sq. in. 5, 490 5, 330 4, 750 4, 560 4, 950 4, 920	Inches 2, 50 2, 50 1, 50 1, 50	<i>Lbs. per</i> <i>sq. in.</i> 5, 260 5, 160 5, 110 5, 460	
Av. 1.25	4, 822	2.75	4, 727	1.88	4, 752	3.42	4, 970	3. 17	5, 000	2.00	5, 248	

TABLE 8.—Data on cylinders taken on Federal-aid project 159A in Okmulgee County, Okla.

[Mix 1:2:31/2; gravel coarse aggregate; Koering mixer in good condition]

30-sec	cond m	ix	45-	second	l mix	60-	second	l mix	75-	second	l mix	90-	second	l mix	105-second mix			120-second mix		
Slump	W C	Com- pressive strength	Slump	W C	Com- pressive strength	Slump	W C	Com- pressive strength	Slump	W C	Com- pressive strength	Slump	W C	Com- pressive strength	Slump	W C	Com- pressive strength	Slump	W C	Com- pressive strength
Inches 34 11/8 11/8 14 15 15 15 15 15 15 15 15 15 15	0.608 505 676 510 506 530 631 565 590 646	$ Lbs. per \\ sq. in. \\ 4,740 \\ 5,045 \\ 4,948 \\ 4,750 \\ 5,210 \\ 4,750 \\ 5,995 \\ 5,400 \\ 5,160 \\ -4,800 $	$Inches \\ 1 \\ 1 \\ \frac{3}{4} \\ 1 \\ \frac{1}{16} \\ \frac{9}{16} \\ 1\frac{1}{4} \\ \frac{1}{16} \\ \frac{1}{18} \\ 1\frac{1}{18} \\ 1\frac{1}{8} \\$	0,608 ,565 ,646 ,578 ,506 ,571 ,601 ,580 ,580 ,646	$\begin{array}{c} Lbs. \ per\\ sq. \ in.\\ 4, 940\\ 4, 270\\ 6, 300\\ 4, 750\\ 5, 540\\ 4, 390\\ 5, 210\\ 13, 600\\ 5, 800\\ 4, 910 \end{array}$	Inches 13/8 13/8 13/8 13/8 13/8 13/8 14/3 3/4 1 3/8 6	0. 675 . 590 . 655 . 620 . 595 . 588 . 603 . 590 . 688	$\begin{array}{c} Lbs. \ per\\ sq. \ in.\\ 4, 860\\ 5, 266\\ 4, 950\\ 4, 415\\ 4, 950\\ 4, 520\\ 5, 980\\ 5, 000\\ 5, 450\\ 3, 630\end{array}$	$[Inches]{1_{16}^{6}} \\ 1_{18}^{1} \\ 1 \\ 1_{18}^{1} \\ 1_{18}^{1} \\ 1_{18}^{38} \\ 1_{16}^{1} \\ 1_{16}^{1} \\ 1_{18}^{3} \\ 1_{16}^{1} \\ 1_{18}^{3} \\ 1_{16}^{1} \\ 1_{18}^{3} \\ 1_{16}^{1} \\ 1_{18}^{3} \\ 1_{16}^{1} \\ 1_{18}^{3} \\ 1_{16}^{1} \\ 1_{18}^{3} \\ 1_{16}^{1} \\ 1_{18}^{3} \\ 1_{16}^{1} \\ 1_{18}^{1} \\ 1$	0. 670 . 646 . 663 . 578 . 598 . 620 . 593 . 628 . 624 . 701	$\begin{array}{c} Lbs. \ per\\ sq. \ in.\\ 5, 150\\ 5, 720\\ 5, 650\\ 4, 270\\ 4, 800\\ 4, 690\\ 5, 610\\ 5, 710\\ 4, 865\\ 5, 480\end{array}$	Inches 134 112 2500 1120 1120 1120 1120 1120 1120	$\begin{array}{c} 0.\ 675\\ .\ 646\\ .\ 516\\ .\ 578\\ .\ 545\\ .\ 678\\ .\ 633\\ .\ 624\\ .\ 607\\ .\ 646\end{array}$	$\begin{array}{c} Lbs. \ per\\ sq. \ in\\ 5, 200\\ 4, 845\\ 4, 900\\ 4, 210\\ 4, 265\\ 4, 660\\ 5, 800\\ 5, 840\\ 5, 650\\ 4, 160\end{array}$	${ Inches \\ 1^{3} \\ 1 \\ 3^{4} \\ 3^{4} \\ 1 \\ 1 \\ 3 \\ \frac{15}{16} \\ 2^{7} \\ 16 \\ 2 \\ 16 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	0. 675 . 641 . 510 . 506 . 525 . 636 . 636 . 592 . 607 . 646	$\begin{array}{c} Lbs. \ per\\ sq. \ in.\\ 5, 400\\ 5, 320\\ 5, 650\\ 4, 645\\ 4, 645\\ 5, 750\\ 4, 845\\ 5, 210\\ 5, 325\\ 4, 135\\ \end{array}$	$Inches \\ 1 \\ \frac{16}{16} \\ \frac{9}{10} \\ \frac{1}{10} \\ \frac{1}{1$	0. 595 . 641 . 510 . 545 . 530 . 655 . 565 . 597 . 607 . 701	Lbs. per sq. in. 5, 330 4, 895 5, 155 5, 495 5, 000 5, 465 5, 000 4, 950 5, 650 4, 060
Av. 0.81	. 577	4, 990	0.75	. 588	5, 123	1.49	. 626	4, 902	1.66	. 632	5, 194	1.26	. 615	4, 953	1.42	. 597	5, 092	1.54	. 595	5, 100

¹ Poor break, not included in average.

TABLE 9.—Data on cylinders taken on Oklahoma State-aid project 318 in Okmulgee County, Okla,¹

[Mix 1:2:31/2; gravel coarse aggregate; Rex mixer in poor condition]

30-se	cond mi	X	45-	second	mix	60-	second	mix	75-	second	mix	90-	second	mix	120-	-second	mix	180	second	mix
Slump	W C	Com- pressive strength	Slump	WC	Com- pressive strength	Slump	W C	Com- pressive strength	Slump	W C	Com- pressive strength	Slump	W C	Com- pressive strength	Slump	W O	Com- pressive strength	Slump	$\frac{W}{C}$	Com- pressive strength
Inches 11/2 3 3/4 1/2 3 2 2 13/4 55/	$\begin{array}{c} 0.\ 670\\ .\ 615\\ .\ 613\\ .\ 615\\ .\ 646\\ .\ 598\\ \hline .\ 586\\ .\ 609\end{array}$	Lbs. per sq. in. 3, 560 3, 065 3, 380 3, 975 2, 970 4, 200 3, 129 4, 028 3, 189	Inches 1 6 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	$\begin{array}{c} 0.547 \\ .586 \\ .593 \\ .640 \\ .680 \end{array}$	Lbs. per sq. in. 2,740 2,405 2,920 4,635 4,880 3,840 4,270	$Inches \\ 1^{1}_{4} \\ 1^{1}_{4} \\ 1^{1}_{4} \\ 1^{1}_{4} \\ 1^{1}_{4} \\ 1^{1}_{78} \\ 1^{1}_{2} \\ 2$	0. 606 . 586 . 651 . 671 . 643	Lbs. per sq. in. 4, 915 4, 010 4, 710 4, 095 5, 020 4, 655 4, 626	Inches 1 3/4 $\frac{13}{16}$ 7/8 13/4 $3^{3}/4$ $1^{7}/8$ $1^{3}/4$ $1^{7}/8$ $1^{-1}/6$	0. 606 . 606 . 615 . 646 . 651 . 580 . 609	Lbs. per sq. in. 4, 560 4, 740 5, 880 6, 100 5, 087 4, 076 4, 618	Inches 1 $1^{\frac{11}{16}}_{\frac{11}{16}}_{\frac{5}{16}}_{\frac{5}{16}}_{0}_{2^{\frac{1}{6}}}_{2^{\frac{1}{6}}}_{1^{\frac{1}{4}}}$	0. 547 . 593 . 640 . 598	Lbs. per sq. in. 4, 500 5, 625 3, 274 4, 240 5, 017 4, 982 4, 786	Inches 11/4 41/2 11/8 11/8 23/4 11/8 11/8 11/8 11/8 11/8 11/8 11/8 11	0. 613 . 651 . 671 . 643 . 580	Lbs. per sq. in. 4, 880 4, 529 5, 840 4, 630 4, 630 5, 138 4, 892	Inches	0. 680	Lbs. per sq. in. 4,635
Av. 2.25	. 607	3, 499	1.75	. 609	3, 670	1. 27	. 631	4, 576	1. 53	. 616	5,009	1.48	. 593	4, 623	1. 89	. 632	4, 942	1.75	. 680	4, 635

¹ Mixer was in very poor condition due largely to concrete being allowed to harden in drum. The material was the same as used on Federal-aid project 159-A, Table 8.

reached a vertical position (that is with no allowance outstanding improvement in strength or in uniformity for mixing time lost by reason of slow charging) and of test results, even though the material was one that the longest mix specified by any State for highway paving work, (90 seconds) was less than 4 per cent. For the reasons given above data from this job is not included in the general averages.

Table 8 shows the results secured from a series of cylinders taken on Oklahoma Federal-aid project 159A and broken by the State laboratory. The specified mixing time was one and one-half minutes. The cylinders represent ordinary job conditions as no effort was made to control water content or any other factor affecting the strength of the concrete except the length of the mixing time. A low water content was used and the consistency of the concrete was as well controlled as can be expected with equipment of the present design. There is no significant improvement in strength beyond the one half minute mixing period.

HARDENED CONCRETE IN MIXER DRUM RESULTS IN SLOW MIXING

Table 9 gives results on a project where the general control was poor, the slump often too high and the inside of the drum badly coated with hardened concrete. This resulted in a slow rate of mixing and the table shows that the concrete did not reach full average strength until it had been mixed a minute or more. This confirms what has been known for a long timethat to be fully effective the interior of a mixer drum must be kept clean. Data from this job is not included in the general average.

LONG-TIME MIXING NOT REQUIRED WHERE DUST-COATED LIME-STONE USED

Gravel was used as coarse aggregate on all jobs which have been discussed. Tables 10 and 11 give results secured on jobs where crushed limestone was used as coarse aggregate. Some limestones give off considerable dust when crushed and some of this dust settles on the stone. On the job from which the cylinders shown in Table 10 were secured, the dust was unusually adhesive and it was thought that long-time mixing would yield greater strength than short-time mixing merely because the scrubbing action in the mixer would remove the dust film to a greater extent. That this did not result is apparent from the average strengths for various mixing periods. There is, as a matter of fact, less uniformity in the test data for the materials mixed three minutes than in that mixed 45 seconds. cubic foot or so of a batch in extreme cases contains However, the entire series is too short to be indicative little but coated stone. In general this condition is

45-second mix as measured from the time the skip of much else than that long mixing did not give any should have brought out any advantage a long mixing time could have.

MAKING THE SLUMP TEST

Table 11 gives results secured on a job where the dust coating on the aggregate was readily observable, but not as bad as on the job previously described. On this job two cylinders were taken from each batch sampled—one at 45 seconds and one at a longer period. Of the 26 pairs, 9 showed a higher strength after a 45second mix than after a longer mix and 3 showed strength so nearly the same that the difference may be considered negligible. For the balance, 14 pairs, the longer mix gave higher strength, indicating a slight tendency to remove some of the dust layer during the process of mixing. The one-minute mix in this case is about 10 per cent stronger than the 45-second mix, but the one-and-one-fourth-minute mix is only about 5 per cent stronger, so these differences may in both cases be due more to fortuitous breaks on the longer-time cylinders than to a consistent benefit from the longer mixing period.

There is also another factor which may have affected this series. Most mixers segregate the materials a little at the ends of the batch. For some reason the first of a batch is apt to be oversanded while the last

TABLE 10.—Data on cylinders taken on Federal-aid project 130 in Logan County, Okla. [Mix 1:2:31/2: crushed limestone coarse aggregate; Smith mixer in good condition]

30-seco	ond mix	:	45-	second	mix	60-	second	mix	75-	second	mix	90-	second	mix	120-	-second	mix	180	-second	mix
Slump	$\frac{W}{C}$	Com- pres- sive strength	Slump	$\frac{W}{C}$	Com- pres- sive strength	Slump	$\frac{W}{C}$	Com- pres- sive strength	Slump	$\frac{W}{C}$	Com- pres- sive strength	Slump	$\frac{W}{C}$	Com- pres- sive strength	Slump	$\frac{W}{C}$	Com- pres- sive strength	Slump	W C	Com- pres- sive strength
Inches 1/2 3/4 1/6 3/4 1/2 1/2	0. 60 . 67 . 71 . 69 . 78 . 71	Lbs. per sq. in. 4, 310 ‡. 850 4. 270 4. 460 4. 750 5, 215	Inches 1/2 34 5/8 34 1/2 3/4	$\begin{array}{c} 0.\ 60\\ .\ 67\\ .\ 71\\ .\ 69\\ .\ 78\\ .\ 71\end{array}$	Lbs. per sq. in. 4, 525 4, 650 4, 810 4, 320 4, 855 5, 650	Inches 3/4 1 1 3/4 1 ³ /8 1	0. 60 . 67 . 71 . 69 . 80 . 71	Lbs. per sq. in. 4, 980 5, 320 4, 745 5, 120 4, 340 4, 235	Inches ³ / ₄ 1 1 ¹ / ₄ 1 ¹ / ₄ 1 ¹ / ₈ 1	0. 60 . 71 . 71 . 69 . 78 . 71	Lbs. per sq. in, 5, 320 1 3, 060 4, 800 4, 010 1 2, 340 4, 855	Inches 3/4 1 3/4 1 7/8 7/8	$\begin{array}{c} 0.\ 60\\ .\ 67\\ .\ 71\\ .\ 69\\ .\ 78\\ .\ 71\end{array}$	Lbs. per sq. in. 4,605 4,845 4,315 3,918 4,500 4,675	Inches 1 3/8 1 ³ /4 1 7/8 1	0. 60 . 67 . 70 . 69 . 78 . 71	Lbs. per sq. in. 4,715 5,855 4,600 13,590 4,885 5,215	Inches 1 3/4 1 ¹ /8 1 ¹ /8 1 ¹ /8 3/4 1	$\begin{array}{c} 0.\ 60\\ .\ 67\\ .\ 70\\ .\ 69\\ .\ 78\\ .\ 71\end{array}$	Lbs. per sq. in. 4, 425 4, 455 5, 225 13, 665 4, 065 12, 600
Av. 0.57	. 693	4 642	0.65	. 693	4,802	0. 98	. 697	4, 790	1.02	. 700	4, 746	0. 98	. 693	4, 476	1.00	. 692	5, 054	0.96	. 692	4, 542

¹ Omitted from average because of coated aggregate.

TABLE 11.-Data on cylinders taken on Federal-aid project 229C TABLE 12.-Data on cylinders taken on Federal-aid project 448B in Boone County, Mo.

[Mix 1:2:31/2; crushed limestone coarse aggregate; Koehring mixer in good condition]

(In pounds per square inch)

30-second mix, com- pressive strength	45-sec- ond mix, com- pressive strength	60-sec- ond mix, com- pressive strength	75-sec- ond mix, com- pressive strength	90-sec- ond mix, com- pressive strength	120-sec- ond mix, com- pressive strength	180-sec- ond mix, com- pressive strength
3, 008 3, 505 2, 500 3, 540 3, 310	4, 110 4, 100 4, 909 3, 850 3, 390 3, 500 3, 700	2, 880 3, 846 2, 958 4, 020 4, 818 2, 760 4, 419	4, 305 4, 780 3, 821 3, 950 3, 800 3, 510 3, 718	4, 430 4, 200 4, 220	3, 379 4, 190 4, 070 3, 530 3, 182	3, 118 1, 940 4, 670
	3, 700 3, 800 3, 820 3, 420 3, 040 3, 300 3, 418	4, 419 4, 103 3, 184 4, 300 4, 730 3, 300 3, 758	3, 718 2, 870 3, 350 3, 598 3, 600 3, 575 4, 335			
	3, 228 4, 098 4, 257 3, 418 4, 431 3, 332 3, 828	3, 610 3, 380 4, 292 4, 184 3, 740 4, 248	4,779			
Ay. 3, 172	$\begin{array}{r} 4,531\\ 3,250\\ 3,700\\ 3,254\\ 4,640\\ \hline 3,773\\ \end{array}$	3. 817	3, 857	4, 283	3, 670	3. 243

more conspicuous where wet concrete is being mixed than with concrete of proper consistency. On this job the inspector was so strongly opposed to the use of the short-time mix that the least possible amount of material in excess of actual needs for samples was discharged from the mixer for the 30-second and 45-second specimens. As a result, the 45-second cylinders are possibly not quite as representative as where samples were taken from the center of a batch as discharged from the bucket or from a larger sample run out onto the subgrade.

TESTS ON OTHER JOBS CONFIRM RELATION BETWEEN MIXING TIME AND STRENGTH

Table 12 gives results obtained on a series of cylinders taken by the bureau's representatives on another project. In this case the 45-second concrete appears to be a little better than that mixed a longer time but it is not believed that the apparent difference of about 200 pounds in the average strength is due to anything more than a fortuitous series of breaks. The high strength of the 30-second concrete should be noted.

Table 13 gives the results of tests on cylinders, beams, and cores made by the regular inspector on another section of this same project where the regular one-minute mix was used. The beams were broken in the field and no doubt vary somewhat more than would be expected had they been handled in a well equipped laboratory. The method used was that devised by the Illinois State highway laboratory.³ The longer series of cylinders is in substantial agreement with the results obtained by the bureau's engineers as was the case in the Kaufman Co. work reported in Tables 2 and 4.

Table 14 gives the results of another series of tests. In this case the 60-second cylinders gave little higher strength than the 45-second cylinders and this is to be viewed in the same way that the reverse condition was viewed on the preceding project. In Table 14 the

in Clay County, Tex.

[Mix 1:2:31/2; gravel coarse aggregate; Koehring mixer in good condition]

(In pounds per square inch)

30-second mix, com- pressive strength	45-sec- ond mix, com- pressive strength	60-sec- ond mix, com- pressive strength	90-sec- ond mix, com- pressive strength	120-sec- ond mix, com- pressive strength
5, 520 4, 660 5, 000 5, 120 5, 160	$\begin{array}{c}1&3,550\\4,350\\5,440\\5,070\\3,910\\5,480\\5,810\\5,906\\5,240\\4,740\\5,080\\5,120\\4,080\end{array}$	$\begin{array}{c} 5,720\\ 4,200\\ 5,620\\ 5,130\\ 4,900\\ 4,630\\ 3,990\\ 4,760\\ 3,520\\ 4,790\\ 4,620\\ 4,360\\ 4,230\\ \end{array}$	4,900 3,410 5,220 4,360 4,900	4, 160 4, 700 4, 320 3, 850 4, 480
Av. 5,092	4, 948	4, 651	4, 558	4, 302

¹ Omitted from average because of flat rock in center of cylinder.

 TABLE 13.—Data on cylinders, beams and cores taken on Federal-aid project 448B in Clay County, Tex., by State inspector. All

 concrete mixed 1 minute

[Cores tested at ages of 50 to 70 days and averaging approximately 60 days]

Cyline	ders and be	eams	Cor	es
Station	Com- pressive strength of cylinders	Modu- lus of rupture of beams	Station	Com- pressive strength
162+50	Lbs. per sq. in. 4, 380	Lbs. per sq. in.	165+00	Lbs. per sq. in. 6, 200
174+00 180+50 191+00	4, 233 4, 440 5, 410	709 722	184+80 186+00 193+00	6,060 5,400 4,910
201+00 212+00	6, 050 4, 093	590 745	204+29 207+73 208+80	5, 970 5, 970 5, 730
224+00 234+00 240+00	5, 227 4, 720 5, 070	674	208+95 235+15	4, 720 6, 060
249+50 259+00 268+50	4, 657 4, 437 4, 723	$764 \\ 691 \\ 865$	261+00	5, 440
276+00 285+00 295+50 304+50	5,630 4,327 12,997 4593	753 642 456 640	287+00	5, 900
312+00 320+00 322+00	13,493 4,500 4,637	606 565 540	313+00	5, 340
332+25 342+00 352+00 356+25	4, 517 4, 653 4, 200 4, 573	534 748 730 680	340+00	6, 200
362+00 376+00	5,003 3,207	573 447	366+00	5, 850
Average.	4,665	650		5, 696

¹ Poor breaks, not included in the average.

figures on the same horizontal line represent cylinders from the same batch. No reason can be given with certainty as to why there should be so much variation in strength.

Tables 15 and 16 give the results of still another series of tests on mixing time made in Grant County, Okla. Results of tests on cylinders secured on this job might create the impression that long-time mixing has improved the strength of the concrete, though the 45-second concrete is of good quality, were it not for the beam tests which entirely negative the apparent deficiency of some of the 45-second concrete as indi-cated by the cylinders.

³ CLEMMER, H. F. COMPARISON OF THE TRANSVERSE AND COMPRESSIVE TESTS OF CONCRETE. Public Roads, vol. 7, No. 3, May, 1926.

-

TABLE 14.—Compressive strength of cylinders taken on a job in Hillsdale County, Mich.

[Mix 1:2:3.4; gravel coarse aggregate; Koehring mixer in fair condition]

		Crushin	g strength	1			Slump	
30-second mix	45- second mix	60- second mix	75- second mix	90- second mix	120- second mix	180- second mix	of 1- minute mix	W/C
$\begin{array}{c} Lbs. \ per \ sq. \ in. \\ \hline 3, \ 750 \\ 3, \ 975 \\ 4, \ 320 \\ 4, \ 087 \\ 4, \ 910 \\ \hline \hline 3, \ 980 \\ 3, \ 634 \\ 3, \ 315 \\ 2, \ 970 \\ 4, \ 400 \\ 3, \ 790 \\ 2, \ 675 \\ 3, \ 345 \\ 3, \ 750 \\ 3, \ 370 \\ \hline \hline 3, \ 040 \\ \end{array}$	$\begin{array}{c} Lbs. per\\ sg. in.\\ 3, 756\\ 3, 380\\ 5, 380\\ 4, 490\\ 4, 755\\ 5, 800\\ 3, 990\\ 4, 295\\ 4, 455\\ 3, 930\\ 5, 260\\ 5, 260\\ 5, 260\\ 4, 160\\ 3, 140\\ 2, 980\\ 3, 390\\ \end{array}$	$ \begin{array}{c} Lbs. \ per\\ sq. \ in.\\ 5, 185\\ 5, 220\\ 5, 210\\ 4, 955\\ 5, 026\\ 4, 435\\ 4, 435\\ 4, 280\\ 2, 800\\ 4, 435\\ 3, 130\\ 4, 455\\ 3, 130\\ 4, 4710\\ 4, 229\\ 3, 690\\ 4, 640\\ 3, 060\\ 2, 880\\ 3, 290\\ \end{array} $	Lbs. per sq. in. 5, 270 5, 190 2, 227 3, 195 4, 100 3, 090 3, 530 3, 475 2, 510 4, 190	Lbs. per sq. in. 5,010 5,240 4,030 3,958 3,650 	$\begin{array}{c} Lbs. \ per\\ sq. \ in.\\ \hline\\ sq. \ in.\\ \hline\\ s, 160\\ \hline\\ s, 150\\ \hline\\ s, 150\\ \hline\\ s, 115\\ s, 610\\ \hline\\ s, 610\\ \hline\\ s, 990\\ \hline\\ s, 550\\ \hline\\ s, 780\\ \hline\\ s, 780\\ \hline\\ s, 780\\ \hline\\ s, 780\\ \hline\\ s, 453\\ \hline\\ s, 660\\ \hline\\ s, 310\\ \hline\end{array}$	Lbs. per sq. in. 4, 450 3, 465 4, 890 4, 402 2, 900 	Inches 12 134 134 14 14 14 14 14 14 14 14 14 1	$\begin{array}{c} 0.58\\ .68\\ .64\\ .67\\ .61\\ .53\\ .70\\ .56\\ .43\\ .43\\ .43\\ .44\\ .55\\ .58\\ .58\\ .58\\ .57\\ .55\\ .54\\ \end{array}$
Av. 3, 707	4, 073	4, 204	3, 678	3, 853	4, 111	4, 222	. 85	. 558

A Day's Run of Beams and Cylinders, Anderson County, Tenn.

Specimens Removed from Molds and Placed for Curing Under the Same Conditions as the Pavement, Okla-Homa Federal-aid Project 148E

Table 17 gives results of tests of a long series of cylinders taken in Clay County, Tex. Some very high strength concrete was secured from 30-second mixes and, in general, additional mixing showed no advantage. The 30-second concrete is somewhat lacking in uniformity of test results but other mixes are satisfactory in this respect, as well as in strength. No special significance is attached to the fact that 45-second concrete is stronger than that produced by longer mixing. The difference between 45-second concrete and 90-second concrete is only about 6 per cent—not a significant amount unless generally observed throughout a long series of tests.

TABLE 15.—Strength of cylinders and beams cured by various methods on Federal-aid project 148E, Grant County, Okla.

				r	rests o	f cylinder	s								Tests o	f beam	S			
Curing	30-sec	ond mix	45-sec	ond mix	60-sec	ond mix	90-sec	eond mix	180-se	cond mix	30-se m	cond lix	45-seo m	cond ix	60-see m	cond ix	90-see m	cond ix	180-se m	cond ix
Curing	Cyl- in- ders	Com- pressive strength	Cyl- in- ders	Com- pressive strength	Cyl- in- ders	Com- pressive strength	Cyl- in- ders	Com- pressive strength	Cyl- in- ders	Com- pressive strength	Beams	Mod- ulus of rup- ture	Beams	Mod- ulus of rup- ture	Beams	Mod- ulus of rup- ture	Beams	Mod- ulus of rup- ture	Beams	Mod ulus of rup- ture
Calcium chloride ad- mixed No treatment Surface treated with	Num- ber 5	Lbs. per sq. in. 3, 678	Num- ber 10 10	Lbs. per sq. in. 4, 264 4, 659	Num- ber 10 10	Lbs. per sq. in. 4,720 5,251	Num- ber 10 10	Lbs. per sq. in. 4, 768 4, 988	Num- ber 5	Lbs. per sq. in. 5, 123	Num- ber 2	Lbs. per sq. in. 404	Num- ber 5 5	Lbs. per sq. in. 553 605	Num- ber 5 2	Lbs. per sq. in. 556 558	Num- ber 4 5	Lbs. per sq.in. 575 603	Num- ber 2	Lbs. per sq. in 541
calcium chloride Moist earth			10 6	3,829 1 4,450	10 6	3, 580 1 4, 403	10 6	3,835 1 5,093					55	552 640	$\begin{vmatrix} 2\\ 2 \end{vmatrix}$	528 601	5	$514 \\ 665$		
Average		3, 678		4, 301		4, 489		4, 671		5, 123		404		588		561		589]	541

Results from a group of cylinders made on another part of the job showed low strengths from some unknown cause and are not reported.

213 - 28 - 2

PUBLIC ROADS

TABLE 16.—Strength of cylinders and beams cured by various methods on Federal-aid project 148E in Grant County, Okla.

[Mix 1: 2: 31/2: limestone coarse aggregate; Rex mixer in good condition]

CURED BY COVERING WITH WET EARTH

30	-secon	d mix			45-sec	cond mix			60-sec	cond mix			90-sec	ond mix			180-se	cond mix	
Slump	W C	Com- pressive strength of cyl- inders	Modu- lus of rup- ture of beams	Slump	$\frac{W}{C}$	Com- pressive strength of cyl- inders	Modu- lus of rup- ture of beams	Slump	W C	Com- pressive strength of cyl- inders	Modu- lus of rup- ture of beams	Slump	W C	Com- pressive strength of cyl- inders	Modu- lus of rup- ture of beams	Slump	$\frac{W}{C}$	Com- pressive strength of cyl- inders	Modu- lus of rup- ture of beams
Inches		Lbs. per sq. in.	Lhs. per sq. in.	Inches 0.44	0. 60	Lbs. per sq. in. { 4, 180 4, 910	$ \begin{array}{c} Lbs. per\\ sq. in. \end{array} \\ \left. \begin{array}{c} 662 \end{array} \right. \end{array} $	Inches 0.75	0. 60	$ Lbs. per \\ sq. in. \\ 4,890 \\ 4,800 \\ 5,030 $	Lbs. per sq. in.	Inches 1.25	0. 60		Lbs. per sq. in. } 597	Inches		Lbs. per sq. in.	Lbs. per sq. in,
				.75	. 60	{ 4,960 4,460	} 681	1.25	. 60	3,670 4,360 3,670	{	. 75	. 60	<pre>{ 5, 870 5, 250</pre>	} 763				
·				. 75	. 60	{ 4,020 4,170	} 615	1. 20	. 61	$ \left\{\begin{array}{c} 3,600\\ 2,810\\ 2,490 \end{array}\right. $	<pre>{</pre> <pre>670</pre>	1.06	. 60	$\left\{\begin{array}{c} 5,410\\ 4,950 \end{array}\right.$	} 672				
				1.00	. 61	$\left\{\begin{array}{c} 2,990\\ 3,220\end{array}\right.$	} 640			3,600	531	. 20	, 61	$\left\{\begin{array}{c} 2,590\\ 2,950 \end{array}\right.$	599				
				2. 25	. 61	$\left\{\begin{array}{c} 2,810\\ 2,480 \end{array}\right.$	} 600					2.50	. 61	$\left\{\begin{array}{c} 3,180\\ 3,830 \end{array}\right.$	696				
Average				1.04	. 604	3, 820	640	1.08	. 604	3, 892	601	1. 15	. 604	4, 311	665				

CURED IN OPEN AIR WITHOUT COVER 1

	 	 1.20	0. 55	<pre>{ 4, 872 4, 710</pre>	} 599	1.31	0. 55	$ \left\{\begin{array}{c} 5,230\\ 5,080\\ 5,140 \end{array}\right. $	}	0. 75	0. 55	<pre>{ 5, 220 5, 360</pre>	} 604	 	
	 	 1.00	. 55	$\left\{\begin{array}{c} 5,585\\ 5,325 \end{array}\right.$	} 712	1.00	. 55	5, 560 6, 040 5, 960	}	1.31	. 55	$\left\{\begin{array}{c} 5,325\\ 4,250 \end{array}\right.$	} 743	 	
	 	 . 88	. 55	{ 5,685 5,310	694	1.00	. 53	$\left\{\begin{array}{c} 4,945\\ 5,090 \end{array}\right.$	548	2.25	. 55	$\left\{\begin{array}{c} 4,945\\ 4,720 \end{array}\right.$	} 585	 	
	 	 1.50	. 53	$\left\{\begin{array}{c} 3,635\\ 3,450 \end{array}\right.$	510	. 58	. 53	$\left\{\begin{array}{c} 4,635\\ 4,830 \end{array}\right.$	} 567	. 44	. 53	{ 5, 250 5, 460	} 563	 	
	 	 1.58	. 53	{ 4, 145 3, 870	} 509					1.75	. 53	4,820 4,530	} 518	 	
Average	 	 1.23	. 54	4, 659	605	. 95	. 54	5, 251	558	1.30	. 54	4, 988	603	 	

CALCIUM CHLORIDE ADMIXED-2 POUNDS PER BAG OF CEMENT

4.50	0. 59	2,609	449	1.62	0. 59	{ 2,706 4,496 { 3,778	} 574	0.25	0. 59	{ 4, 496 4, 630 { 5, 100	542 612	2.00	0. 59	{ 4,780 4,855 { 4,215	} 535	2.75 1.37 .13 75	0.59 .59 .59	4,855 4,945 5,160 5,745	} 480
1.37	. 59	4, 460		1. 88	. 59	$\left\{\begin{array}{c} 2,790\\ 4,245\\ 4,385\end{array}\right\}$	} }	1. 30	. 59	5,070 5,215 4,900	}	. 88	. 59	$\{\begin{array}{c}4,220\\4,720\\4,790\end{array}$	} 615	. 63	, 55	4, 910	J 002
3.06	. 55	4, 650		1.25	. 55	$\begin{cases} 4,640 \\ 5,395 \\ 4,740 \end{cases}$	591 524 501	2.50	. 55	$\begin{cases} 4,365 \\ 4,070 \\ 4,420 \end{cases}$	522	1.50	. 55	{ 4,965 5,785 4 855	623				
. 25	. 55	4, 290		. 75	. 55	5,465	574	1. 20	. 55	4,935	} 539	1. 50	. 55	4, 490	} 528				
Average		3, 678	404	1.50	. 57	4, 264	553	1.34	. 57	4, 720	556	1.49	. 57	4, 768	575	1.12	. 57	5, 123	541

CALCIUM CHLORIDE COVERING-2 POUNDS PER SQUARE YARD

	 	0. 70	0. 52	{ 3,725 3,270	} 449	0. 44	0. 52	$\begin{cases} 3, 640 \\ 4, 255 \\ 4, 280 \end{cases}$	}	0. 70	0. 52	$\left\{ \begin{array}{c} 4,245\\ 4,160 \end{array} \right.$	} 477	 	
	 	. 81	. 52	$\left\{\begin{array}{c} 4,350\\ 4,400 \end{array}\right.$	} 602	1.00	. 52	$ \left\{\begin{array}{c} 4,160\\ 3,730\\ 3,415 \end{array}\right. $	}	1. 25	. 52	{ 3, 900 3, 650	} 566	 	
	 	. 37	. 52	$\left\{ \begin{array}{c} 4,460\\ 4,220 \end{array} \right.$	566	. 93	. 61	{ 2,660 2,840	$\frac{1}{486}$	2.06	. 52	$\begin{cases} 4,080 \\ 4,185 \end{cases}$	} 499	 ~	
	 	1. 25	. 61	$\left\{\begin{array}{c} 3,170\\ 3,160\\ 2,520\end{array}\right.$	} 542	1.75	. 61	$\left\{\begin{array}{c} 3,460\\ 3,360 \end{array}\right.$	569	1.25	. 61	$\left\{\begin{array}{c} 3,330\\ 3,000 \end{array}\right.$	} 569	 	
	 	1.12	. 61	{ 3, 530 { 4, 000	} 599					1. 87	. 61	$\left\{\begin{array}{c}4,195\\3,600\end{array}\right.$	} 459	 	
Average	 	. 85	. 56	3, 829	552	. 97	. 56	3, 580	528	1.43	. 56	3, 835	514	 	

* Several heavy rains during curing period.

Throughout this series the 45-second concrete is sometimes the strongest, sometimes the 60-second concrete, and sometimes the 90-second concrete, but the differences are always small and this can only be interpreted as indicating that mixing time within the limits given is a neglible factor in strength. In other words, differences in averages are less than the reported differences between cylinders in the same group. When these facts are examined in the light of the well-recognized margin of error in testing methods and in testing machines, the conclusion that small differences such as those developed on this project, are without significance unless often repeated and clearly apparent in the general average, is inevitable.

Tables 18 and 19 cover two series of cylinders, neither of which requires special comment.

BREAKING BEAMS ON THE JOB IN ANDERSON COUNTY, TENN.

TABLE 17.—Data on cylinders secured on Federal-aid project 449A in Clay County, Tex.

[Mix 1:2:31/2; stone and gravel coarse aggregate; Koehring mixer in good condition]

30-s€	cond mi	x	45	i-second	mix	6)-second	mix	90)-second	mix	12	120-second mi		
Slump	$\frac{W}{C}$	Com- pressive strength	Slump	W C	Com- pressive strength	Slump	$\frac{\mathbf{W}}{\mathbf{C}}$.	Com- pressive strength	Slump	$\frac{W}{C}$	Com- pressive strength	Slump	W C	Com- pressive strength	
$\begin{array}{c} Inches \\ 4.50 \\ 4.50 \\ 4.50 \\ 2.50 \\ 4.60 \\ 3.50 \\ .75 \\ .50 \\ .75 \\ 4.50 \\ 1.75 \\ 3.00 \\ .75 \\ .50 \\ .75 \\ .50 \\ .75 \\ .50 \\ .75 \\ .50 \\ 1.25 \end{array}$	$\begin{matrix} 0.\ 639\\ .\ 661\\ .\ 647\\ .\ 554\\ .\ 612\\ .\ 637\\ .\ 582\\ .\ 572\\ .\ 570\\ .\ 572\\ .\ 570\\ .\ 318\\ .\ 415\\ .\ 415\\ .\ 415\\ .\ 415\\ .\ 416\\ .\ 470\\ \end{matrix}$	$\begin{array}{c} Lbs. \ per\\ sq. \ in.\\ sq. \ in.\\ 4, 160\\ 4, 340\\ 4, 760\\ 4, 460\\ 4, 200\\ 4, 200\\ 4, 200\\ 4, 220\\ 6, 390\\ 5, 290\\ 4, 720\\ 6, 150\\ 6, 320\\ 5, 390\\ 5, 480\\ 5, 870\\ 7, 770\\ 7, 250\\ \end{array}$	$\begin{array}{c} Inches\\ 0,50\\ 4,00\\ 1,75\\ 3,50\\ 3,50\\ -,75\\ 2,50\\ 1,00\\ 4,00\\ 1,50\\ 2,00\\ 1,50\\ 2,00\\ 5,75\\ 5,00\end{array}$	$\begin{array}{c} 0.\ 575\\ 610\\ 624\\ 618\\ 618\\ 738\\ 647\\ 685\\ 692\\ 692\\ 692\\ 639\\ 647\\ 608\\ 551\\ 599\\ 668\\ 556\end{array}$	$\begin{array}{c} Lbs. \ per\\ sq. \ in.\\ sq. \ in.\\ 5,020\\ 5,000\\ 5,000\\ 5,650\\ 6,400\\ 5,650\\ 5,770\\ 5,640\\ 5,620\\ 5,770\\ 4,870\\ 5,440\\ 4,640\\ 6,380\\ 5,370\\ 6,330\\ 4,400\\ 4,750\\ \end{array}$	$\begin{array}{c} Inches \\ 4.75 \\ 4.75 \\ 4.75 \\ 2.50 \\ 2.50 \\ 2.50 \\ 2.50 \\ 1.50 \\ 1.50 \\ 1.50 \\ 1.50 \\ 2.00 \\ 2.25 \\ 2.25 \\ 2.25 \\ 2.50 \\ 2.50 \\ 2.50 \end{array}$	$\begin{matrix} 0.\ 645\\ .\ 645\\ .\ 645\\ .\ 712\\ .\ 712\\ .\ 712\\ .\ 666\\ .\ 639\\ .\ 639\\ .\ 639\\ .\ 610\\ .\ 647\\ .\ 647\\ .\ 647\\ .\ 647\\ .\ 620\\ .\ 620\\ \end{matrix}$	Lbs. per sq. in. 5, 310 5, 340 5, 900 5, 670 4, 780 5, 170 5, 340 4, 780 5, 170 5, 340 4, 560 6, 050 3, 680	Inches 4.00 3.00 2.00 .25 6.00 3.25 3.25 3.25 2.00 2.25 	0. 639 647 617 572 532 650 554 607 594 583	Lbs. per sq. in. 4, 540 4, 570 4, 600 4, 970 6, 950 4, 070 4, 780 5, 230 4, 450 5, 850	Inches 1. 25 3. 50 2. 00 2. 50 1. 00 3. 00 2. 25 3. 00	0. 620 668 620 540 537 533 537 583 594 583	Lbs. per sq. in. 5,080 4,240 4,790 5,820 5,600 5,920 4,830 4,820 4,470 4,210	
$ \begin{array}{r} 1.23 \\ 1.50 \\ 1.00 \\ 2.75 \end{array} $. 470 . 470 . 470 . 542	6,700 7,470 6,420	$ \begin{array}{c} 3.00 \\ 2.50 \\ 2.50 \\ 4.50 \end{array} $. 583 . 580 . 570	4, 750 5, 430 4, 780 4, 910	2.50 2.50 4.00 2.00	. 620 . 620 . 572 . 540	4, 500 4, 070 4, 550 4, 640							
						$ \begin{array}{c c} 2.00 \\ 2.00 \\ 4.00 \\ 1.50 \end{array} $	540 540 586 540	4,430 4,760 5,660 6,850							
						$ \begin{array}{r} 1.50 \\ 1.50 \\ 3.00 \end{array} $. 540 . 540 . 610	6, 530 5, 710 5, 610							
						4.00 4.00 4.00 1.05	. 556 . 556 . 556	4,960 5,260 5,030							
						$ \begin{array}{c} 1.23 \\ 3.00 \\ 2.50 \\ 2.25 \end{array} $. 51 . 610 . 594 . 570	4, 890 5, 440 4, 250 4, 500							
						$ \begin{array}{c c} 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 0 \end{array} $.482 .482 .482 .482	6,040 6,940 6,620							
						. 50 . 50 . 50 2. 00	1.276 1.276 1.276 1.276 .570	6, 540 7, 220 6, 490 4, 690							
						2.00 2.00 2.00 2.00	. 570 . 570 . 594	4, 340 4, 680 4, 690							
						2.00 2.00 2.50 2.50	. 594 . 594 . 596 . 596	4, 690 5, 090 4, 160							
						2. 50 2. 50 2. 50 2. 50	. 596 . 549 . 549 . 549	4,970 5,220 5,180 4,920							
Av. 2.44	. 546	5, 464	2. 94	. 625	5, 310	2. 30	. 592	5, 168	2. 90	. 599	5,001	2. 35	. 580	4, 978	

Probably an incorrect result.

Table 20 gives the records on a series of batches of concrete all of which were carefully located in the pavement and from which cores were subsequently taken. The average strength of the 45-second cores is

TABLE 18.—Data on cylinders secured on State-aid project 507 in Berkeley County, S. C.

Mix	$1: 2: 3^{1}$	2; stone	coarse	aggregate;	Koehring	mixer	in good	l condition]
-----	---------------	----------	--------	------------	----------	-------	---------	--------------

60-secon	d mix	75-sec	ond mix	90-sec	ond mix	120-sec	ond mix
W Ĉ	Com- pressive strength	WC	Com- pressive strength	W C	Com- pressive strength	$\frac{W}{C}$	Com- prešsive strength
$\begin{array}{c} 0.\ 624\\ .\ 660\\ .\ 660\\ .\ 586\\ .\ 586\\ .\ 586\\ .\ 608\\ .\ 608\\ .\ 608\\ .\ 608\\ .\ 597\\ .\ 597\\ .\ 551\\ .\ 551\\ .\ 551\\ .\ 624\\ .\ 626\\ .\ 626\\ .\ 626\\ .\ 626\\ .\ 626\\ .\ 608$		$\begin{array}{c} 0,\ 608\\ .\ 608\\ .\ 608\\ .\ 591\\ .\ 591\\ .\ 591\\ .\ 591\\ .\ 607\\ .\ 602$		$\begin{array}{c} 0.\ 608\\ .\ 608\\ .\ 608\\ .\ 608\\ .\ 631\\ .\ 631\\ .\ 631\\ .\ 631\\ .\ 631\\ .\ 631\\ .\ 631\\ .\ 613\\ .\ 613\\ .\ 613\\ .\ 620\\ .\ 620\\ .\ 631\\ .\ 631\\ .\ 631\\ .\ 631\\ .\ 631\\ .\ 633$		$\begin{array}{c} 0.\ 631\\ .\ 631\\ .\ 649\\ .\ 649\\ .\ 649\\ .\ 642\\ .\ 624\\ .\ 624\\ .\ 624\\ .\ 624\\ .\ 631\\ .\ 631\\ .\ 633\\ .\ 633\\ .\ 633\\ .\ 645$	Lbs. per sq in. 2, 800 2, 540 2, 470 2, 620 2, 480 2, 980 3, 010 3, 120 2, 520 3, 010 3, 120 2, 720 2, 330 3, 460 2, 980 3, 180 2, 350 2, 290 2, 400 2, 290 1, 490 2, 190
$\begin{array}{c} .608\\ .608\\ .608\\ .631\\ .631\\ .631\\ .631\\ .631\\ .631\\ .651\\ .651\\ .651\\ .651\\ .651\\ .651\\ .651\\ .651\end{array}$	$\begin{array}{c} 3,500\\ 3,270\\ 3,000\\ 2,970\\ 2,940\\ 3,920\\ 2,880\\ 1,930\\ 2,870\\ 2,740\\ 4,160\\ 4,290\\ 3,600\\ 2,720\\ \end{array}$.631 .615 .615 .638 .638 .638 .666 .666 .651 .651	$\begin{array}{c} 1 & 1, 520 \\ 1 & 1, 570 \\ 2, 670 \\ 2, 510 \\ 2, 820 \\ 3, 730 \\ 2, 970 \\ 3, 280 \\ 2, 680 \\ 3, 000 \\ 3, 700 \\ 3, 400 \\ 3, 370 \\ 3, 450 \end{array}$. 655	2,930_2,760		
$\begin{array}{c} .651\\ .651\\ .651\\ .638\\ .638\\ .638\\ .615\\ .615\\ .615\\ .642\\ .642\\ .642\\ .642\\ .642\\ .619\end{array}$	$\begin{array}{c} 2,060\\ 2,460\\ 2,450\\ 1,500\\ 2,340\\ 2,800\\ 2,780\\ 2,630\\ 2,950\\ 2,850\\ 3,160\\ 2,640\\ 2,580\\ 2,230\\ \end{array}$	$ \begin{array}{r} . 651 \\ . 651 \\ . 656 \\ . 666 \\ . 666 \\ . 631 \\ . 626 \\ . 626 \\ . 626 \\ . 633 \\ . 633 \\ . 633 \end{array} $	3, 480 3, 950 4, 760 3, 160 3, 100 3, 100 2, 350 2, 910 3, 140 2, 890 2, 780 2, 760 2, 860				
$\begin{array}{c} .619\\ .619\\ .619\\ .619\\ .619\\ .619\\ .619\\ .639\\ .639\\ .639\\ .639\\ .639\\ .639\\ .653\\ .653\\ .653\\ .653\end{array}$	$\begin{array}{c} 2, 150 \\ 2, 330 \\ 1, 955 \\ 2, 560 \\ 2, 760 \\ 3, 280 \\ 2, 900 \\ 3, 860 \\ 4, 600 \\ 3, 900 \\ 4, 400 \\ 3, 910 \\ 4, 120 \end{array}$	$\begin{array}{c} .638\\ .638\\ .638\\ .638\\ .654\\ .654\\ .654\\ .654\\ .654\\ .619\\ .619\\ .619\\ .619\\ .619\\ .619\\ .672\\ .672\end{array}$	$\begin{array}{c} 2,280\\ 2,660\\ 3,000\\ 2,650\\ 2,690\\ 3,020\\ 2,360\\ 3,100\\ 2,860\\ 3,210\\ 3,025\\ 2,660\\ 2,500\end{array}$				
. 653 . 657 . 657 . 657 . 657 . 657 . 633 . 633 . 633 . 633	4, 320 3, 280 2, 870 2, 700 3, 050 2, 950 4, 010 4, 960 4, 500 3, 940	$\begin{array}{c} .672\\ .672\\ .672\\ .660\\ .660\\ .660\\ .660\\ .634\\ .634\\ .634\\ .634\\ .651\\ .651\\ \end{array}$	$\begin{array}{c} 2,810\\ 3,300\\ 3,370\\ 2,740\\ 2,190\\ 2,940\\ 2,890\\ 3,410\\ 3,330\\ 2,630\\ 3,530\\ 4,400\\ 3,700\\ \end{array}$				
Av627	3,084	. 634	3,017	. 626	3,017	. 638	2,697

¹ Apparently incorrect and omitted from average

DATA FROM A NUMBER OF JOBS SUPPORT CONCLUSION AS TO MIX- 1 per cent below the mean for the series of cores. The 60-second cylinders are 1 per cent above the mean for the cylinders and the 90-second cylinders at the mean. Variations between maximum and minimum strength,

BREAKING A TEST CYLINDER IN THE LABORATORY OF THE UNIVERSITY OF MISSOURI

 TABLE 19.—Data on cylinders secured on Federal-aid project

 174 B-2 in Hughes County, Okla.

[Mix 1:2:31/2; gravel coarse aggregate; Koehring mixer in good condition]

30-se	econo	l mix	45-seco	nd mix	60-second mi		
$\frac{W}{C}$		Com- pressive strength	$\frac{W}{C}$	Com- pressive strength	$\frac{W}{C}$	Com- pressive strengt	
0.6	369 360 333 573 376 597 724 360 344	$\begin{array}{c} Lbs.\\ per \ sq. \ in.\\ 4, 110\\ 4, 220\\ 4, 460\\ 3, 230\\ 4, 640\\ 4, 050\\ 4, 150\\ 4, 990\\ 4, 890\\ 4, 700\end{array}$	$\begin{array}{c} 0.\ 678 \\ .\ 660 \\ .\ 642 \\ .\ 622 \\ .\ 630 \\ .\ 656 \\ .\ 620 \\ .\ 662 \\ .\ 626 \\ .\ 644 \end{array}$	$\begin{array}{c} Lbs.\\ per \ sq. \ in.\\ 4, 290\\ 4, 500\\ 4, 100\\ 3, 450\\ 4, 730\\ 3, 890\\ 4, 140\\ 5, 220\\ 4, 870\\ 4, 800\end{array}$	$\begin{array}{c} 0.\ 720 \\ .\ 660 \\ .\ 728 \\ .\ 644 \\ .\ 598 \\ .\ 646 \\ .\ 638 \\ .\ 662 \\ .\ 644 \end{array}$	$\begin{array}{c} Lbs.\\ per \ sq. \ i\\ 3, 490\\ 4, 320\\ 3, 470\\ 5, 100\\ 5, 350\\ 4, 710\\ 4, 180\\ 4, 520\\ 4, 460\\ 4, 800 \end{array}$	
Av. 0.6	350	4, 344	. 644	4, 399	. 660	4, 440	
		90-second	l mix	120-sec	ond mix		
		WC	Com- pressing strength	W C	Com- pressing strength		
		$\begin{array}{c} 0. \ 656 \\ . \ 650 \\ . \ 662 \\ . \ 586 \\ . \ 575 \\ . \ 633 \\ . \ 597 \\ . \ 638 \\ . \ 656 \\ . \ 644 \end{array}$	Lbs. per sq. in. 3, 8540 3, 800 5, 200 4, 800 4, 720 3, 890 4, 270 4, 540 4, 680	0. 633 . 642 . 662 . 640 . 642 . 640 . 642 . 646 . 597 . 662 . 615 . 644	Lbs. per sq. in. 4, 100 4, 930 4, 910 4, 710 3, 770 4, 530 3, 350 5, 160 4, 220		
	A	v. 0.630	4, 429	. 038	4, 394		

- TABLE 20.—Compressive strength of cores and cylinders taken on Federal-aid projects 174B-2 and 188A in Hughes and Seminole Counties, Okla.
- [The cores and cylinders on each line of the table were taken from the same batch. Cores were tested at an age of approximately 90 days. Mix 1:2:3½; gravel coarse aggregate; Koehring mixer in good condition]

	(In pounds per square inch)												
45-second	l mix	60-seco	nd mix	90-second mix									
Cylinders	Cores	Cylinders	Cores	Cylinders	Cores								
5, 630 5, 580 4, 420 4, 710 4, 850 4, 380 5, 230 5, 590 4, 380 5, 590 5, 240	5,700 5,100 5,490 7,690 5,895 6,465 6,331 5,043 4,740 5,150 5,872	$\begin{array}{c} 5,030\\ 5,670\\ 5,060\\ 5,080\\ 5,080\\ 4,790\\ 4,910\\ 5,110\\ 5,520\\ 4,960\\ 4,500\\ 4,500\\ 5,560\\ 5,660\\ 5,660\\ 5,660\\ 5,660\\ 4,800\\ 4,920\\ 4,200\\ 4,420\\ 4,420\\ 5,820\\ 5,570\\ \end{array}$	$\begin{array}{c} 4, 980\\ 5, 960\\ 5, 145\\ 6, 010\\ 5, 6280\\ 6, 425\\ 6, 010\\ 6, 280\\ 6, 280\\ 6, 370\\ 5, 590\\ 6, 370\\ 5, 590\\ 6, 370\\ 6, 213\\ 7, 048\\ 8, 189\\ 5, 702\\ 5, 831\\ 5, 425\\ 5, 732\\ 5, 851\\ 5, 425\\ 5, 732\\ 5, 851\\ 5, 425\\ 5, 732\\ 5, 851\\ 5, 425\\ 5, 732\\ 6, 330\\ 6, 000\\ 6, 024\\ \end{array}$	5, 540 3, 230 5, 125 4, 210 5, 300 4, 980 4, 980 4, 930 6, 250 6, 250 5, 790 5, 280 5, 080	7, 725 5, 185 6, 350 5, 290 6, 500 4, 978 6, 724 8, 620 5, 517 5, 127 4, 425 5, 545 6, 120								
Av. 4, 935	5, 897	5, 034	5, 941	4, 983	6,008								

MAXIMUM VARIATIONS

	45-second	60-second	90-second
	mix	mix	mix
Cylinders: Maximum strength Minimum strength	5, 630 3, 710	5, 820 3, 750	6, 250 3, 230
Difference	1, 920	2, 070	3, 020
Difference, per cent	34	36	48
Cores: Maximum strength Minimum strength	8, 078 4, 740	8, 189 4, 365	8, 620 4, 425
Difference.	3, 338	3, 824	4, 195
Difference, per cent	41	47	49

both in cores and in cylinders, are least at 45 seconds and greatest at 90 seconds.

Table 21 shows the results of tests made to determine if the rate at which good concrete increases in strength is affected by the mixing time. Four cylinders were

ONE OF THE OUTFITS USED FOR DRILLING CORES

 TABLE 21.—Results of tests made to determine effect of mixing time on rate of increase in strength. Cylinders made on Federal-aid projects 174B-2 and 188A in Hughes and Seminole Counties, Okla.

μ	ln	po	unds	per	square	inchj	
---	----	----	------	-----	--------	-------	--

Crushing	strength, 4	5-second m	nix at—	Crushin	g strength,	60-second	mix at—	Crushing strength, 90-second mix at—			
10 days	14 days	21 days	28 days	10 days	14 days	21 days	28 days	10 days	14 days	21 days	28 days
3, 745 3, 200 2, 945 3, 585 2, 340 4, 140 3, 200 4, 100 3, 830 3, 850 3, 560 3, 670 3, 920	4, 075 4, 145 3, 470 4, 200 4, 330 4, 530 4, 550 4, 160 4, 350 4, 160 4, 350 4, 160 4, 350	4, 480 4, 360 4, 395 4, 370 4, 550 4, 180 4, 180 4, 730 5, 280 4, 550 4, 550 4, 360 5, 045	5, 630 5, 550 4, 420 4, 710 3, 710 4, 850 5, 280 5, 280 5, 290 5, 240	$\begin{array}{c} 3,445\\ 4,055\\ 3,785\\ 3,785\\ 3,785\\ 3,785\\ 3,785\\ 3,70\\ 4,310\\ 4,025\\ 4,225\\ 3,555\\ 2,765\\ 3,555\\ 4,220\\ 4,220\\ 3,185\\ 3,555\\ 4,220\\ 3,185\\ 3,555\\ 3,555\\ 4,220\\ 3,185\\ 3,555\\ 3,555\\ 4,220\\ 3,185\\ 3,555\\ 3,555\\ 4,220\\ 3,185\\ 3,555\\ 3,555\\ 4,220\\ 3,185\\ 3,555\\ 3,555\\ 4,220\\ 3,185\\ 3,555\\ 3,555\\ 4,220\\ 3,185\\ 3,555\\ 3,555\\ 4,220\\ 3,185\\ 3,555\\ 3,555\\ 4,220\\ 3,185\\ 3,555\\ 3,555\\ 4,220\\ 3,185\\ 3,555\\ $	$\begin{array}{c} 4,060\\ 3,995\\ 3,830\\ 3,475\\ 4,060\\ 4,190\\ 3,960\\ 3,960\\ 3,960\\ 3,960\\ 3,960\\ 4,100\\ 4,640\\ 4,640\\ 4,640\\ 4,640\\ 4,250\\ 4,3780\\ 4,350$	$\begin{array}{c} 4, 965\\ 5, 070\\ 4, 130\\ 4, 365\\ 4, 910\\ 5, 110\\ 5, 110\\ 5, 110\\ 5, 410\\ 4, 500\\ 4, 220\\ 3, 750\\ 4, 220\\ 5, 240\\ 4, 220\\ 5, 240\\ 4, 220\\ 5, 240\\ 4, 220\\ 5, 240\\ 4, 5, 280\\ 5, 140\\ 4, 870\\ 5, 140\\ 4, 820\\ 4, 820\\ 4, 820\\ 4, 920\\ 5, 210\\ \end{array}$	$\begin{array}{c} 5,030\\ 5,670\\ 5,440\\ 5,985\\ 4,620\\ 4,910\\ 5,395\\ 4,790\\ 4,910\\ 5,520\\ 4,960\\ 4,960\\ 4,960\\ 5,580\\ 5,650\\ 5,650\\ 5,650\\ 5,650\\ 6,$	3, 125 1 2, 275 3, 665 3, 710 3, 950 3, 605 3, 605 3, 295 3, 295 3, 295 3, 295 3, 295 3, 295 3, 295 3, 295 3, 600 3, 600	4, 220 2, 515 4, 180 3, 260 4, 220 4, 430 4, 305 4, 010 4, 030 4, 070 4, 070 4, 040	5, 145 2, 730 5, 130 4, 640 5, 280 4, 780 4, 780 4, 240 4, 240 4, 240 4, 240 5, 380 5, 380 5, 180 4, 175	5, 540 3, 230 5, 125 4, 210 4, 930 4, 930 4, 930 4, 750 5, 780 5, 780 5, 280 5, 080
Av. 3, 545	4, 138	4, 617	4, 935	3, 698	4, 097	4,757	5, 034	1 3, 500	4, 054	4, 739	4, 983

¹ Poor break which if omitted changes average to 3,602.

105

taken from each batch of concrete selected, and broken TABLE 24.—Compressive strength of cylinders taken on a job in Hillsdale County, Mich. at ages of 10, 14, 21, and 28 days. There is no significant difference in the rate at which concrete mixed for various periods has increased in strength.

Tables 22 and 23 give data from jobs in South Caroling and in Kansas.

TABLE 22.-Compressive strength of cylinders taken on Federal-aid project 243A, Spartanburg, S. C.

[Mix 94:170:370 by weight; crushed stone coarse aggregate; Foote mixer in good con-dition; average slump one-half inch]

(In pounds per square inch)

45-second mix	60- second mix	75- second mix	45-second mix	60- second mix	75- second mix
$egin{array}{c} 3, 490 \\ 3, 165 \\ 3, 850 \\ 3, 010 \\ 3, 730 \\ 3, 290 \\ 3, 110 \\ 3, 450 \\ 3, 335 \\ 3, 375 \\ 2, 840 \end{array}$	$\begin{array}{c} 3,050\\ 2,780\\ 3,610\\ 3,990\\ 3,985\\ 3,310\\ 3,390\\ 3,375\\ 3,415\\ 3,230\\ 2,790\\ \end{array}$	$\begin{array}{c} 2, 990\\ 2, 950\\ 3, 770\\ 3, 590\\ 2, 990\\ 3, 330\\ 2, 995\\ 4, 000\\ 3, 655\\ 3, 675 \end{array}$	2, 715 3, 790 2, 890 3, 655 3, 390 3, 770 A.v. 3, 330	3, 395 3, 780 3, 195 2, 895 3, 675 3, 475 3, 250 3, 215 3, 311	3, 395 3, 510 3, 550 3, 245 3, 795 3, 240 3, 810 4, 180 3, 506

TABLE 23.-Data on cylinders taken on Federal-aid project 360A in Johnson County, Kans.

[Mix 1:2:3¹/₂; limestone coarse aggregate; Foote mixer in fair condition]

45-secon	d mix	60-seco	nd mix	90-seco	nd mix
$\frac{W}{C}$	Com- pressive strength	$\frac{W}{C}$	Com- pressive strength	$\frac{W}{C}$	Com- pressive strength
$\begin{array}{c} 0.\ 661\\ .\ 657\\ .\ 657\\ .\ 657\\ .\ 657\\ .\ 715\\ .\ 715\\ .\ 715\\ .\ 724\\ .\ 679\\ .\ 668\\ .\ 668\\ .\ 668\\ .\ 668\\ .\ 663\\ .\ 663\\ .\ 663\\ .\ 663\\ .\ 663\\ .\ 663\\ .\ 665\\ .\ 666\\ .\ 666\\ .\ 666\\ .\ 666\\ .\ 657\\ .\ 652\\ .\ 652\\ .\ 657\\ .\ 652\\ .\ 657\\ .\ 652\\ .\ 657\\ .\ 652\\ .\ 657\\ .\ 652\\ .\ 657$	Lbs. per sq. in. 4, 416 5, 281 5, 246 4, 027 4, 946 4, 274 4, 928 4, 628 4, 204 5, 600 5, 833 4, 981 4, 416 4, 610 3, 939 5, 017 5, 599 4, 346 4, 5, 617 5, 599 5, 600	$\begin{array}{c} 0.\ 675\\ .\ 675\\ .\ 669\\ .\ 669\\ .\ 669\\ .\ 666\\ .\ 666\\ .\ 666\\ .\ 666\\ .\ 667\\ .\ 675\\ .\ 684\\ .\ 684\\ .\ 684\\ .\ 684\\ .\ 684\\ .\ 684\\ .\ 684\\ .\ 684\\ .\ 652\\ .\ 652\\ .\ 652\\ .\ 652\\ .\ 654$		$\begin{array}{c} 0.\ 675\\ .\ 675\\ .\ 713\\ .\ 714\\ .\ 714\\ .\ 701\\ .\ 701\\ .\ 687\\ .\ 672\\ .\ 672\\ .\ 672\\ .\ 672\\ .\ 672\\ .\ 672\\ .\ 672\\ .\ 672\\ .\ 672\\ .\ 672\\ .\ 672\\ .\ 652\ .\ 652\\ .\ 652$	
Av 668	4,770	. 667	5, 153	. 676	4, 960
			Comp	eressive str	ength
A verage	for 15 cylin	nders	45-second mix	60-second mix	90-second mix
Cured with Cured in da	calcium ch mp earth	loride	Lbs. per sq. in. 4, 580 4, 948	Lbs. per sq. in. 4, 920 5, 367	Lbs. per sq. in. 4, 800 5, 119

Tables 24 and 25 merely add to the data presented. Neither is of special significance.

[Mix 1:2:3.4; gravel coarse aggregate; Rex mixer in fair condition]

(Pounds per square inch)

	Mixing time in seconds								W	Fine- ness
3	0	45	60	75	90	120	180	minute mix)	С	modu- lus
	$\begin{array}{c} 2,244\\ 2,020\\ 2,780\\ 3,595\\ 3,000\\ 2,950\\ 2,900\\ 2,711\\ 3,307\\ 1,657\\ 2,580\\ 2,794\\ 4,358\\ 5,295\\ 3,464\\ 5,365\end{array}$	$\begin{array}{c} 3, 147\\ 3, 125\\ 2, 550\\ 3, 140\\ 3, 720\\ 3, 425\\ 3, 880\\ 4, 090\\ 2, 409\\ 4, 450\\ 2, 687\\ 4, 085\\ 3, 420\\ 4, 100\\ 2, 408\\ 4, 723\\ 4, 628\\ 3, 727\\ 4, 728\\ 4, 728\\ 5, 068 \end{array}$	$\begin{array}{c} 4,449\\ 3,480\\ 2,965\\ 2,835\\ 3,440\\ 4,795\\ 4,530\\ 3,840\\ 2,642\\ 3,238\\ 4,000\\ 3,270\\ 2,700\\ 3,170\\ 3,355\\ 4,903\\ 4,155\\ 4,903\\ 4,155\\ 4,903\\ 4,155\\ 5,568\end{array}$	3, 887 3, 935 3, 210 2, 770 3, 960	3, 102 3, 445 2, 871 3, 419 3, 680 4, 000 5, 000 4, 823 5, 660 4, 916 	$\begin{array}{c} 3, 926\\ 4, 055\\ 2, 859\\ 2, 845\\ 4, 285\\ 4, 285\\ 4, 625\\ 4, 625\\ 5, 675\\ 3, 675\\ 3, 678\\ 3, 642\\ 3, 710\\ 4, 545\\ 4, 980\\ \hline \end{array}$	3, 692 4, 660 3, 380 2, 815 4, 040	Inches 134 144 144 144 144 144 144 144	$\begin{array}{c} 0.74\\ .68\\ .90\\ .80\\ .70\\ .58\\ .50\\ .50\\ .49\\ .54\\ .52\\ .52\\ .56\\ .55\\ .55\\ .45\\ .45\\ .49\end{array}$	$\begin{array}{c} 5, 90\\ 5, 60\\ 5, 76\\ 5, 82\\ 5, 88\\ 5, 88\\ 5, 88\\ 5, 78\\ 5, 78\\ 5, 78\\ 5, 78\\ 5, 77\\ 5, 80\\ 6, 35\\ 6, 35\\ 6, 35\\ 6, 23\\ 6, 23\\ 6, 23\\ \end{array}$
Av.	3, 221	3, 675	3, 838	3, 552	4, 247	4,012	3, 717	1.18	. 578	

TABLE 25.—Compressive strength of cylinders taken on Federal-aid project 163 in Canadian County, Okla.

[Mix 1:2:3½; limestone coarse aggregate; Koehring mixer in fair condition] (Pounds per square inch)

	Miz	ing tim	ne in sec	conds			Slump	w	Fine-
30	45	60	75	90	120	180	minute mix)	Ĉ.	modu- lus
3, 04 2, 58	5 4, 495 0 4, 700	5, 135 4, 845	4, 415 4, 485	4, 985 3, 405	3, 260 3, 660	4, 780 4, 130	Inches ⁵ / ₈ -2 ¹ / ₄	0. 56	6. 18
4, 32 4, 63	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,350 4,920	5,855 5,310	4, 520 3, 730	3, 595 4, 080	2,420 2,650	11 16-51/4	. 56	6.04
2, 26 2, 03	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3, 820 4, 052	4, 270 4, 520	5, 160 5, 255	3,065 2,750	5,240 4,625	1/2-4	. 58	6.18
Av. 3, 14	5 4, 088	4, 687	4, 809	4, 509	3, 402	3, 974		. 57	

Table 26 gives the modulus of rupture for a series of beams. The cylinders taken on this job are not reported as a new laboratory practice which was used in breaking them rendered the results of doubtful significance.

TABLE 26.—Modulus of rupture of a series of beams taken on Federal-aid project 55A in Anderson County, Tenn. Each entry is the average of three breaks

[Mix 1:2:31/2; stone and gravel coarse aggregate; new Koehring mixer]

		Mi	king time	e in seco	nds	
	45	60	75	120	180	240
Pounds per square inch	$\begin{array}{c} 600\\ 498\\ 591\\ 617\\ 733\\ 579\\ 706\\ 716\\ 513\\ 583\\ \end{array}$	$532 \\ 505 \\ 524 \\ 518 \\ 658 \\ 555 \\ 576 \\ 758 \\ 590 \\ 522$	$768 \\ 501 \\ 489 \\ 556 \\ 516 \\ 537 \\ 631 \\ 591 \\ 563 \\ 588 \\ 588 \\$	590 677 530	635 660	670
A verage Total number of breaks Maximum Minimum	614 32 733 498	574 34 758 505	574 36 768 489	599 10 677 530	647 7	670
Difference. Difference, per cent	235 32	253 33	279 36	147 22		

TABLE 27.—Data on cylinders and beams secured on Federal-aid project 208C in Grady County, Okla. Specimens were cured by various methods

[Mix 1: 2: $3\frac{1}{2}$; limestone coarse aggregate: Koehring mixer in fair condition]

CURED WITH CALCIUM CHLORIDE-SURFACE APPLICATION OF 2 POUNDS PER SQUARE YARD

:	30-seco	nd mix			45-se	econd mix			60-se	econd mix			90-se	eond mix			180-s	econd mix	
Slump	W C	Com- pres- sive strength of cylin- ders	Modu- lus of rupture of beams	Slump	WC	Com- pres- sive strength of cylin- ders	Modu- lus of rupture of beams	Slump	W Ĉ	Com- pres- sive strength of cylin- ders	Modu- lus of rupture of beams	Slump	W Ĉ	Com- pres- sive strength of cylin- ders	Modu- lus of rupture of beams	Slump	W C	Com- pres- sive strength of cylin- ders	Modu- lus of rupture of beams
Inches		Lbs. per sq. in.	Lbs. per sq. in.	Inches 3.12 3.12 2.70 2.70 2.55 1.25 1.25 3.22 .32 .32	0. 64 .64 .60 .62 .62 .56 .56 .61 .61	$\begin{matrix} Lbs. \ per \\ sg. \ in. \\ 3, 902 \\ 4, 136 \\ 3, 525 \\ 4, 496 \\ 4, 626 \\ 4, 379 \\ 3, 600 \\ 3, 870 \\ 3, 510 \\ 3, 270 \end{matrix}$	Lbs. per sq. in. 469 664 613 582 549	Inches 0.37 .37 .37 .37 .37 1.50 4.37 4.37 .75 .75	0.45 .45 .45 .45 .45 .65 .67 .52 .52	$\begin{matrix} Lbs, \ per\\ sq. \ sn.\\ 4, 610\\ 4, 375\\ 4, 620\\ 4, 175\\ 4, 285\\ 4, 136\\ 3, 240\\ 3, 130\\ 3, 240\\ 3, 3, 240\\ 3, 3, 240\\ 3, 735\\ 3, 240\\ 3, 735\\ 3, 905\\ 4, 145\\ 3, 815\\ 4, 090 \end{matrix}$	Lbs. per sq. in. 621 550	2. 12 2. 12 2. 00 2. 00 3. 75 3. 75 2. 44 2. 44 2. 00 2. 00	$\begin{array}{c} 0.58\\.58\\.57\\.45\\.45\\.64\\.64\\.60\\.60\\\end{array}$	Lbs. per sq. in. 4, 424 4, 658 3, 956 4, 036 3, 823 4, 136 4, 1364, 136 4, 136	Lbs. per sq. in. 592 508 514 533 519	Inches		Lbs. per sq. in.	Lbs. per sq. in.
Av				1.53	. 606	3, 931	575	1.29	. 533	3, 895	585	2.46	. 568	3, 981	533				

CALCIUM CHLORIDE ADMIXTURE-2 PER CENT OF CEMENT BY WEIGHT

0, 63 , 63 , 88 , 88 , 75	0.45 .45 .52 .52 .49	3, 365 3, 380 2, 015 2, 045 4, 110	527 448 575	$\begin{array}{c} 0.\ 25\\ .\ 37\\ 1.\ 12\\ 1.\ 12\\ 1.\ 00\\ 1.\ 00\\ 1.\ 12\\ 1.\ 12\\ 1.\ 12\end{array}$	0.49 .49 .52 .52 .49 .49 .62 .62	3, 490 2, 985 2, 825 2, 535 2, 610 2, 985 3, 345 3, 185 3, 580	506 520 479 512 413	$\begin{array}{c} 1.\ 75\\ 1.\ 75\\ 2.\ 12\\ 2.\ 12\\ .\ 63\\ .\ 63\\ 2.\ 12\\ 2.\ 12\\ 2.\ 25\\ 2.\ 25\end{array}$	$\begin{array}{c} 0. \ 49 \\ . \ 49 \\ . \ 54 \\ . \ 54 \\ . \ 53 \\ . \ 53 \\ . \ 53 \\ . \ 52 \\ . \ 52 \\ . \ 50 \\ . \ 50 \end{array}$	$\begin{array}{c} 3,200\\ 3,420\\ 2,550\\ 2,655\\ 3,365\\ 3,130\\ 2,375\\ 2,335\\ 2,225\\ 2,020\\ \end{array}$	486 478 513 475 542 414	$\begin{array}{r} 2.88 \\ .25 \\ 2.25 \\ 2.25 \\ 4.75 \\ 4.75 \\ .25 \\ .25 \\ .25 \end{array}$	0.45 .50 .54 .54 .52 .52 .58 .58	$\begin{array}{c} 3,040\\ 2,665\\ 2,875\\ 2,265\\ 2,610\\ 2,430\\ 2,590\\ 3,435\\ 3,625\\ \end{array}$	548 514 576 413 565 458	$\begin{array}{c} 2.06 \\ 2.06 \\ .25 \\ .25 \\ 2.50 \\ 2.50 \end{array}$	0. 62 . 62 . 68 . 68 . 63 . 63	2, 625 2, 305 2, 825 3, 290 2, 770 2, 375	608 435 530 448
Av. 0.76	. 486	2, 983	517	. 88	. 530	3,060	486	1.77	. 516	2,728	485	2.20	. 529	2, 837	512	1.60	. 643	2, 698	505

CURED WITH MOIST EARTH

Management of the second secon		 - het					A REAL PROPERTY AND ADDRESS OF A									
	 	 1.25	0.54	4,388	599	1.12	0.55	3, 956	653	1.20	0.56	4,460	643		 	
	 	 $1.25 \\ 3.37$. 54	3,462 4,293	497	$1.12 \\ 1.12$. 55	3,956 3,600	626	$1,20 \\ 5,12$. 56 . 57	4,763 3,810	660		 	
	 1	 3.37 .70	.52 .51	4,172 4,270	553	$1.12 \\ 1.12$. 55	3,291 2,967		5.12 2.12	. 57	3, 525 3, 878	711	·		
	 	 .70	. 51	4,496	649	$1.12 \\ 3.12$. 55	2,949 4 120		2.12 2.62	. 54	3,705	604		 	
	 	 . 88	. 49	4,388	608	3.12	. 53	4,370		2.62 2.25	.51	4,028	617			
	 	 2.75	. 53	4,448		3.12	. 49	3, 597		2.25	. 52	3,471				
Av	 	 1.79	. 518	4,118	581	1.92	. 534	3, 680	640	2,66	. 540	4,033	647		 	

CURED IN OPEN AIR WITHOUT COVER OR SPRINKLING

		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58 3, 200 58 2, 895 50 3, 785 50 3, 775 54 3, 510 54 3, 775 63 3, 920 63 4, 190 61 3, 740	493 621 529 482 486	$\begin{array}{c} 0.50\\ .50\\ .50\\ .50\\ .50\\ .50\\ .50\\ .50$	$\begin{array}{c} 0.50\\ .50\\ .50\\ .50\\ .50\\ .50\\ .58\\ .58\\ .60\\ .60\\ \end{array}$	3, 235 3, 850 3, 750 3, 555 3, 865 3, 510 2, 335 2, 845 3, 630 3, 750	572	$\begin{array}{c} 1.\ 70\\ 1.\ 70\\ 1.\ 50\\ 1.\ 50\\ 1.\ 25\\ 1.\ 25\\ 2.\ 88\\ 2.\ 88\\ .\ 88\\ .\ 88\end{array}$	$\begin{array}{c} 0.54\\ .54\\ .56\\ .56\\ .59\\ .69\\ .60\\ .60\\ .60\\ .60\end{array}$	3, 420 3, 215 3, 920 3, 295 3, 365 2, 855 3, 600 2, 600 3, 890 3, 955	565 493 469 576 506		
		1.25 .	61 3,810		. 58	. 60	3,750		$.88 \\ 3.50$. 60 . 65	3,955	499	 	
Āv	· · · · · · · · · · · · · · · · · · ·	1.40 .	572 3,660	522	1.49	. 536	3, 433	572	1.81	. 584	3, 412	518	 	

Table 27 covers series of cylinders which were taken where special methods of curing were used on the pavement. The cylinders were cured just as the pavement was cured. Beams were also made (cross section 6 by 8 inches) and the modulus of rupture for these is given.

Table 28 gives the results of a series of density determinations of cylinders and cores with the breaking

strengths of some of the cylinders. The uniformity of the densities determined for both cylinders and cores is outstanding but there is a wide variation in the breaking strength of the cylinders. The density determinations were made at the University of Texas under the direction of Professor Thomas, whose assistance in this and other phases of this study has been very helpful.

Fig. 1.—Effect of Mixing Time on Strength of Concrete. Based on Average Results for 1,266 Cylinders FKom 24 Jobs. Broken Line Shows Average Breaking Strength of Each Group Without Regard to Mixing Time

 TABLE 28.—Results of density determinations of cylinders and cores

 taken on Federal-aid project 449A in Clay County, Tex.

[Mix 1:2:3½; crushed rock and gravel coarse aggregate; Koehring mixer in good condition]

DETERMINATIONS FOR CYLINDERS

Density	Mixing time	Com- pressive strength	Density	Mixing time	Com- pressive strength
$\begin{array}{c} 2, 411\\ 2, 443\\ 2, 428\\ 2, 428\\ 2, 422\\ 2, 436\\ 2, 415\\ 2, 438\\ 2, 425\\ 2, 425\\ 2, 424\\ 2, 408\\ 2, 431\\ 2, 418\\ \end{array}$	Seconds 	Lbs. per sq. inch	2,406 2,409 2,409 2,402 2,436 2,448 2,448 2,448 2,441 2,443 2,443 2,443 3,443	Seconds 30 120 45 60 90 30 30 30 	Lbs. per sq. inch 4, 200 5, 600 5, 370 6, 050 4, 540 7, 470 7, 770 6, 320
	DETER	MINATIO	ONS FOR CORE	s	
2.40			2.47		

Table 29 is a general summary of the preceding tables. In preparing this table the results secured on Texas Federal-aid project 475 and Oklahoma Stateaid project 159A have been omitted because in one case the mixer charged slowly and in the other case the inside of the drum was heavily coated with concrete. Kansas Federal-aid project 360A might, with some reason, also have been omitted as the mixer charged slowly, though in this case the lag was not extreme. These results cause a slight reduction in the average strength of the concrete mixed 45 seconds.

Table 30 is a study of the uniformity of the test results. It is valuable in that it brings out the fact that uniformity of results has not been greatly affected by the length of the mixing period.

Before presenting the conclusions drawn from this study, it is desired to refer to work along this same line done by the California State Highway Department and reported by S. S. Pope in California Highways, February, 1926. These tests resulted in the conclusion that concrete mixed two minutes was not better than that mixed one minute. Reference should also be made to the report of Duff A. Abrams before the 1918 meeting of the American Concrete Institute. It appears from a rather careful study of the data presented at that time that a fact of considerable importance has been overlooked in this report, and in discussions of it, namely, that for mixes of approximately the proportions now used in concrete paving and for water-cement ratios approximately as are in use to-day, increasing the mixing period from one minute to two minutes not only failed to increase strength but actually caused an average loss in strength.

Every investigator should be permitted all reasonable latitude in the interpretation of the results of tests made under his direction. Therefore, as a recession in a generally ascending curve such as the mixing-timestrength curve has been assumed to be, is of uncommon occurrence, it is not surprising that in plotting the results of this test the significance of these results was overlooked, a steadily rising curve being used. But, in view of the data which has been secured, it is interesting to wonder whether the test results were not, after all, accurate and the interpretations of them on which modern practice in this matter so largely rests, too general. Figure 1 and Table 29 summarize the data secured in the mixing-time studies for the convenience of those who wish to examine the general trends indicated.

CONCLUSIONS

Conclusions drawn from an investigation of this sort must be prefaced by at least a brief reference to such matters as the margin of error in testing work, of the meaning of averages, of probabilities and related matters. For example, it is known that the results obtained by breaking a long series of cylinders, which are as nearly alike as anyone knows how to make them, are seldom wholly consistent. How much of this is due to differences in the cylinders themselves, no one knows. It is customary to assume that much, if not most of it, is. On the other hand, the average strengths obtained by different laboratories on groups of random cylinders taken from a series, all of which should be of equal strength, will sometimes differ more than a thousand pounds. This is quite a sufficient basis for the conclusion that differences in the strength of individual cylinders in the same series are not wholly the result of differences in the cylinders themselves.

	ariation from eneral verage	$\begin{array}{c} \text{tr cent} \\ -4.1 \\ -4.1 \\ -1.1 \\ -1.1 \\ -1.1 \\ -1.1 \\ -6.8 \\ -6.8 \\ -6.8 \\ -6.8 \\ -1.3 \\ -1.3 \\ -1.8 \\ -1.$		ariation from eneral verage	s ++++++++++++++++++++++++++++++++++++	+1.4
•	Mini- num com- essive a rength	ounds seq.in. F 3,000 3,000 5,000 5,000 3,000 2,2,970 2,4,600 2,555 2,332 2,332 3,300 3,200 3,3,000 3,200 2,015 3,200 2,015 3,200 3,201 3,201 3,3,200 3,200 3,200 3,200 3,3,200 3,200 3,200 3,200	-	Mini- V. num com- g essive a rength	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3, 316
	faxi- num com- essive ength sti	Punda P 86, in, pe 2020 5, 2020 202 5, 2020 202 5, 2020 202 5, 2020 202 4, 2000 4, 9100 4, 6500 4, 100 4, 4, 650 4, 4, 630 5, 5, 5, 5, 630 4, 630 6, 1940 2, 104 5, 1940 2, 104	-	faxi- num com- essive pr ength str	22.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	5, 244
ond mix	erage Dom- om- sssive pr angth str	Para and a set of the	ond mix	erage Dom- sssive pro- angth str	w w mds w	4, 306
30-sec	W O O	Po 470 470 470 607 607 607 574 574 558 558 558 558 567 578 558	60-sec	· W Av Co Dree	Pot 1045 Per 1045 Per 1045 Per 1045 Per 1045 Per 1045 Per 1040 Per	
	ap Av	81 125 257 257 257 257 257 257 257 257 257 2	-	ap Av	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	- Slur	r Incl 17 1 10 1 10 1 10 1 10 1 10 1 10 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 11 1 12 1 13 1 14 1	-	- Slur	India India 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	19
	Cylin ders	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 18	1 Cylin ders	Numb I	4
	aggregate	d gravel. d gravel.		Variation from general average	Per cert 	+2.3
	Kind of	Gravel. do. do. do. do. Timesto fravel. do. Stone an Stone an Stone an Stone an Stone an Stone an Stone an Stone an Stone an Stone an		Mini- mum com- pressive strength	Perm Permission Permis	3, 438
	Mix	11122222525255555555555555555555555555		Maxi- mum com- pressive strength	Foundation Foundation 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	5, 225
	Charg- ing lag	89 89 89 89 80 80 80 80 80 80 80 80 80 80 80 80 80	second mix	Average com- pressive strength	P. Pounds P. Pounds 4, 4172 4, 4282 4, 4282 5, 5, 2589 5, 5, 2589 5, 5, 2589 5, 5, 2589 4, 5889 5, 5, 2589 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5	4, 347
	Drum speed (revolu- tions per minute)	117 117 117 117 118 118 118 118 118 118	45-	Av. U	0.639 610 610 610 600 600 600 600 600 600 600	
fixer	Condition	Good New New Poor Poor Good Good Good Good Good Good Good G		Slump	Inches Inches 1 25 5 1 25 6 1.25 1.65 1 25 1.65 1 25 1.50 0 0 2.85 1 26 1.50 1 26 1.50 1 26 1.50 1 26 1.50 1 26 1.50 1 26 1.60 1 20 2.98 1 20 2.98 1 5 1.50 1 26 1.50 1 1.50 1.40 1 1.50 1.40 1 1.50 1.40 1 1.40 1.140 1 1.40 1.140	9
N	Site	21-21-21-21-21-21-21-21-21-21-21-21-21-2	_	Cylin- ders		28
	Make	Koehring Ransome Foote Foote Reaching Keehring Keehring Good do do foo Foote foote foote do foo foo foo foo foo foo foo foo foo				
Type of curing	Earth do do do do do cacl ad do cacl admixture cacl ad do do do do do do do do do do do do do		td project No.			
	State and project No.	Texas, F. A. P. 136X Texas, F. A. P. 476. Texas, F. A. P. 475. Texas, F. A. P. 475. Okla, F. A. P. 2196 Okla, F. A. P. 2190. Mod, R. A. P. 2100. Mod, R. A. P. 2100. Mod, P. A. P. 2100. Mod, P. A. P. 2100. Mod, P. A. P. 2100. Do. Do. Do. C, S. A. P. 200. Okla, F. A. P. 174B2. Do. Okla, F. A. P. 174B2. Okla, F. A. P. 174B2. Okla, F. A. P. 290A. Do. Okla, F. A. P. 290A. Okla, F. A. P. 200C. Do. Okla, F. A. P. 200C. Do. Okla, F. A. P. 200C. Do. Do. Okla, F. A. P. 174B2. Okla, F. A. P. 200C. Do. Okla, F. A. P. 200C. Do. Do. Do. Do. Do. Do. Do. Do		State an	Texas, F. A. F. 136X Texas, F. A. F. 479 Texas, F. A. P. 475 Texas, F. A. P. 475 Okla, F. A. P. 2130 Mola, F. A. P. 2130 Mola, F. A. P. 2130 Mola, F. A. P. 2130 Mich., Job No. I. 445B Do. Do. Do. Do. C. F. A. P. 243A S. C. F. A. P. 230A Okla, F. A. P. 208C Okla, F. A. P. 208C Okla, F. A. P. 208C Okla, F. A. P. 208C	Total or average 1

TABLE 29.—General summary of data secured on cylinders

July, 1928

109

	ci- Mini- Variation mum from com- general th strength average	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	228 4,096 - 1112 3,455 + 1255 3,455 + 2555 2,255 + 2557 2,255 + 2557 2,255 + 255 2,255 + 255 2,255 + 255 2,265 + 255 2,471 + 255 2,871 + 35 3,471 + 271 3,547 + 3517 + +		General tion average strength cylinde ge of mixes	Pounds Pounds 6.9 9.7. %r. ñr. 6.9 5.891 6.9 5.891 6.9 5.920 6.1 5.920 5.5 5.920 5.6 9.920 5.7 5.920 5.7 5.920 5.7 5.748 7.8 5.748 7.906 4.401 7.10 5.748 7.10 5.748 7.10 5.748 7.10 5.748 7.11 4.906 7.12 5.748 7.13 5.748 7.14 5.748 7.15 5.748 7.16 5.748 7.37 5.748 7.37 5.748 7.37 5.748 7.383 5.748 7.37 5.748 7.383 5.748 7.383 5.748 7.383 5.748 7.383 5.748	4.0 1, 1, 030
mix	ge May mur con th press treng	β Pound 717 Per again 767 Per again 777 Per again 767 Per again 777 Per again 767 Per again 777 <	0.04123371 0.04123377 0.057,9,9,9,9,6,6,6,6		T Varia froi cre gene	28 20 20 20 20 20 20 20 20 20 20	S.
90-second	Avera, com- pressiv streng	H 20 20 20 20 20 20 20 20 20 20 20 20 20		0 fr	Mini murr com- pressiv	Porwir, proventie, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	9 1 1
	$A\nabla, \frac{W}{C}$	0.0588 557 557 557 557 557 557 557 557 557	677 567 572 572 572 572 572 572	nix	Maxi- mum com- pressive strength	Poundi Per sq. ii 5, 466 5, 546 5, 357 5, 734 5, 734 5, 744 5, 744 5, 748 6,	0, 44
	Slump	Inches 2. 200 2. 200 3. 422 1. 286 1. 486 1. 439 1. 439 1. 439 1. 439 1. 439 2. 900	2, 26 1, 64 1, 18 1, 18	0-second n	Average com- pressive strength	Pounds 5, 338 6, 338 6, 338 6, 338 4, 635 6, 123 6, 123 6, 123 3, 342 2, 698 3, 717 3, 717 5, 988 6, 738 6, 738 7, 748 7, 728 7, 748 7, 728 7, 748 7, 728 7, 728	D) (14
	Cylin- ders	Number 10 10 10 10 10 10 10 10 10 10 10 10 10	115 115 110 110 110 110 110 110 110 110	18	$Av. \frac{W}{C}$	0. 680 . 692 . 692 . 574 . 643 . 643	100.
	Variation from general average	Per cent 	+ 5.3 + 18.0	 	Slump	<i>Incles</i> 1.14 2.00 2.00 1.75 1.75 1.12 1.12 1.18	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Mini- mum com- pressive strength	27 Strunds 27 Strunds 4, 270 4, 010 2, 227 2, 227 2, 227 1, 420 1, 420	2, 770 4, 270 3, 008	o, 030	Cylin- ders	Mumbar 7 7 7 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9	- 0
75-second mix	Maxi- mum com- pressive strength	Pounds Per sq. in. 1 5, 250 5, 250 5, 250 5, 220 4, 780 4, 760 4, 760	5, 855 4, 981	102 ft	Variation from general average	Per cent -12.5 -12.5 -12.5 -12.5 -12.5 -1.15 -1.15 -1.2 -1.2 -1.2 -1.2 -1.6 -1.6	- TO- A
	A verage com- pressive strength	Pounds Prounds Prounds Prounds Prounds Prounds Prounds Prounds Prounds Prounds Prounds Prounds Prounds Prounds Prounds Proves	3, 552 4, 827 4, 047	TED 'E	Mini- mum com- pressive strength	Pounds 2015 3, 015 3, 015 3, 015 3, 015 3, 015 4, 550 4, 550 4, 550 3, 182 3, 1	4,100
	Av. W	700 558 . 633 . 700 . 558 . 634 . 634 . 634	578		Maxi- mum com- bressive trength	Pounds Pounds 4, 530 5, 549 5, 549 5, 549 5, 549 5, 540 5, 5, 540 5,	1, VOV
	lump	Inches 1.53 1.53 1.53 2.00 85 85	<u><u><u></u></u></u>	econd mix	A verage com- pressive trength	Pounds 7: 80, in, p 3: 851 3: 851 5: 108 5: 108	0, 304
	Cylin- ders	Vumber 14 10 14 14 14 14 14 14 16 79	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	120-8	Av. W	0.618 506 506 507 508 508 558 550 558 558 550 558 550 557 558 550 557 557 557 557 557 557 557 557 557	100
					Slump	Inches Inches 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.48 1.00 1.00 1.00 2.335 1.18 1.18 1.18	-
					Cylin- ders	Vamber 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7	2
State and project No.	 x88, F. A. P. 136X x83, F. A. P. 479 x83, F. A. P. 473 x88, F. A. P. 473 x88, F. A. P. 473 cla, F. A. P. 1308 cla, F. A. P. 1308 cla, F. A. P. 1308 o., F. A. P. 1308 o., F. A. P. 1308 o., F. A. P. 146B cla, F. A. P. 146B x88, F. A. P. 146B x88, F. A. P. 1448 cla, F. A. P. 146B x88, F. A. P. 1448 cla, F. A. P. 146B 	ansas, F. A. P. 360A D. D. A. P. 208C D. D. D. D. 208C D. D. D. D. 208C ala, F. A. P. 163 J. B. A. P. 163 J. P. A. P. 163 J. D. F. A. P. 163		State and project No.	xas, F. A. P. 136X xass, F. A. P. 475 xass, F. A. P. 475 xass, F. A. P. 475 and F. A. P. 1363 da, F. A. P. 1305 da, F. A. P. 2160 da, F. A. P. 2160 da, F. A. P. 2160 da, F. A. P. 1300 Do Do C. S. A. P. 1448 and F. A. P. 1485 da, F. A. P. 1485 da, F. A. P. 1482 da, F. A. P. 1482 da, F. A. P. 2367 da, F. A. P. 2087 da,	101. T. T. T. 100	

TABLE 29.-General summary of data secured on cylinders-Continued

110

Insert on page 111 of Public Roads, Vol. 9, No. 5,

July 1928.

The following paragraph was inadvertently omitted from the published report:

As three-quarter minute mixing provides an insufficient factor of safety for practical operations, and as it is doubtful whether construction processes other than the mixing operation itself can be speeded up sufficiently to take advantage of the marginal time fraction, it is recommended that a mixing time of one minute be adopted as the minimum consistent with assurance of reasonable uniformity and adequate strength of the concrete. The evidence is strong that thoroughly satisfactory concrete can be produced by (21E and 27E) pavers in good condition with a one-minute mixing period.

This is brought out in Table 28, the differences in strength in this case being so much greater than the difference in specific gravity that it seems some other factor must be involved.

The unavoidable errors innate in work of this sort make it impossible to assert that we are ever dealing with specific facts. What we really have is a mass of data, all of which may be inexact and most of which undoubtedly is somewhat in error. Averages tend to correct these errors, but do not wipe them out entirely. The averages certainly are not accurate as to the units or the tens, and probably are not accurate as to the hun-dreds. Indeed, it is doubtful if they are accurate to within 5 per cent. This being the case, their signifi-cance lies in the trend they show. For this study the averages secured for mixing periods from 45 seconds to concrete over 45 seconds. 180 seconds, when plotted, produce a saw-toothed

effect without significant trend either up or down. The figures themselves are practically meaningless, but the lack of either upward or downward trend is significant. It is also significant that there is the same lack of trend in the average maximum and in the average minimum strengths. The amount of data accumulated on core strengths and on beam strengths is less than that accumulated on cylinder strengths. but none of it in any way is contradictory to the data derived from cylinders.

Summarizing the situation in the light of the data

TABLE 30.—Uniformity of test results as indicated by percentage of cylinders varying in compressive strength by 15, 10, and 5 per cent from average for group

[A total of 1,464 cylinders reported in this tabulation, but only 1,385 included in averages]

		30-secc	ond mix			45-seco	nd mix	L		60-seco	nd mix			75-seco	nd mix	
State and project No.	Cyl- inders	15 per cent	10 per cent	5 per cent	Cyl- inders	15 per cent	10 per cent	5 per cent	Cyl- inders	15 per cent	10 per cent	5 per cent	Cyl- inders	15 per cent	10 per cent	5 per cent
Tex., F. A. P. 136X Tex., F. A. P. 479	Number 7 10	0 50	29 60	29 90	Number 9 10	11 0 0	$22 \\ 20 \\ 1 32$	67 40	Number 18 9	11 33 1.67	22 67	61 78	Number		1.50	1 100
Mox, F. A. P. 159A. Okla., F. A. P. 159A. Okla., S. A. P. 318. Okla., F. A. P. 130. Mo., F. A. P. 229C. Tor, F. A. P. 448B.	10 9 6 5		$ \begin{array}{r} 0 \\ 1 67 \\ 17 \\ 60 \\ 0 \end{array} $	$ \begin{array}{r} 20 \\ 1 78 \\ 50 \\ 80 \\ 40 \end{array} $	9 7 6 25	$ \begin{array}{r} 22 \\ 1 86 \\ 17 \\ 20 \\ 25 \end{array} $	1 86 17 48 42	67 1 86 50 76 58	$10 \\ 7 \\ 6 \\ 19 \\ 13$	$ \begin{array}{c} 20 \\ 0 \\ 0 \\ 32 \\ 31 \end{array} $	$1 07 \\ 30 \\ 1 29 \\ 33 \\ 63 \\ 38 \\ 38 \\ 38 \\ 38 \\ 38 \\ 38$		$10 \\ 7 \\ 4 \\ 14$	$10 \\ 1 \\ 43 \\ 25 \\ 21$		1 100 90 1 86 50 71
Mich., job 1. Okla., F. A. P. 148E. Do. Do.	16 5	38 100	50 100	75 100	18 10 10 10	50 50 50 40 30	61 60 80 60 70	84 90 80 70 80	18 10 10 10	56 60 0 0 50	72 80 30 20 50	89 90 60 70	10	50	80	100
Tex., F. A. P. 449A S. C., S. A. P. 507 Okla, F. A. P. 174B2	20 10	70 0	80 30	85 60	20 10	20 20	25 40	70 80	53 76 10	32 45 30	$51 \\ 59 \\ 40 \\ 42$	75 83 70	79	25	46	71
Kans., F. A. P. 243A. Kans., F. A. P. 360A. Do Okla., F. A. P. 208C.					13 18 15 15 10	$ \begin{array}{c} 11 \\ 7 \\ $	39 47 47 50	56 80 73 80	19 15 15 16		42 37 33 20 44	47 53 53 69	19	11	32	68
Do Do Mich., job 2 Okla., F. A. P. 163	5 19 6	60 47 33	100 74 67	100 		$22 \\ 20 \\ 10 \\ 45 \\ 33$	33 20 30 75 50	67 60 40 90 83	$ \begin{array}{c} 10 \\ 10 \\ 10 \\ 20 \\ 6 \end{array} $	50 30 20 60 17		90 80 70 85 67	56	20 17	60 33	100
Total or average	124	32	51	69	285	25	45	70	419	28	47	71	147	22	46	81

		90-seco	nd mix			120-seco	ond mix			180-seco	ond mix	
State and project No.	Cyl- inders	15 per cent	10 per cent	5 per cent	Cyl- inders	15 per cent	10 per cent	5 per cent	Cyl- inders	15 per cent	10 per cent	5 per cent
Tex., F. A. P. 136X	Number 9 10	0	0 20	33 60	Number 9 8	56 38	67 63	100 75	Number 7	0	14	43
Tex., F. A. P. 475. Okla, F. A. P. 159A	6 10	0 30	1 17 60	$^{1}\frac{33}{70}$	6 10	0	0 20	1 50 40	4	0	0	(
Okla., S. A. P. 318 Okla., F. A. P. 130	8 6 3	$125 \\ 0 \\ 0 \\ 20$	125 17 0	$^{1}62$ 33 0	7 5 5	$^{1}14$ 20 40	$^{1}14$ 20 60 40	157 60 80	2 4 3	$ \begin{array}{c} 0 \\ 25 \\ 67 \end{array} $	$ \begin{array}{r} 0 \\ 50 \\ 67 \end{array} $	50 61
Pea, F. A. F. 440D Mich., job 1. Okla., F. A. P. 148E	10 10 10	50 50 0	50 60 10	70 70 70	17	47	71	82	9	67	67	78
Do	10 10	10 10	30 30	40 80					5	0	20	4(
Tex., F. A. P. 449A S. C., S. A. P. 507. Okla., F. A. P. 174B2. Okla. F. A. P. 174B2.	$ \begin{array}{c} 10 \\ 27 \\ 10 \\ 13 \end{array} $	30 15 10 31	40 37 40 46	70 59 70 54	10 23 10	$ \begin{array}{r} 30 \\ 26 \\ 20 \end{array} $	60 43 50	60 78 70	 			
Kans, F. A. P. 360A. Do	15 15	13 13	27 47	60 73								
Okla., F. A. P. 208C Do Do	$ 10 \\ 9 \\ 10 $	10 22 10	40 33 50	40 56 70					6	17	50	5(
Do Mich., job 2 Okla., F. A. P. 163	$\begin{array}{c}10\\11\\6\end{array}$	20 73 50	50 82 83	$ \begin{array}{r} 70 \\ 100 \\ 83 \end{array} $	18 6	56 17	78 33	89 67	5 6	40 83	40 83	80 83
Total or average	239	20	39	61	126	30	50	70	45	37	49	6

¹ Not included in totals or averages (79 cylinders).

LIP CURB FOR CONCRETE PAVEMENT

Reported by ST. CLAIR T. THOMAS, Associate Highway Engineer, Division of Design, United States Bureau of Public Roads

MINNESOTA

FIG. 1.—DESIGNS OF LIP CURBS FOR CONCRETE PAVEMENTS

Illinois, Iowa, and Minnesota. These designs are shown in Figure 1. The lip curb, or edging, con-structed on the top of the pavement, serves the purpose of carrying the rain water to the nearest offtake. It pavement.

IP curbs, to protect the earth shoulders of concrete differs from the integral curb, or the curb and gutter, pavements from erosion by the run-off of rain as its capacity is only sufficient for normal rainfalls, water, have been included in designs submitted and the height-2 to 3 inches in 8 to 12 inches-is not for Federal-aid projects, by four States-Georgia, sufficient to prevent traffic from running over the edge of the pavement.

The necessity for lip curb is determined by the character of the shoulder material and the grade of the pavement. It is usually not required in the heavier soils, such as clays, which do not erode as readily as silt or sand. Iowa, where the loess soil erodes readily, was one of the first States to submit lip curb on a Federal-aid project.

TYPE OF CURB USED BY IOWA IN 1925. NOTE BERM SLOP-ING TOWARD PAVEMENT

The lip curb is constructed immediately after the pavement proper has been finished. The side forms are raised to the required elevation, and then the extra concrete of the same mix as the pavement is spread next to the form and finished to the proper cross section with a float. In Georgia the corner is rounded with an edging tool. Offtakes are constructed at suitable locations, the design of the opening varying with the steepness of the roadway grade.

In both Illinois and Georgia the unit for payment is the lineal foot of lip curb. On one project in Illinois the price was 10 cents, and on a job in Georgia the cost was 4 cents a lineal foot. In Minnesota and Iowa the cost is included in the unit price bid for the concrete

ROAD PUBLICATIONS OF BUREAU OF PUBLIC ROADS

Applicants are urgently requested to ask only for those publications in which they are particularly interested. The Department can not under-take to supply complete sets nor to send free more than one copy of any publication to any one person. The editions of some of the publications are necessarily limited, and when the Department's free supply is exhausted and no funds are available for procuring additional copies, applicants are referred to the Superintendent of Documents, Govern-ment Printing Office, this city, who has them for sale at a nominal price, under the law of January 12, 1895. Those publications in this list, the Department supply of which is exhausted, can only be secured by pur-chase from the Superintendent of Documents, who is not authorized to furnish publications free.

ANNUAL REPORTS

Report of the Chief of the Bureau of Public Roads, 1924. Report of the Chief of the Bureau of Public Roads, 1925. Report of the Chief of the Bureau of Public Roads, 1927.

DEPARTMENT BULLETINS

- No. 105D. Progress Report of Experiments in Dust Prevention and Road Preservation, 1913.
 - *136D. Highway Bonds. 20c.
 - Road Models. 220D.
 - 257D. Progress Report of Experiments in Dust Prevention

 - 257D. Progress Report of Experiments in Dust Prevention and Road Preservation, 1914.
 *314D. Methods for the Examination of Bituminous Road Materials. 10c.
 *347D. Methods for the Determination of the Physical Properties of Road-Building Rock. 10c.
 *370D. The Results of Physical Tests of Road-Building Product 155.

 - Rock. 15c. 386D. Public Road Mileage and Revenues in the Middle Atlantic States, 1914.
 - 387D. Public Road Mileage and Revenues in the Southern States, 1914.
 - 388D. Public Road Mileage and Revenues in the New England States, 1914.

 - 390D. Public Road Mileage and Revenues in the United States, 1914. A Summary.
 407D. Progress Reports of Experiments in Dust Prevention and Road Preservation, 1915.
 - *463D. Earth, Sand-clay, and Gravel Roads. 15c.
 - *532D. The Expansion and Contraction of Concrete and Concrete Roads. 10c.
 - *537D. The Results of Physical Tests of Road-Building Rock in 1916, Including all Compression Tests. 5c.
 - *583D. Reports on Experimental Convict Road Camp, Fulton County, Ga. 25c.
 *660D. Highway Cost Keeping. 10c.
 *670D. The Results of Physical Tests of Road-Building Rock in 1916 and 1917. 5c.
 *601D. The description of the Discretion of the Discretio

 - *691D. Typical Specifications for Bituminous Road Materials. 10c.
 - *724D. Drainage Methods and Foundations for County Roads. 20c. *1077D. Portland Cement Concrete Roads. 15c.

 - 1259D. Standard Specifications for Steel Highway Bridges, adopted by the American Association of State Highway Officials and approved by the Secretary of Agriculture for use in connection with Federalaid road work.
 - 1279D. Rural Highway Mileage, Income, and Expendi-tures, 1921 and 1922.

· Department supply exhausted.

DEPARTMENT BULLETINS-Continued

No. 1486D. Highway Bridge Location.

DEPARTMENT CIRCULARS

No. 94C. T. N. T. as a Blasting Explosive. 331C. Standard Specifications for Corrugated Metal Pipe Culverts.

TECHNICAL BULLETIN

No. 55. Highway Bridge Surveys.

MISCELLANEOUS CIRCULARS

- 62M. Standards Governing Plans, Specifications, Con-tract Forms, and Estimates for Federal Aid No Highway Projects.
 - 93M. Direct Production Costs of Broken Stone.
 - *105M. Federal Legislation Providing for Federal Aid in Highway Construction and the Construction of National Forest Roads and Trails. 5c.

FARMERS' BULLETINS

No. *338F. Macadam Roads. 5c.

SEPARATE REPRINTS FROM THE YEARBOOK

- No. *739Y. Federal Aid to Highways, 1917. 5c.

 - *849Y. Roads. 5c. 914Y. Highways and Highway Transportation.
 - 937Y. Miscellaneous Agricultural Statistics.

TRANSPORTATION SURVEY REPORTS

- Report of a Survey of Transportation on the State Highway System of Connecticut.
- Report of a Survey of Transportation on the State Highway System of Ohio.
- Report of a Survey of Transportation on the State Highways of Vermont.
- Report of a Survey of Transportation on the State Highways of New Hampshire.

REPRINTS FROM THE JOURNAL OF AGRICULTURAL RESEARCH

- Vol. 5, No. 17, D- 2. Effect of Controllable Variables upon the Penetration Test for Asphalts and Asphalt Cements.
- Vol. 5, No. 19, D- 3. Relation Between Properties of Hardness and Toughness of Road-Build-
- Vol. 5, No. 24, D- 6. A New Penetration Needle for Use in Testing Bituminous Materials. Vol. 6, No. 6, D- 8. Tests of Three Large-Sized Reinforced-Concrete Slabs Under Concentrated
- Loading. Vol. 11, No. 10, D-15. Tests of a Large-Sized Reinforced-Con-crete Slab Subjected to Eccentric Concentrated Loads.

CURRENT STATUS OF FEDERAL-AID ROAD CONSTRUCTION AS OF JUNE 30, 1928

	STATE	Alabama Arizona Arkansab	CALIFORNIA COLORADO CONNECTICUT	DELAWARE FLORIDA GEORGIA	I DAHO I LL I NOI S I NDI ANA	lowa Kanbas Kentucky	Loui BI ANA Maine Marvland	MASBACHUSETTS Michigan Minnesota	MI SSI SSI PPI MI BEOURI MONTANA	NEBRASKA Nevada New Hampbhire	NEW JERSEY NEW MEXICO NEW YORK	NORTH CAROLINA North Dakota Ohio	OKLAHOMA OREGON PENNBYLVANIA	RHODE ISLAND SOUTH CAROLINA SOUTH DAKOTA	TENNEBSEE TEXAS UTAH	VERMONT VIRGINIA WABHINGTON	WEST VIRGINIA WISCONSIN WYOMING HAWAII	TOTALS
BALANCE OF FEDERAL AID	FUNDE AVAILABLE	\$ 1,645,844.91 2,896,024.65 1,766,771.75	3, 363, 012, 39 2, 573, 202, 04 566, 752, 51	190,680.44 1,210,489.75 17,567.82	138, 890, 41 114, 597, 22 267, 083, 14	171,307.77 1,284,552.84 529,296.09	317,573.20 1,380,996.50 143,816.23	2,151,418.10 627,344.95 398,471.43	892,222.08 1,550,939.55 4,353,988.31	1,999,143.13 595,556.89 65,727.25	253,177.00 894,813.28 3,910,462.81	1,141,531.23 637,992.37 2,591,001.85	387,602.49 1,267,098.47 1,850,129.27	576,046.16 64,396.43 514,514.16	254,777.15 3,975,468.70 220,749.79	25,473.81 237,853.61 481,843.46	478,768.16 1,435,440.82 157,116.50 1,064,241.58	53,643,770.45
	TOTAL	61.1 4.2 16.1	43.7 27.2 3.5	12.9 30.7 152.4	103.4 148.0 61.3	81.6 106.3 62.7	8.8 14.2 45.8	5.6 35.9 70.4	12.1 60.0 245.8	23.2 23.7 9.2	56.5 125.5	24.5 314.1 95.3	125.2 6.7 82.4	4.0 18.5 146.2	119.9 317.9 20.9	11.9 31.6 26.2	25.3 52.2 41.8	3,118.4
NO	MILEA 9	12.4 4.2 6.2	14.5	50.1	1.8	71.4	7.2	6.5 20.5	0.6	23.2	0.5 8.6	19.5 121.7 6.7	15.5	8.1 39.2	94.3 156.0	6°9	15.7	759.1
R CONSTRUCT I	ORIGINAL	48.7 9.9	43.7 12.7 3.6	12.9 30.7 102.3	101.6 148.0 61.3	10.2 106.3 62.7	8.8 14.2 38.5	5.6 29.4 49.8	11.5 46.3 235.1	9.2	56.1 116.9	192.4 88.6	109.7 6.7 82.4	4.0 10.4 107.0	25.6 151.9 19.4	21.5	25.3 36.5 1.8 1.8	2,359.3
APPROVED FO	FEDERAL AID ALLOTTED	\$ 358,972.93 42,024.90 102,444.55	703,031.15 159,230.93 66,951.17	155,295.80 333,505.44 1,239,573.27	653,836.57 1,942,068.50 807,135.04	778,011.52 598,232,45 579,848.00	239,803.83 200,682.35 416,900.00	84,345.00 525,885.00 291,000.00	100,459.53 602,718.59 1,308,589.18	37, 768.93 51, 419.58 190, 235.78	492,343.74 1,806,847.50	259,500.00 502,502.23 1,340,636.26	837,936.01 146,673.72 1,318,026.22	80,919.55 69,700.00 360,684.24	1,368,324.58 2,627,108.00 240,095.90	147,454.36 156,605.91 440,236.89	294,283,84 433,988,43 190,054,91 57,501,20	25,741,403.29
	ESTIMATED TOTAL COST	\$ 717,945.71 122,094.33 250,474.26	1,573,168,56 287,928.34 285,289.67	310,591.60 905,396.31 2,934,550.18	1,100,504.72 3,896,721.88 1,671,729.13	1,827,757.31 1,348,337.76 1,159,696.00	724,325.88 586,603.30 858,534.80	361,296.54 1,150,043.70 1,201,168.05	201,358.23 1,511,404.60 2,345,539.14	75,620.57 59,079.34 490,414.56	777,265.15 8,328,900.00	534,495.97 1,240,836.16 4,757,780.00	1,871,838.77 278,334.10 4,414,639.79	311,081.95 394,006.44 655,789.73	4,267,517.00 6,241.573.47 328,886.36	584,323.08 884,718.69 1,142,840.68	617,098.44 1,400,034.42 296,051.33 175,931.99	67,461,518.09
	TOTAL	326.4 86.5 180.7	128.9 198.5 34.4	9.6 105.1 198.9	173.3 620.1 317.7	282.5 242.8 227.4	193.0 39.7 30.0	71.4 328.5 360.6	259.2 171.8 279.7	841.5 165.7 19.0	71.3 155.2 460.6	102.7 791.7 256.2	177.4 40.7 240.7	26.8 326.2 657.3	138.9 349.9 124.5	51.2 120.9 123.5	105.6 302.4 259.1 3.2	10,779.0
	I L E A G	55.9 0.6	0 0 0 0 0 0	3.9 5.4 30.7	56.8 3.5	137.3		54.7	30.9 39.0 4.1	197.4 28.4		13.0 165.4 6.0	6.4	120.7 73.3	125.1 12.3	21.6	25.2 32.1	1,285.2
TRUCTION	ORIGINAL	270.5 86.0 180.7	120.7 189.4 34.4	5.7 99.7 168.2	116.5 620.1 314.2	145.2 242.8 227.4	193.0 39.7 30.0	71.4 328.5 305.9	228.3 132.8 275.6	644.1 137.3 19.0	71.3 155.2 460.6	89.7 626.3 250.2	171.0 40.7 240.7	26.8 205.5 584.0	138.9 224.8 112.2	51.2 99.3 105.4	105.6 277.2 227.0 3.2	9,493.9
UNDER CONS	FEDERAL AID ALLOTTED	\$ 2,583,180.18 1,577,922.94 2,174,942.33	2,929,250.54 2,627,641.63 831,098.01	95,739.75 1,773,093.63 1,805,098.52	1,235,873.81 9,204,790.58 4,915,301.36	2, 993, 700.52 1, 907, 366.82 2, 488, 415.98	2,072,905.40 528,952.60 353,730.00	1,133,667.82 5,616,223.08 2,088,100.00	2,149,654.95 1,900,212,49 2,385,241.58	3,206.959.06 1,012,597.47 272,455.16	1,039,947.35 1,602,034.50 7,154,693.95	981,951.81 1,740,332.78 4,150,846.38	1,617,074.66 847,554.19 3,983,882.84	431,049.92 1,887,138.22 1,855,200.66	1,939,405.06 3,494,782.06 1,364,094.82	584,978.39 1,337,952.75 1,437,000.00	1,244,328.22 3,251,570.37 1,417,612.15 60,383.43	105,297,930.62
	ESTIMATED TOTAL COST	\$ 5,195,635.95 1,795,361.35 4,906,901.45	6,122,281.76 5,134,698.11 3,269,777.06	470,022.22 4,185,912.27 3,701,359.50	2,067,804.47 19,966,945.33 10,285,596.57	7,006,259.73 4,812,182.97 4,924,557.22	4,161,328.09 1,294,982.17 738,690.77	3,785,205.01 13,340,940.37 6,287,137.06	4,361,785.79 4,630,264.01 3,526,790.69	6,436,612.14 1,156,011.48 661,935.44	5,847,748.19 2,414,979.86 30 ,549,500.00	2,052,044.50 3,650,655.06 11,250,370.37	3,357,788.78 1,517,571.16 13,745,519.18	1,723,452.42 8,499,229.16 3,458,251.40	4,524,754.78 8,914,648.60 1,996,561.57	2,345,384.25 4,221,703.93 4,144,458.77	2,789,397,94 7,931,130,44 2,260,697,90 301,973,75	261,754,800.99
COMPLETED	MILEAGE	1,748.0 851.4 1,678.2	1,455.5 979.3 206.5	195.7 385.8 2,457.5	937.1 1,685.4 1,060.1	2,831.5 2,202.4 1,148.9	1,276.0 428.7 557.5	501.1 1,337.3 3,823.8	1,533.6 2,210.1 1,299.3	3,032.3 1,018.6 305.6	418.3 1,740.3 1,864.8	1,582.4 3,155.1 1,805.9	1,589.7 1,104.9 1,837.0	136.2 1,631.6 2,834.4	1,075.6 5,965.9 806.5	201.3	606.9 2,046.9 1,442.5 36.2	71,074.3
	STATE	ALABAMA ARI ZONA ARKANBAS	CAL I FORN I A COL ORADO CONNECT I DUT	DELAWARE FLORIDA GEORGIA	DAHO ILLINOIS INDIANA	lowa Kanbab Kentucky	Louiblana Maine Maryland	MASSACHUSETTS MICHIGAN MINNESOTA	MISSISSIPPI MISSOURI MONTANA	NEBRASKA Nevada New Hampshire	NEW JERSEY NEW MEXICO NEW YORK	NORTH CAROLINA North Dakota OHID	OKLAHOMA OREGON PENNEYLVANIA	RHODE ISLAND SOUTH CAROLINA SOUTH DAKOTA	TENNEBSEE TEXAR UTAH	VERMONT VIAGINIA WASHINGTON	WEBT VIRGINIA Wibconbin Wyoming Hawaii	TOTALS

THE TERM STAGE CONBTRUCTION REFERE TO ADDITIONAL WORK DONE ON PROJECTS PREVIDUSLY IMPROVED WITH FEOERAL AID. IN GENERAL, SUCH ADDITIONAL WORK CONSISTS OF THE CONBTRUCTION OF SURFACE OF HIGHER TYPE THAN WAS PROVIDED IN THE DRIVINAL IMPROVEMENT.

