APPENDIX E
PART 572, SUBPART R DUMMY PERFORMANCE CALIBRATION TEST PROCEDURE

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>PURPOSE AND APPLICATION</td>
<td>E-1</td>
</tr>
<tr>
<td>2.</td>
<td>GENERAL REQUIREMENTS</td>
<td>E-1</td>
</tr>
<tr>
<td>3.</td>
<td>SECURITY</td>
<td>E-1</td>
</tr>
<tr>
<td>4.</td>
<td>GOOD HOUSEKEEPING</td>
<td>E-2</td>
</tr>
<tr>
<td>5.</td>
<td>TEST SCHEDULING AND MONITORING</td>
<td>E-2</td>
</tr>
<tr>
<td>6.</td>
<td>TEST DATA DISPOSITION</td>
<td>E-2</td>
</tr>
<tr>
<td>7.</td>
<td>GOVERNMENT FURNISHED PROPERTY (GFP)</td>
<td>E-2</td>
</tr>
<tr>
<td>8.</td>
<td>CALIBRATION AND TEST INSTRUMENTATION</td>
<td>E-5</td>
</tr>
<tr>
<td>9.</td>
<td>PHOTOGRAPHY</td>
<td>E-6</td>
</tr>
<tr>
<td>10.</td>
<td>DEFINITIONS</td>
<td>E-6</td>
</tr>
<tr>
<td>11.</td>
<td>PRETEST REQUIREMENTS</td>
<td>E-6</td>
</tr>
<tr>
<td>11.1</td>
<td>TRANSDUCER REQUIREMENTS</td>
<td>E-6</td>
</tr>
<tr>
<td>11.2</td>
<td>OTHER TRANSDUCER CONDITIONS</td>
<td>E-7</td>
</tr>
<tr>
<td>11.3</td>
<td>THORAX IMPACTOR PROBE</td>
<td>E-8</td>
</tr>
<tr>
<td>11.4</td>
<td>GENERAL TEST CONDITIONS</td>
<td>E-11</td>
</tr>
<tr>
<td>12.</td>
<td>CALIBRATION TEST EXECUTION</td>
<td>E-11</td>
</tr>
<tr>
<td>13.</td>
<td>POST TEST REQUIREMENTS</td>
<td>E-11</td>
</tr>
<tr>
<td>14.</td>
<td>REPORTS</td>
<td>E-11</td>
</tr>
<tr>
<td>14.1</td>
<td>APPARENT TEST FAILURE</td>
<td>E-11</td>
</tr>
<tr>
<td>14.2</td>
<td>FINAL PERFORMANCE CALIBRATION REPORTS</td>
<td>E-12</td>
</tr>
<tr>
<td>15.</td>
<td>DATA SHEETS</td>
<td>E-14</td>
</tr>
<tr>
<td>E1</td>
<td>DUMMY DAMAGE CHECKLIST</td>
<td>E-14</td>
</tr>
<tr>
<td>E2</td>
<td>EXTERNAL MEASUREMENTS</td>
<td>E-16</td>
</tr>
<tr>
<td>E3</td>
<td>FRONTAL HEAD DROP TEST</td>
<td>E-21</td>
</tr>
<tr>
<td>E4</td>
<td>REAR HEAD DROP TEST</td>
<td>E-24</td>
</tr>
<tr>
<td>E5</td>
<td>NECK FLEXION TEST</td>
<td>E-27</td>
</tr>
<tr>
<td>E6</td>
<td>NECK EXTENSION TEST</td>
<td>E-29</td>
</tr>
<tr>
<td>E7</td>
<td>THORAX IMPACT TEST</td>
<td>E-34</td>
</tr>
<tr>
<td>E8</td>
<td>INSTRUMENTATION CALIBRATION INFORMATION</td>
<td>E-37</td>
</tr>
<tr>
<td>Illustrations</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>1E DUMMY HANGER PLATE</td>
<td>E3</td>
<td></td>
</tr>
<tr>
<td>2E DUMMY HANGER</td>
<td>E4</td>
<td></td>
</tr>
<tr>
<td>3E SIGN CONVENTION</td>
<td>E-9</td>
<td></td>
</tr>
<tr>
<td>4E EXTERNAL DIMENSIONS</td>
<td>E-20</td>
<td></td>
</tr>
<tr>
<td>5E FRONTAL HEAD DROP TEST SET-UP SPECIFICATIONS</td>
<td>E-23</td>
<td></td>
</tr>
<tr>
<td>6E REAR HEAD DROP TEST SET-UP SPECIFICATIONS</td>
<td>E-26</td>
<td></td>
</tr>
<tr>
<td>7E NECK PENDULUM SPECIFICATIONS</td>
<td>E-31</td>
<td></td>
</tr>
<tr>
<td>8E NECK FLEXION TEST SETUP SPECIFICATIONS</td>
<td>E-32</td>
<td></td>
</tr>
<tr>
<td>9E NECK EXTENSION TEST SETUP SPECIFICATIONS</td>
<td>E-33</td>
<td></td>
</tr>
<tr>
<td>10E THORAX IMPACT TEST SETUP SPECIFICATIONS</td>
<td>E-36</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tables</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1E SIGN CONVENTION FOR HYBRID III TRANSDUCER OUTPUTS</td>
<td>E-10</td>
</tr>
</tbody>
</table>
1. PURPOSE AND APPLICATION

The purpose of this laboratory procedure is to provide dummy users (independent testing laboratories under contract with the Office of Vehicle Safety Compliance) with standard test procedures for performing receiving-inspection and performance calibration tests on the Part 572, Subpart R dummy so that repetitive and correlative test results can be obtained. The following tests have been developed to establish a uniform calibration procedure for all users as the means of verifying the performance of the dummy.

A. EXTERNAL DIMENSIONS (PADI)
B. HEAD DROP TEST (572.152)
C. NECK FLEXION TEST (572.153(b)(1))
D. NECK EXTENSION TEST 572.153(b)(2)
E. THORAX IMPACT TEST ((572.154)

National Highway Traffic Safety Administration (NHTSA) contract laboratories performing FMVSS 208 testing for the Office of Vehicle Safety Compliance (OVSC) must use this laboratory procedure for the calibration of Part 572, Subpart R dummies.

2. GENERAL REQUIREMENTS

The Code of Federal Regulations (49CFR), Parts 571 and 572, was amended to adopt the Hybrid III, CRABI 12-Month-Old Dummy as the means of determining a vehicle's conformance to the performance requirements of FMVSS 208. Each Part 572, Subpart R dummy used in a compliance test must meet the specifications and performance criteria of Part 572 before and after each low risk deployment test in order to be an acceptable compliance test tool.

The Part 572, Subpart R Hybrid III, CRABI 12-Month-Old Dummy consists of components and assemblies specified in the drawing and specifications package which is available from Reprographics Technologies, 9000 Virginia Manor, Beltsville, MD 20705, telephone - (301) 419-5070.

3. SECURITY

All NHTSA Part 572, Subpart R test dummies delivered to the contract laboratory as Government Furnished Property (GFP) will be stored in a safe and secure area such as the dummy calibration laboratory. The contractor is financially responsible for any acts of theft and/or vandalism that occur during the storage of GFP. Any security problems shall be reported by telephone to the Industrial Property Manager (IPM), Office of Contracts and Procurement, within two working days after the incident. A letter containing specific details of the security problem will be sent to the IPM (with copy to the COTR) within 48 hours.
The contractor is responsible for maintaining the NHTSA test dummies in good working order, and shall protect and segregate the data that evolves from conducting Part 572, Subpart R dummy calibration tests before and after each low risk deployment usage.

No Information concerning the Part 572, Subpart R dummy calibration data shall be released to anyone except the COTR, unless specifically authorized by the COTR or the COTR's Branch or Division Chief.

NOTE: No Individuals, other than contractor personnel directly involved in the dummy calibration test program, shall be allowed to witness dummy calibration tests unless specifically authorized by the COTR.

4. **GOOD HOUSEKEEPING**

Contractors shall maintain the entire dummy calibration laboratory, test fixtures, and instrumentation in a neat, clean, and painted condition with test instruments arranged in an orderly manner consistent with good test laboratory housekeeping practices.

5. **TEST SCHEDULING AND MONITORING**

The Part 572, Subpart R dummies are being calibrated as test tools to be used in a low risk deployment test to determine compliance with the requirements of FMVSS 208. The schedule for these performance calibration tests must be correlated with that of the vehicle tests. All testing shall be coordinated to allow monitoring by the COTR.

6. **TEST DATA DISPOSITION**

The contractor shall make all dummy calibration data available to the COTR for review and analysis as required. All calibration test data for each particular Part 572, Subpart R dummy will be sent to the COTR with each test report.

All backup data sheets, strip charts, recordings, plots, technicians notes, etc. shall be either sent to the COTR or destroyed at the conclusion of each delivery order, purchase order, etc.

7. **GOVERNMENT FURNISHED PROPERTY (GFP)**

Part 572, Subpart R test dummies will be furnished to the contract laboratory by the OVSC. The dummies shall be stored in a hanging position using the bracket and positioning shown in drawings 1E and 2E.
NOTES:
1. 4.50" is the minimum dimension required to clear the dummies shoulder and arm.

FIGURE 1E
FIGURE 2E
These dummies shall be stored in a secured room that is kept between 55ºF and 85ºF. The contractor will check dummy components for damage after each low risk deployment test and complete a dummy damage checklist that will be included with the posttest dummy calibration. The COTR will be kept informed of the dummies condition in order that replacement parts can be provided. The contractor shall calibrate the dummies before and verify the calibration after every low risk deployment test. If the posttest verification is within the calibration specifications, it may be used as the pretest calibration for the next crash test or low risk deployment test.

8. CALIBRATION AND TEST INSTRUMENTATION

Before the contractor initiates the dummy performance calibration test program, a test instrumentation calibration system must be implemented and maintained in accordance with established calibration practices. The calibration system shall be set up and maintained as follows:

A. Standards for calibrating the measuring and test equipment shall be stored and used under appropriate environmental conditions to assure their accuracy and stability.

B. All measuring instruments and standards shall be calibrated by the contractor, or a commercial facility, against a higher order standard at periodic intervals not exceeding 12 months for instruments and 12 months for calibration standards. Records, showing the calibration traceability to the National Institute of Standards and Technology (NIST), shall be maintained for all measuring and test equipment.

C. All measuring and test equipment and measuring standards shall be labeled with the following information:

(1) Date of calibration

(2) Date of next scheduled calibration

(3) Name of the technician who calibrated the equipment

D. The contractor shall provide a written calibration procedure that includes, as a minimum, the following information for all measurement and test equipment:

(1) Type of equipment, manufacturer, model number, etc.

(2) Measurement range

(3) Accuracy
(4) Calibration interval

(5) Type of standard used to calibrate the equipment (calibration traceability of the standard must be evident)

(6) The actual procedures and forms used to perform calibrations.

E. The contractor shall keep records of calibrations for all test instrumentation in a manner that assures the maintenance of established calibration schedules. All such records shall be readily available for inspection when requested by the COTR. The calibration system will need the written acceptance of the COTR before testing begins.

F. Test equipment shall receive a calibration check immediately prior to and after each test. This check shall be recorded by the test technician(s) and submitted with the final report.

G. Anthropomorphic test devices shall be calibrated before and verify the calibration after each low risk deployment test. These calibrations shall be submitted with the final report.

9. PHOTOGRAPHIC DOCUMENTATION

Provide still photographs (8 x 10 inch glossy color prints properly focused for clear images) of posttest damage resulting from the low risk deployment test.

10. DEFINITIONS

PADI: Procedures for Assembly, Disassembly, and Inspection

11. PRETEST REQUIREMENTS

11.1 TRANSDUCER REQUIREMENTS

The contractor shall provide and install the following instrumentation to the GFP dummies (excluding the chest deflection transducer).

A. HEAD – The head accelerometers shall have dimensions, response characteristics and sensitive mass locations specified in drawing SA572-S4 and be mounted in the head as shown in drawing 921022-000. (572.155(b))

Three accelerometers shall be mounted in the head cavity to measure orthogonal accelerations (Ax, Ay, Az) at the center of gravity (CG) of the head assembly.
B. NECK – The neck force-moment transducer shall have the dimensions, response characteristics, and sensitive axis locations specified in drawing SA572-S23 and shall be mounted as shown in drawing 921022-000. (572.155(c))

C. CHEST – The chest accelerometers shall have the dimensions, response characteristics, and sensitive mass locations specified in drawing SA572-S4 and be mounted in the torso assembly in traxial configuration at the T4 location as shown drawing 921022-000. The chest accelerometers are not required for dummy calibration testing but are required for FMVSS 208 low risk deployment testing. (572.155(e))

D. TEST FIXTURE – The neck pendulum, and thorax accelerometers shall have the dimensions and characteristics of drawing SA572-S4.

11.2 OTHER TRANSDUCER CONDITIONS

A. TRANSDUCER MOUNTS – The mountings for sensing devices shall have no resonance frequency less than 3 times the frequency range of the applicable channel class. (572.155(k))

B. TRANSDUCER SIGN CONVENTION - The sign convention for outputs of transducers mounted within the dummy that measure head and chest accelerations, chest deflection and neck loads are located in Figure 3E. For other transducers see SAE J1733DEC94. (572.155(i))

C. TRANSDUCER OUTPUT FILTERING - The outputs of acceleration and force-sensing devices installed in the dummy and in the test apparatus specified by this part are recorded with individual data channels. Each data channel will be comprised of a sensor, signal conditioner, data acquisition device, and all interconnecting cables, and must conform to the requirements of SAE Recommended Practice J211/1 MAR95, "Instrumentation for Impact Test," with channel classes as follows: (572.155(i))

1. Head acceleration Class 1000 (572.155(i)(1))
2. Neck force Class 1000 (572.155(i)(2)(i))
3. Neck moment Class 600 (572.155(i)(2)(ii))
4. Neck pendulum acceleration Class 180 (572.155(i)(2)(iii))
5. Neck rotation transducers Class 60 (572.155(i)(2)(iv))
6. Thorax spine acceleration Class 180 (572.155(i)(3)(ii))
7. Thorax pendulum acceleration Class 180 (572.155(i)(3)(ii))
All filter classes should be of the "phaseless" type to be compatible with the "time" dependent test parameters.

11.3 THORAX IMPACTOR PROBE (572.155(a))

A. The test probe for thoracic impacts shall be of rigid metallic construction, concentric about its longitudinal axis.

B. It shall have a mass of 2.86 ± 0.02 kg (6.3 ± 0.05 lbs). 1/3 of the weight of the suspension cables and any attachments to the impact probe must be included in the calculation of mass, and such components may not exceed 5 percent of the total weight of the test probe.

C. It shall have a minimum mass moment of inertia of 164 kg-cm^2 ($0.145 \text{ lbs-in-sec}^2$) in yaw and pitch about the center of gravity.

D. The impacting end of the probe is perpendicular to and concentric with the longitudinal axis. The face has a diameter of 101.6 ± 0.25 mm (4.00 ± 0.01 in), a maximum edge radius of 7.6 to 12.7 mm (0.3 to 0.5 in) and is flat, continuous and non-deformable.

E. A 101-103 mm diameter cylinder surface extends at least 12.5 mm to the rear of the impact face.

F. The probe's end opposite to the impact face must have provisions for mounting of an accelerometer with its sensitive axis collinear with the longitudinal axis of the probe.

G. The impact probe shall have a free air resonant frequency of not less than 1000 Hz measured in line with the longitudinal axis of the impactor.
SIGN CONVENTION FOR PART 572 TEST DUMMIES

POSSIBLE A_R

$A_R = \sqrt{A_x^2 + A_y^2 + A_z^2} \text{ Gs}$

RIGHT FEMUR
LOAD CELL
(F_R)

LEFT FEMUR
LOAD CELL
(F_L)

FIGURE 3E
TABLE 1E

SIGN CONVENTION FOR HYBRID III TRANSDUCER OUTPUTS

<table>
<thead>
<tr>
<th>BODY SEGMENT — MEASURED FORCE</th>
<th>POSITIVE OUTPUT DIRECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>NECK FX SHEAR</td>
<td>HEAD REARWARD OR CHEST FORWARD</td>
</tr>
<tr>
<td>FY SHEAR</td>
<td>HEAD LEFTWARD, CHEST RIGHTWARD</td>
</tr>
<tr>
<td>FZ AXIAL</td>
<td>HEAD UPWARD, CHEST DOWNWARD</td>
</tr>
<tr>
<td>MX MOMENT (ROLL)</td>
<td>LEFT EAR TOWARD LEFT SHOULDER</td>
</tr>
<tr>
<td>MY MOMENT (PITCH)</td>
<td>CHIN TOWARD STERNUM</td>
</tr>
<tr>
<td>MZ MOMENT (YAW)</td>
<td>CHIN TOWARD LEFT SHOULDER</td>
</tr>
<tr>
<td>LEFT SHOULDER FX</td>
<td>LEFT ARM/SHOULDER FORWARD, CHEST REARWARD</td>
</tr>
<tr>
<td>FZ</td>
<td>LEFT ARM/SHOULDER DOWNWARD, CHEST UPWARD</td>
</tr>
<tr>
<td>RIGHT SHOULDER FX</td>
<td>RIGHT ARM/SHOULDER FORWARD, CHEST REARWARD</td>
</tr>
<tr>
<td>FZ</td>
<td>RIGHT ARM/SHOULDER DOWNWARD, CHEST UPWARD</td>
</tr>
<tr>
<td>LUMBAR SPINE FX</td>
<td>CHEST REARWARD, PELVIS FORWARD</td>
</tr>
<tr>
<td>FY</td>
<td>CHEST LEFTWARD, PELVIS RIGHTWARD</td>
</tr>
<tr>
<td>FZ</td>
<td>CHEST UPWARD, PELVIS DOWNWARD</td>
</tr>
<tr>
<td>MX MOMENT</td>
<td>LEFT SHOULDER TOWARD LEFT HIP</td>
</tr>
<tr>
<td>MY MOMENT</td>
<td>STERNUM TOWARD FRONT OF LEGS</td>
</tr>
<tr>
<td>MZ MOMENT</td>
<td>RIGHT SHOULDER FORWARD, LEFT SHOULDER REARWARD</td>
</tr>
<tr>
<td>PUBIC FX SHEAR</td>
<td>PUBIC REARWARD, CHEST FORWARD</td>
</tr>
<tr>
<td>FZ AXIAL</td>
<td>PUBIC UPWARD, CHEST DOWNWARD</td>
</tr>
</tbody>
</table>

NOTE: DIRECTIONS ARE DEFINED IN RELATION TO A SEATED DUMMY
11.4 GENERAL TEST CONDITIONS

A. Surfaces of dummy components are not painted unless otherwise specified. (572.155(n))

B. Dummy performance tests of the same component, segment, assembly, or fully assembled dummy are separated in time by a period of not less than 30 minutes unless otherwise specified. (572.155(m))

C. The dummy head performance tests are conducted at any temperature from 18.9°C (66°F) to 25.6°C (78°F) and at any relative humidity from 10% to 70% after exposure of the dummy to these conditions for a period of not less than 4 hours. For the neck-headform assembly and thorax assembly, the temperature range is 20.6°C (69°F) to 22.2°C (72°F) and at any relative humidity from 10% to 70% after exposure of the dummy to these conditions for a period of not less than 4 hours.

D. Dummy limb joints are set at 1 G, barely restraining the weight of the limb when it is extended horizontally. The force required to move a limb segment does not exceed 2 Gs throughout the range of limb motion. (572.155(l))

E. Dummies will be clothed for the thorax calibration tests with a form fitting cotton-polyester-based tight-fitting sweat shirt with long sleeves and ankle length pants. The total weight of the shirt and pants shall not exceed 0.25 kg (0.55 lb). (572.154(c)(2))

12. CALIBRATION TEST EXECUTION

Complete the Data Sheets in section 15.

13. POST TEST REQUIREMENTS

The contractor shall verify all instrumentation and check data sheets and photographs. Make sure data is recorded in all data blocks on every performance calibration test data sheet.

14. REPORTS

14.1 APPARENT NONCONFORMANCE

During the posttest calibration verification, any indication of apparent nonconformance to the requirements of Regulation P572 shall be communicated by telephone to the COTR within 24 hours with written notification mailed within 48 hours (Saturdays and Sundays excluded). Written notification shall be
submitted with a copy of the particular test data sheet(s) and preliminary data plot(s).

In the event of an apparent nonconformance, a posttest calibration check of some critically sensitive test equipment and instrumentation may be required for verification of accuracy. The necessity for the calibration shall be at the COTR's discretion and shall be performed without additional costs to the OVSC.

14.2 FINAL PERFORMANCE CALIBRATION REPORTS

14.2.1 COPIES

A report containing the pre-test calibration and post test calibration verification data for each Part 572, Subpart R dummy used in the low risk deployment test shall be submitted with FMVSS 208 final test report for the vehicle tested.

Contractors are required to PROOF READ all Final Test Reports before submittal to the COTR. The OVSC will not act as a report quality control office for contractors. Reports containing a significant number of errors will be returned to the contractor for correction, and a "hold" will be placed on invoice payment for the particular test.

14.2.2 REQUIREMENTS

Performance calibration report Table of Contents shall include the following:

A. Section 1 — Purpose of Calibration Test
B. Section 2 — Calibration Data Summary
C. Section 3 — Test Data
D. Section 4 — Test Equipment List and Calibration Information
E. Section 5 — Photographs (if applicable)

The test data for each dummy will be presented in separate sections. Each section shall contain a title page, test results summary and the test data. The title page shall include the dummy's serial number and the manufacturer's name. It will also indicate whether the calibration data is pre or posttest. The test results sheets will provide a summary of each test and describe any damage, failures and/or corrective action taken. The test data shall include the pass/fail data sheets, the time histories for each data channel used to determine the pass or fail status, and instrumentation calibration data sheets.
14.2.3 FIRST PAGE

FRONT COVER

A heavy paperback cover (or transparency) shall be provided for the protection of the final report. The information required on the cover is as follows:

A. Final Report Title And Subtitle such as

DUMMY PERFORMANCE CALIBRATION
IN SUPPORT OF
VEHICLE SAFETY COMPLIANCE TESTING
FOR OCCUPANT CRASH PROTECTION

B. Contractor's Name and Address such as

ABC TESTING LABORATORIES, INC.
405 Main Street
Detroit, Michigan 48070

NOTE: DOT SYMBOL WILL BE PLACED BETWEEN ITEMS B AND C

C. Date of Final Performance Calibration Report completion

D. The sponsoring agency's name and address as follows

U. S. DEPARTMENT OF TRANSPORTATION
National Highway Traffic Safety Administration
Enforcement
Office of Vehicle Safety Compliance
400 Seventh Street, SW
Room 6115 (NVS-220)
Washington, DC 20590
15. Data Sheets

DATA SHEET E1
DUMMY DAMAGE CHECKLIST (12-MONTH-OLD)

Dummy Serial Number _____________ Test Date _____________

Technician ___________________________

This check sheet is completed as part of the posttest calibration verification.

Indicate NA in the OK column for any components not applicable to this size dummy.

__Perform general cleaning.

<table>
<thead>
<tr>
<th>Dummy Item</th>
<th>Inspect for</th>
<th>Comments</th>
<th>Damaged</th>
<th>OK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outer skin</td>
<td>Gashes, rips, cracks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head</td>
<td>Ballast secure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>General appearance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neck</td>
<td>Broken or cracked rubber</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upper neck bracket firmly attached to the lower neck bracket</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Looseness at the condyle joint</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nodding blocks cracked or out of position</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spine</td>
<td>Broken or cracks in rubber.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ribs</td>
<td>Broken or bent ribs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Broken or bent rib supports</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Damping material separated or cracked</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rubber bumpers in place</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chest Displacement Assembly</td>
<td>Bent shaft</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slider arm riding in track</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transducer leads</td>
<td>Torn cables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dummy Item</td>
<td>Inspect for</td>
<td>Comments</td>
<td>Damaged</td>
<td>OK</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------------------</td>
<td>----------</td>
<td>---------</td>
<td>----</td>
</tr>
<tr>
<td>Accelerometer Mountings</td>
<td>Head mounting secure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chest mounting secure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knees</td>
<td>Skin condition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Insert (do not remove)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Casting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limbs</td>
<td>Normal movement and adjustment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knee Sliders</td>
<td>Wires intact</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rubber returned to “at rest” position</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pelvis</td>
<td>Broken</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If upon visual examination, damage is apparent in any of these areas, the appropriate engineer or engineering technician is to be consulted for a decision on repair or replacement of parts.

Repair or Replacement approved by:

_____________________________ ______________
Signature Date

Describe the repair or replacement of parts:

Checked by

_____________________________ ______________
Signature Date
DATA SHEET E2
EXTERNAL MEASUREMENTS (12-MONTH-OLD)
(See the PADI, pages 52-55)

Dummy Serial Number _______________ Test Date _______________

Technician ___________________________

__Pretest calibration
__Post test calibration verification

__1. Seat the dummy on a flat, rigid, smooth, clean, dry, horizontal surface. The seating surface is at least 406 mm (16 in) wide and 221 mm (8 11/16 in) in depth with a vertical section at least 406 mm (16 in) wide and 610 mm (24 in) high attached to the rear of the seating fixture. The dummy's midsagittal plane is vertical and centered on the test surface.

__2. Secure the dummy to the test fixture so that the upper torso and buttocks are tangent to the rear vertical surface of the fixture (as tangent as possible).

__3. Push the dummy’s forehead rearward and secure the head (at the forehead) against the seat back surface.

__4. Place the centerlines of the upper arms vertical.

__5. Place the centerlines of the lower arms horizontal.

__6. Position the upper legs so that they are parallel to one another.

__7. Position the lower legs so that they are perpendicular to the upper legs and the bottom of the foot is horizontal.

__8. Record the dimensions listed in following table, except for dimension Q (reference figure 4E).

__9. Place the dummy in supine position on the measurement surface. Place a block that is perpendicular to the table at both the head and feet of the dummy. Position the blocks perpendicular to the midsagittal plane of the dummy. Position the blocks so they are in contact with the head and the heels of the dummy. Measure the distance between the blocks for Q.

_____________________________ ______________
Signature Date
<table>
<thead>
<tr>
<th>DIMENSION</th>
<th>DESCRIPTION</th>
<th>DETAILS</th>
<th>ASSEMBLY DIMENSION (mm)</th>
<th>ACTUAL MEASUREMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>TOTAL SITTING HEIGHT</td>
<td>Seat surface to highest point on top of the head with head pulled back to touch vertical surface of fixture.</td>
<td>456-471.2</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>SHOULDER PIVOT HEIGHT</td>
<td>Centerline of shoulder pivot bolt to the seat surface.</td>
<td>276.6-291.8</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>HIP PIVOT HEIGHT</td>
<td>Centerline of hip pivot bolt to seat surface</td>
<td>27.9-38.1</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>HIP PIVOT FROM BACKLINE</td>
<td>Centerline of hip pivot bolt to vertical surface of seat</td>
<td>40.1-50.3</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>SHOULDER PIVOT FROM BACKLINE</td>
<td>Center of the shoulder pivot bolt to the fixture’s rear vertical surface.</td>
<td>50.3-60.5</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>THIGH CLEARANCE</td>
<td>Fixture’s seat surface to highest point on the upper femur segment</td>
<td>63.0-73.2</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>ELBOW PIVOT TO FINGERTIP</td>
<td>Elbow pivot to the finger tip, in line with the elbow and wrist centerlines</td>
<td>176.6-191.8</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>SHOULDER PIVOT TO-ELBOW PIVOT</td>
<td>Shoulder pivot bolt to elbow pivot bolt</td>
<td>99.1-114.3</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>ELBOW REST HEIGHT</td>
<td>Seat surface to bottom of lower arm</td>
<td>150.1-165.3</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>BUTTOCK TO KNEE LENGTH</td>
<td>The forward most part of the knee flesh to the fixture’s rear vertical surface</td>
<td>202.7-217.9</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>POPLITEAL HEIGHT</td>
<td>Seat surface to the horizontal plane of the bottom of the feet.</td>
<td>138.7-153.9</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>KNEE PIVOT HEIGHT</td>
<td>Centerline of knee pivot bolt to the horizontal plane of the bottom of the feet.</td>
<td>165.1-180.3</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>BUTTOCK POPLITEAL LENGTH</td>
<td>The rearmost surface of the lower leg to the same point on the rear surface of buttocks used for dimension K</td>
<td>144.8-160</td>
<td></td>
</tr>
<tr>
<td>DIMENSION</td>
<td>DESCRIPTION</td>
<td>DETAILS</td>
<td>ASSEMBLY DIMENSION (mm)</td>
<td>ACTUAL MEASUREMENT</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>---</td>
<td>--------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>O</td>
<td>CHEST DEPTH WITH JACKET</td>
<td>Measured 261.6 ± 5.1 mm above seat surface</td>
<td>107.5-122.7</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>FOOT LENGTH</td>
<td>Tip of toe to rear of heal</td>
<td>92.4-102.6</td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>STATURE</td>
<td>Place the dummy in supine position on the measurement surface. Position the blocks perpendicular to the midsaggital plane of the dummy. Position the blocks so they are in contact with the head and the heels of the dummy. Measure the distance between the blocks.</td>
<td>727.7-753.1</td>
<td>N/A</td>
</tr>
<tr>
<td>R</td>
<td>BUTTOCK TO KNEE PIVOT LENGTH</td>
<td>Knee pivot bolt to the fixture’s rear vertical surface.</td>
<td>178.5-188.7</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>HEAD BREADTH</td>
<td>Distance across the head at its widest point</td>
<td>124.4-134.6</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>HEAD DEPTH</td>
<td>Distance from the forward most surface of the head to the rearmost surface of the head, in line with the midsaggital plane.</td>
<td>149.9-165.1</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>HIP BREADTH</td>
<td>Distance across the width of the hip at the widest point of the jacket</td>
<td>158.5-173.7</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>SHOULDER BREADTH</td>
<td>Distance between the outside edges of the shoulder flesh, in line with the shoulder pivot bolts</td>
<td>200.7-215.9</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>FOOT BREADTH</td>
<td>The widest part of the foot</td>
<td>39.1-49.3</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>CHEST CIRCUMFERENCE WITH JACKET</td>
<td>Distance around chest at reference location AA, with jacket on. Measured 261.6 ± 5.1 mm above the seat surface.</td>
<td>452.4-477.8</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>WAIST CIRCUMFERENCE</td>
<td>Distance around waist at reference location BB, with jacket on. Measured 111.8 ± 5.1 mm above the seat surface.</td>
<td>447-472.4</td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>REFERENCE LOCATION FOR DIMENSION Y & O</td>
<td>Reference: 261.6 ± 5.1 mm above the seat surface</td>
<td>256.5-266.7</td>
<td></td>
</tr>
<tr>
<td>DIMENSION</td>
<td>DESCRIPTION</td>
<td>DETAILS</td>
<td>ASSEMBLY DIMENSION (mm)</td>
<td>ACTUAL MEASUREMENT</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>--------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>BB</td>
<td>REFERENCE LOCATION FOR DIMENSION Z</td>
<td>Reference: 111.8 ± 5.1 mm above seat surface</td>
<td>106.7-116.9</td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>SHOULDER HEIGHT</td>
<td>Top of arm to seat surface</td>
<td>299.7-314.9</td>
<td></td>
</tr>
<tr>
<td>DD</td>
<td>CHIN HEIGHT</td>
<td>Bottom of chin to seat surface</td>
<td>289.6-304.8</td>
<td></td>
</tr>
</tbody>
</table>
EXTERNAL DIMENSIONS

FIGURE 4E
DATA SHEET E3
FRONTAL HEAD DROP TEST (572.152) (12-MONTH-OLD)

Dummy Serial Number ________________ Test Date ________________

Technician __________________________ Test Date ________________

__Pretest calibration
__Post test calibration verification

Test attempt no. ____ (when successive head drops are necessary)

__1. It has been at least 2 hours since the last frontal head drop and at least 30 minutes since the last rear head drop. (572.152(c)(5))
 __ N/A, ONLY one head drop performed
__2. The head assembly consists of the head (921022-001), triaxial accelerometer mounting block (SA572-S80), and three (3) accelerometers (SA572-S4). (572.152(a))
__3. Accelerometers and their respective mounts are smooth and clean.
__4. The data acquisition system, including transducers, conforms to the requirements of SAE Recommended Practice J211/1 MAR95. (572.155(i))
__5. The head assembly soaked at a temperature between 18.9°C (66°F) and 25.6°C (78°F) and at a relative humidity from 10% to 70% for a period of at least four (4) hours prior to a test. (572.152(c)(1))
 Record the maximum temperature ______
 Record the minimum temperature ______
 Record the maximum humidity ______
 Record the minimum humidity ______
__6. Visually inspect the head skin for cracks, cuts, abrasions, etc. Repair or replace the head if the damaged area is more than superficial. Note: If the damage resulted from the low risk deployment test in which the dummy was an occupant, the damaged area is to be documented with photography and the post test calibration verification testing completed before any replacement or repairs are made.
 Record findings and actions: ___
 __
 __
 __
 __
 __
__7. Clean the impact surface of the skin and the impact surface of the fixture with isopropyl alcohol, trichloroethane or equivalent prior to the test. (572.152(c)(2))
__8. Suspend and orient the head assembly as shown in Figure 5E. The lowest point on the forehead is 376.0 ± 1.0 mm (14.8±0.04 inch) from the impact surface. (572.152(c)(3)(i))
 Record the actual distance _______

 NOTE: The masses of the suspension device and the accelerometer cables are to be kept as lightweight as possible to minimize their effect on the test results.

__9. The 3.3 mm (0.13 inch) diameter holes located on either side of the dummy’s head are equidistance within 2 mm from the impact surface. (572.152(c)(3)(i))
 Record the right side distance _______
 Record the left side distance _______

__10. The angle between the lower surface plane of the neck transducer mass simulator (910420-003) and the plane of the impact surface is 45 ± 1 degrees. (572.152(c)(3)(i))
 Record the angle _______

__11. The impact surface is clean and dry and has a micro finish in the range of 203.2x10^{-6} mm (8 micro inches) to 2032.0x10^{-6} mm (80 micro inches) (RMS). (572.152(c)(4))
 Record actual micro finish _______

__12. The impact surface is a flat horizontal steel plate 50.8 mm (2 inches) thick and 610 mm (24 inches) square. (572.152(c)(4))
 Record thickness _______
 Record width _______
 Record length _______

__13. Drop the head assembly from a height of 376.0 ± 1.0 mm (14.8 inches ± 0.04 inches) by a means that ensures a smooth, instant release onto the impact surface. (572.152(b) & (572.152(c)(4))

__14. Complete the following table. (572.152(b)):

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak resultant acceleration</td>
<td>100 g ≤ x ≤ 120 g</td>
<td></td>
</tr>
<tr>
<td>Resultant versus time history curve</td>
<td>Unimodal</td>
<td></td>
</tr>
<tr>
<td>Oscillations after the main pulse</td>
<td>Less than 17% of the peak resultant acceleration</td>
<td></td>
</tr>
<tr>
<td>Lateral acceleration</td>
<td>y-axis acceleration ≤ ±15 g</td>
<td></td>
</tr>
</tbody>
</table>

__15. Plots of the x, y, z, and resultant acceleration data follow this sheet.

___ ______________
Signature Date
FRONTAL HEAD DROP TEST SET-UP SPECIFICATIONS

FIGURE 5E
DATA SHEET E4
REAR HEAD DROP TEST (572.152) (12-MONTH-OLD)

Dummy Serial Number ________________ Test Date ________________

Technician ___________________________

__Pretest calibration
__Post test calibration verification

Test attempt no. ____ (when successive head drops are necessary)

__1. It has been at least 2 hours since the last rear head drop and at least 30 minutes since the last frontal head drop. (572.152(c)(5))
__ N/A, ONLY one head drop performed
__2. The head assembly consists of the head (921022-001), triaxial accelerometer mounting block (SA572-S80), and three (3) accelerometers (SA572-S4). (572.152(a))
__3. Accelerometers and their respective mounts are smooth and clean.
__4. The data acquisition system, including transducers, conforms to the requirements of SAE Recommended Practice J211/1 MAR95. (572.155(i))
__5. The head assembly soaked at a temperature between 18.9°C (66ºF) and 25.6°C (78ºF) and at a relative humidity from 10% to 70% for a period of at least four (4) hours prior to a test. (572.152(c)(1))
 Record the maximum temperature ______
 Record the minimum temperature ______
 Record the maximum humidity ______
 Record the minimum humidity ______
__6. Visually inspect the head skin for cracks, cuts, abrasions, etc. Repair or replace the head if the damaged area is more than superficial. Note: If the damage resulted from the low risk deployment test in which the dummy was an occupant, the damaged area is to be documented with photography and the post test calibration verification testing completed before any replacement or repairs are made.
 Record findings and actions: ___
 __
 __
 __
 __
__7. Clean the impact surface of the skin and the impact surface of the fixture with isopropyl alcohol, trichloroethane or equivalent prior to the test. (572.152(c)(2))
8. Suspend and orient the head assembly as shown in Figure 6E. The lowest point on the back of the head is 376.0 ± 1.0 mm (14.8±0.04 inch) from the impact surface. (572.152(c)(3)(ii))

Record the actual distance _______

NOTE: The masses of the suspension device and the accelerometer cables are to be kept as lightweight as possible to minimize their effect on the test results.

9. The 3.3 mm (0.13 inch) diameter holes located on either side of the dummy's head are equidistance within 2 mm from the impact surface. (572.152(c)(3)(ii))

Record the right side distance _______

Record the left side distance _______

10. The angle between the lower surface plane of the neck transducer mass simulator (910420-003) and the plane of the impact surface is 90 ± 1 degrees. (572.152(c)(3)(ii))

Record the angle _______

11. The impact surface is clean and dry and has a micro finish in the range of 203.2x10⁻⁶ mm (8 micro inches) to 2032.0x10⁻⁶ mm (80 micro inches) (RMS). (572.152(c)(4))

Record actual micro finish _______

12. The impact surface is a flat horizontal steel plate 50.8 mm (2 inches) thick and 610 mm (24 inches) square. (572.152(c)(4))

Record thickness _______

Record width _______

Record length _______

13. Drop the head assembly from a height of 376.0 ± 1.0 mm (14.8 inches ± 0.04 inches) by a means that ensures a smooth, instant release onto the impact surface. (572.152(b) & (572.152(c)(4))

14. Complete the following table. (572.152(b)):

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak resultant acceleration</td>
<td>55 g ≤ x ≤ 71 g</td>
<td></td>
</tr>
<tr>
<td>Resultant versus time history curve</td>
<td>Unimodal</td>
<td></td>
</tr>
<tr>
<td>Oscillations after the main pulse</td>
<td>Less than 17% of the peak resultant acceleration</td>
<td></td>
</tr>
<tr>
<td>Lateral acceleration</td>
<td>y-axis acceleration ≤ ±15 g</td>
<td></td>
</tr>
</tbody>
</table>

15. Plots of the x, y, z, and resultant acceleration data follow this sheet.

_____________________________ ______________
Signature Date
REAR HEAD DROP TEST SET-UP SPECIFICATIONS

FIGURE 6E
DATA SHEET E5
NECK FLEXION TEST (572.153) (12-MONTH-OLD)

Dummy Serial Number _____________ Test Date _____________

Technician ___________________________

__Pretest calibration
__Post test calibration verification

Test attempt no. ____ (when successive flexion tests are necessary)

__1. It has been at least 30 minutes since the last neck test. (572.155(m))
 __ N/A, this is the first neck test performed
__2. The components required for the neck tests include the neck assembly
 (921022-041), and headform (TE-3200-160). (572.153(a))
__3. The assembly soaked at a temperature between 20.6°C (69ºF) and 22.2°C
 (72ºF) and at a relative humidity from 10% to 70% for a period of at least four (4)
 hours prior to a test. (572.153(c)(1))
 Record the maximum temperature ______
 Record the minimum temperature ______
 Record the maximum humidity ______
 Record the minimum humidity ______
__4. Visually inspect neck assembly for cracks, cuts and separation of the rubber from
 the metal segments. Note: If the damage resulted from the low risk deployment
 test, the damaged area is to be documented with photography and the post test
 calibration verification testing completed before any replacement or repairs are
 made.
 Record findings and actions: ___
 __
 __
 __
__6. Torque the jam nut (9001336) on the neck cable (ATD-6206) between 0.2 Nm
 and 0.3 Nm. (572.153(c)(2))
__7. The data acquisition system, including transducers, conforms to the requirements
 of SAE Recommended Practice J211/1 MAR95. (572.155(i))
__8. The test fixture pendulum conforms to the specifications in Figure 7E.
__9. The head-neck assembly is mounted on the pendulum so the midsagittal plane of
 the headform is vertical and coincides with the plane of motion of the pendulum
 as shown in Figure 8E for the flexion test. (572.153(c)(3))
__10. Install the transducers or other devices for measuring the "D" plane rotation with
 respect to the pendulum longitudinal centerline. Note: Plane "D" is the top
 horizontal surface of the neck load cell. These measurement devices should be
 designed to minimize their influence upon the performance of the head-neck
 assembly and not induce neck torsion. (572.153(c)(3)(ii))
11. Plane D is perpendicular ± 1 degree to the centerline of the pendulum.
12. Set the instrumentation so that the moment and rotation are defined to be zero when the longitudinal centerline of the neck and pendulum are parallel. (572.153(c)(3)(i))
13. Release the pendulum and allow it to fall freely from a height to achieve an impact speed of 5.1 m/s to 5.3 m/s as measured at the center of the pendulum accelerometer at the instant of contact with the honeycomb. (572.153(c)(4))
14. Complete the following table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pendulum impact speed</td>
<td>5.1 m/s ≤ speed ≤ 5.3 m/s</td>
<td></td>
</tr>
<tr>
<td>Pendulum ΔV with respect to impact speed</td>
<td>@ 10ms 1.6 m/s ≤ ΔV ≤ 2.3 m/s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>@ 20 ms 3.4 m/s ≤ ΔV ≤ 4.2 m/s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>@25ms 4.3 m/s ≤ ΔV ≤ 5.2 m/s</td>
<td></td>
</tr>
<tr>
<td>Plane D Rotation</td>
<td>Peak moment* 36 Nm ≤ moment ≤ 45 Nm during the following rotation range 75° ≤ angle ≤ 86°</td>
<td>____Nm @ ____degrees</td>
</tr>
<tr>
<td>Positive Moment Decay** (Flexion)</td>
<td>Time to decay to 5Nm 60 ms ≤ time ≤ 80ms</td>
<td></td>
</tr>
</tbody>
</table>

*Moment about the occipital condyle = My – (0.005842 m x Fx) (572.153(b)(1)(iii))
 My = Moment in Nm measured by the transducer
 Fx = Force, in N measured by the transducer

**Time zero is defined as the time of initial contact between the pendulum striker plate and the honeycomb material. (572.153(c)(4)(i))

15. Plots of pendulum acceleration, pendulum velocity, neck y-axis moment, and neck rotation about the y-axis follow this sheet.

_____________________________ ______________
Signature Date
DATA SHEET E6
NECK EXTENSION TEST (572.153) (12-MONTH-OLD)

Dummy Serial Number ________________ Test Date ________________

Technician ___________________________

__Pretest calibration
__Post test calibration verification

Test attempt no. ____ (when successive flexion tests are necessary)

__1. It has been at least 30 minutes since the last neck test. (572.155(m))
 __ N/A, this is the first neck test performed
__2. The components required for the neck tests include the neck assembly
 (921022-041), and headform (TE-3200-160). (572.153(a))
__3. The assembly soaked at a temperature between 20.6°C (69ºF) and 22.2°C
 (72ºF) and at a relative humidity from 10% to 70% for a period of at least four (4)
 hours prior to a test. (572.153(c)(1))
 Record the maximum temperature ______
 Record the minimum temperature ______
 Record the maximum humidity ______
 Record the minimum humidity ______
__4. Visually inspect neck assembly for cracks, cuts and separation of the rubber from
 the metal segments. Note: If the damage resulted from the low risk deployment
 test, the damaged area is to be documented with photography and the post test
 calibration verification testing completed before any replacement or repairs are
 made.
 Record findings and actions: __
 __
 __
 __
 __
__6. Torque the jam nut (9001336) on the neck cable (ATD-6206) between 0.2 Nm
 and 0.3 Nm. (572.153(c)(2)
__7. The data acquisition system, including transducers, conforms to the requirements
 of SAE Recommended Practice J211/1 MAR95. (572.155(i))
__8. The test fixture pendulum conforms to the specifications in Figure 7E.
__9. The head-neck assembly is mounted on the pendulum so the midsagittal plane of
 the headform is vertical and coincides with the plane of motion of the pendulum
 as shown in Figure 9E for the flexion test. (572.153(c)(3))
__10. Install the transducers or other devices for measuring the "D" plane rotation with
 respect to the pendulum longitudinal centerline. Note: Plane "D" is the top
 horizontal surface of the neck load cell. These measurement devices should be
 designed to minimize their influence upon the performance of the head-neck
 assembly and not induce neck torsion. (572.153(c)(3)(ii))
11. Plane D is perpendicular ± 1 degree to the centerline of the pendulum.

12. Set the instrumentation so that the moment and rotation are defined to be zero when the longitudinal centerline of the neck and pendulum are parallel. (572.153(c)(3)(i))

13. Release the pendulum and allow it to fall freely from a height to achieve an impact speed of 2.4 m/s to 2.6 m/s as measured at the center of the pendulum accelerometer at the instant of contact with the honeycomb. (572.153(c)(4))

14. Complete the following table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pendulum impact speed</td>
<td>2.4 m/s ≤ speed ≤ 2.6 m/s</td>
<td></td>
</tr>
<tr>
<td>Pendulum ΔV with respect to impact speed</td>
<td>@ 6 ms 0.8 m/s ≤ ΔV ≤ 1.2 m/s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>@ 10 ms 1.5 m/s ≤ ΔV ≤ 2.1 m/s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>@ 14 ms 2.2 m/s ≤ ΔV ≤ 2.9 m/s</td>
<td></td>
</tr>
<tr>
<td>Plane D Rotation</td>
<td>Peak moment* -12 Nm ≤ moment ≤ -23 Nm during the following rotation range 80° ≤ angle ≤ 92°</td>
<td></td>
</tr>
<tr>
<td>Negative Moment Decay** (Extension)</td>
<td>Time to decay to -5Nm 76 ms ≤ time ≤ 90ms</td>
<td></td>
</tr>
</tbody>
</table>

*Moment about the occipital condyle = M_y – (0.005842 m x F_x) (572.153(b)(2)(iii))

**Time zero is defined as the time of initial contact between the pendulum striker plate and the honeycomb material. (572.153(c)(4)(i))

15. Plots of pendulum acceleration, pendulum velocity, neck y-axis moment, and neck rotation about the y-axis follow this sheet.

_____________________________ ______________
Signature Date
PENDULUM SPECIFICATIONS

Figure 7E

Structural Steel Tube
- 101.6 mm (4 in.)
- 76.2 mm (3 in.)
- 4.8 mm (0.1875 in.)

Pivot
- 50.8 mm (2 in.) DIA

Inertial Properties of Pendulum, Mounting Plate and Mounting Hardware Without Test Specimen
- Weight 29.57 kg (65.21 lbs)
- Moment of Inertia 33.2 kg-m² (294 in.-lb-sec²) about Pivot Axis

CG of Pendulum Apparatus Without Test Specimen
- 8.28 mm (32.6 in.)
- 1838.2 mm (72.25 in.)
- 1657.4 mm (65.25 in.)

Accelerometer
- 198.1 mm (7.8 in.)
- 38.1 mm (1.5 in.)
- 463.6 mm (18.25 in.)
- HEXCEL 28.8 kg/m³ (1.8 lb/ft³) REF

Aluminum Honeycomb
- 38.1 mm REF (1.5 in.)

Pendulum Striker Plate [Sharp Edges]
- 76.2 x 152.4 x 9.5 mm
- (3 x 6 x 3/8 in.)

Before testing, precrush the honeycomb material with the pendulum to assure that 90% to 100% of the honeycomb surface is contacting the pendulum striker plate.
NECK FLEXION TEST SET-UP SPECIFICATIONS

NOTE: MOUNT NECK AT LEADING EDGE OF PENDULUM TO AVOID INTERFERENCE.

FIGURE 8E
NECK EXTENSION TEST SET-UP SPECIFICATIONS

NOTE: MOUNT NECK AT LEADING EDGE OF PENDULUM TO AVOID INTERFERENCE.

FIGURE 9E
DATA SHEET E7
THORAX IMPACT TEST (572.154) (12-MONTH-OLD)

Dummy Serial Number _______________ Test Date _______________

Technician ___________________________

__Pretest calibration
__Post test calibration verification

Test attempt no. ____ (when successive thorax impact tests are necessary)

__1. It has been at least 30 minutes since the last thorax impact test. (572.155(m))
 __ N/A, ONLY one thorax impact test performed
__2. The test fixture conforms to the specifications in Figure 10E.
__3. The complete assembled dummy (921022-000) is used (572.154(b)) and is dressed in cotton-polyester-based tight-fitting long-sleeved sweat shirt and ankle length pants. The weight of the shirt and pants shall not exceed 0.25 kg. (572.154(c)(2))
__4. The dummy assembly soaked at a temperature between 20.6°C (69ºF) and 22.2°C (72ºF) and at a relative humidity from 10% to 70% for a period of at least four (4) hours prior to this test. (572.154(c)(1))
 Record the maximum temperature ______
 Record the minimum temperature ______
 Record the maximum humidity ______
 Record the minimum humidity ______
__5. Seat the dummy, without back support on the test fixture surface as shown in Figure 10E. The legs are extended forward, parallel to the midsagittal plane. The surface must be long enough to support the pelvis and outstretched legs. (572.154(c)(3))
__6. The midsagittal plane of the dummy is vertical within ± 1º. (572.154(c)(3))
__7. The posterior surface of the upper spine box is 90º ± 1º from the horizontal. Shim material may be used under the upper legs to maintain the dummy's specified spine box surface alignment. (572.154(c)(3))
__8. Place the upper arms parallel to the torso. Place the lower arms 0º to 5º forward of vertical. (572.154(c)(3))
__9. The longitudinal centerline of the test probe is centered within ±2.5 mm of the midsagittal plane, 196 ± 2.5 mm vertically from the plane of the seating surface and is within ±0.5º of a horizontal line in the dummy's midsagittal plane. (572.154(c)(4))
__10. The data acquisition system, including transducers, must conform to the requirements of SAE Recommended Practice J211/1 MAR95 (572.146(l)).
__11. Impact the anterior surface of the thorax with the test probe so the longitudinal centerline of the probe is within 2º of a horizontal line in the dummy's midsagittal plane at the moment of impact. (572.154(c)(5)) The velocity of the test probe at the time of impact is between 4.9 m/s and 5.1 m/s. (572.154(b)) The probe is
guided so there is no significant lateral, vertical or rotational movement during the impact. (572.154(c)(6) Neither the suspension hardware, suspension cables, nor other attachments to the probe, including the velocity vane, make contact with the dummy. (572.154(c)(7)

12. Complete the following table:

Thorax Impact Results (572.154(b))

<table>
<thead>
<tr>
<th>Parameter*</th>
<th>Specification</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Probe Speed</td>
<td>$4.9 \text{ m/s} \leq \text{speed} \leq 5.1 \text{ m/s}$</td>
<td></td>
</tr>
<tr>
<td>Peak force**</td>
<td>$1514 \text{ N} \leq \text{peak force} \leq 1796 \text{ N}$</td>
<td></td>
</tr>
</tbody>
</table>

*Time zero is defined as the time of initial contact between the test probe and the chest skin.

**Force = impactor mass x acceleration (572.144(b)(3))

13. Plots of pendulum acceleration, and pendulum force, follow this sheet.

-- ----------
Signature Date
THORAX IMPACT TEST SET-UP SPECIFICATIONS

Probe specifications:
1. Rigid metallic construction and concentric about its longitudinal axis.
2. A mass of 2.86 ± 0.02 kg (6.3 ± 0.05 lbs). 1/3 of the weight of the suspension cables and their attachments to the impact probe are included in the calculation of mass, and such components may not exceed 5 percent of the total weight of the test probe.
3. Minimum mass moment of inertia of 164 kg-cm2 (0.145 lbs-in-sec2) in yaw and pitch about the center of gravity.
4. The impacting end of the probe is perpendicular to and concentric with the longitudinal axis. It has a flat, continuous, and non-deformable face with diameter of 101.6 ± 0.25 mm (4.00 ± 0.01 in) and a edge radius of 7.6 to 12.7 mm (0.3 to 0.5 in.).
5. A 101-103 mm (4.0-4.1 in) diameter cylinder surface extends at least 12.5 mm to the rear of the impact face.
6. The probe’s end opposite to the impact face must have provisions for mounting of an accelerometer with its sensitive axis collinear with the longitudinal axis of the probe.
7. The impact probe shall have a free air resonant frequency of not less than 1000 Hz in line with the longitudinal axis of the impactor.

* 1/3 of CABLE WEIGHT NOT TO EXCEED 5% OF THE TOTAL IMPACT PROBE WEIGHT.

FIGURE 10E
DATA SHEET E8
PART 572 INSTRUMENTATION CALIBRATION INFORMATION

<table>
<thead>
<tr>
<th>I.D. NO.</th>
<th>MANUFACTURER</th>
<th>MODEL NO.</th>
<th>SERIAL NO.</th>
<th>DATE OF LAST CALIBRATION</th>
<th>DATE OF NEXT CALIBRATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DUMMY INSTRUMENTATION

HEAD ACCELEROMETERS
- (1) LONGITUDINAL
- (2) LATERAL
- (3) VERTICAL

CHEST ACCELEROMETERS
- (1) LONGITUDINAL
- (2) LATERAL
- (3) VERTICAL

CHEST POTENTIOMETER

FEMUR LOAD CELLS
- (1) RIGHT FEMUR
- (2) LEFT FEMUR

LABORATORY INSTRUMENTATION
- NECK PENDULUM ACCELEROMETER
- THORAX PENDULUM ACCELEROMETER
- KNEE PENDULUM ACCELEROMETER
- NECK ROTATION TRANSDUCER 1 (OPTIONAL)
- NECK ROTATION TRANSDUCER 2 (OPTIONAL)

LABORATORY TECHNICIAN: __