

the science of insight

Pricing and Reliability Enhancements in the San Diego Activity-Based Travel Model

Joel Freedman, RSG

TMIP Webinar Series

January 18, 2017

Overview

Objectives

- Modify San Diego Activity-Based Model to increase sensitivity to pricing alternatives
 - Travel time sensitivity heterogeneity
 - Value-of-time segmentation in skimming and assignment
- Add sensitivity to highway network reliability

Move research into practice

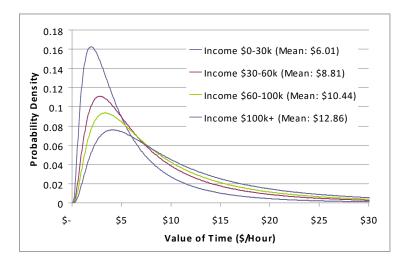
- SHRP Project C04: Improving Our Understanding of How Highway Congestion and Pricing Affect Travel Demand
- SHRP Project L04: Incorporating Reliability into Travel Models

Why is SANDAG interested in C04?

- Improved analysis tools for San Diego Forward: The Regional Plan
- Two existing toll facilities in San Diego (I-15 and SR-125)
- Additional ML facilities under consideration

What is an Activity-Based Model?

- Model travel by *individuals*
 - Socio-economic characteristics are tracked explicitly
 Decisions are simulated
- Model trips as part of *tours*
 - A series of trips beginning and ending at home or work (anchor locations)
- Schedule activities consistently in *time* and *space*
 - Activities occur in available time windows
 - No person can be in two places at the same time


Activity-Based Models: Micro-simulation

- A synthetic population is created that represents the actual population
- Travel is explicitly modeled for each person/household
- Monte Carlo simulation is used instead of fractional probability aggregation
- Results are aggregated and:
 - Assigned to transport networks
 - Compiled into reports

Examples of other AB Models with Pricing Enhancements

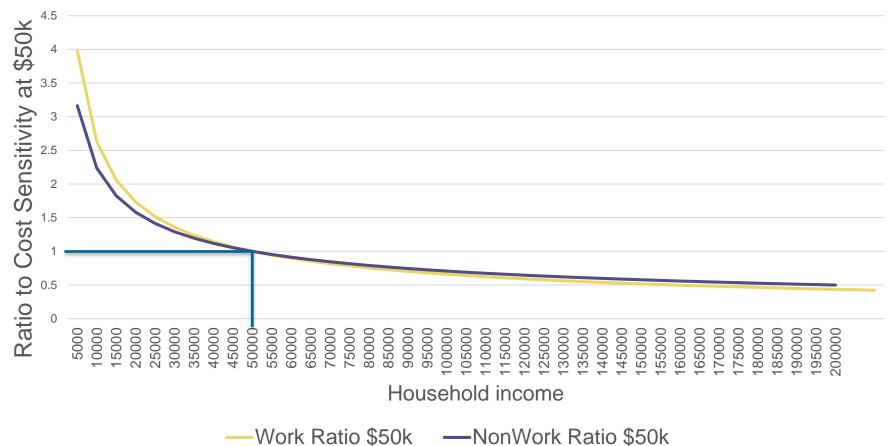
- San Francisco County Transportation Authority (SF-CHAMP)
 - Commuter value-of-time study used for random cost parameters
- Chicago Metropolitan Agency for Planning (CT-RAMP)
 - Eight time periods for skimming\assignment
- Sacramento Council of Governments (DaySim)
 - Distributed time sensitivity and continuous income as recommended by C04

C04 Highway Utility Function (implemented)

 $Utility_{ij} =$

$$\alpha \times Time_{ij} + \beta \times \left[Cost_{ij} / (I^e \times O^f)\right] + \gamma \times \frac{STD}{Distance_{ij}} + \delta$$

where:


 α is a log-normally distributed random parameter representing unobserved user heterogeneity with respect to travel time sensitivity β is the travel cost coefficient γ is the reliability coefficient δ is an alternative-specific constant for toll usage

I^e captures the effect of income (*I*) on travel cost sensitivity *O^f* captures the effect of auto occupancy on travel cost sensitivity STD/Distance is the standard deviation of travel time per mile

Cost Sensitivity By Household Income

Cost Sensitivity By Income Compared to Cost Sensitivity for \$50k Household

Travel Time Sensitivity

- Report recommends average travel time parameters but does not recommend specific location and scale parameters for distributed time sensitivity
- Our approach was to multiply estimated travel time coefficient by $\ln N (\mu, \sigma^2)$ with (non-log) mean = 1.0 and standard deviation calibrated to match other recent SP VOT studies
- Separate draws for each person for both work and nonwork
 - Time sensitivity for joint tours set to oldest tour member

Resulting Value of Time Distributions

	Non-Work Tour	r	Work tour		Statistic	Wo	ork	Nor	n-Work
∽	1				Mean	\$	16.24	\$	14.78
				Std. Dev	\$	18.35	\$	20.16	
		1		Minimum	\$	0.04	\$	0.03	
					Maximum	\$	955.18	\$ 1	,317.83
u									
Fraction .05					Percentiles	Work		Non-Work	
Ē					1%	\$	0.51	\$	0.46
				5%	\$	1.96	\$	1.21	
					10%	\$	3.19	\$	1.99
					25%	\$	5.93	\$	4.15
0					50%	\$	10.95	\$	8.75
	0 50	100 0 VOTDollarsPerHour	50	100	75%	\$	19.92	\$	17.79
Grap	hs by work	VOIDUIAISPeiHoui			90%	\$	34.24	\$	33.23
					95%	\$	47.53	\$	48.04
					99%	•	88.43	\$	95.32

All trips: 33rd percentile VOT = \$6.00/hour 66th percentile VOT = \$14.30/hour

SHRP Project C04 Key Recommendations: Reliability

- Incorporation of reliability
 - C04 suggests perceived travel time by congestion as proxy for reliability
 - Requires travel time skims by LOS (D, E, F, F+?)
 - Would not affect path (problem)

Travel time conditions	Weight
Free Flow	1.00
Busy	1.05
Light Congestion	1.10
Heavy Congestion	1.20
Stop Start	1.40
Gridlock	1.80

INRIX Travel Time Data

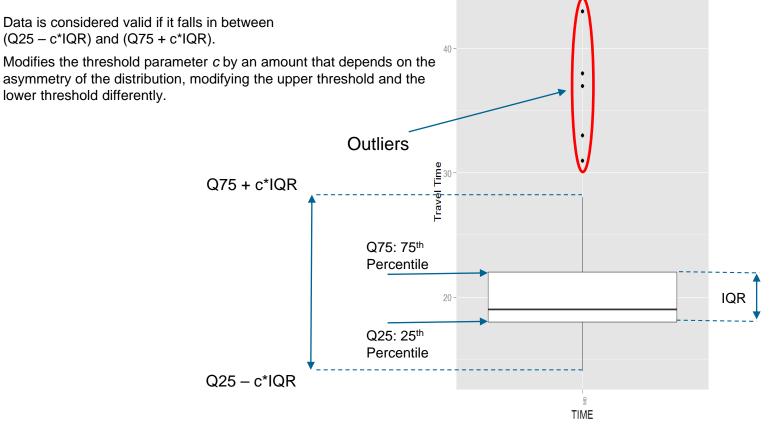
October 2012. Weekdays. Joined to network. 1400 centerline miles.

Facility Type	Data Size (number of segments)	Est. Sample Size – 80% (number of segments)		
Freeways	1,020	816		
Arterials	1,482	1,185		
Ramps	130	104		
Others (collectors and local roads)	355	284		
Total	2,987	2,389		

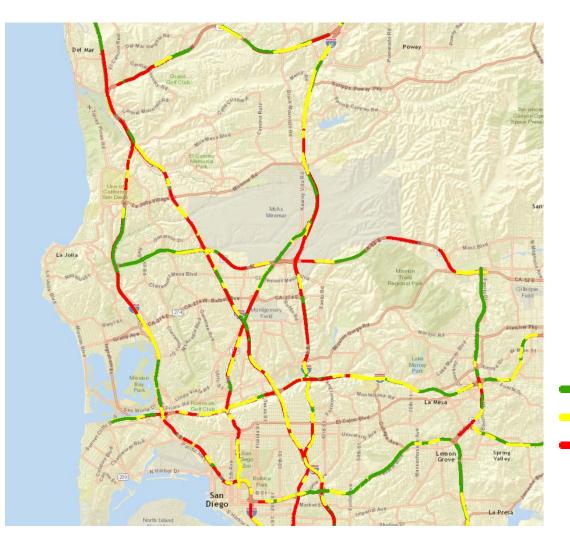
Low sample size for ramps and others

Estimations for freeway and arterial facility types

Interstate (I5) – Del Mar Heights (TMC 106+05013)


Travel Time (Interstate1_I5_DELMARHEIGHTS_TMC 106+05013)

. . **Travel Time** 12 Time of Day (Hour) Speed (Interstate1_I5_DELMARHEIGHTS_TMC 106+05013) Speed 1 Speed (m -----0. 14 12 18 22 Time of Day (Hour)

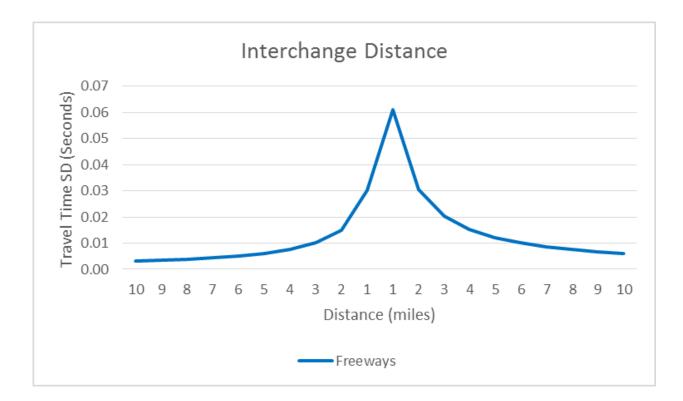

Outlier Detection

Adjusted Box Plot (every 15 mins)

Speed Variability (Freeways)

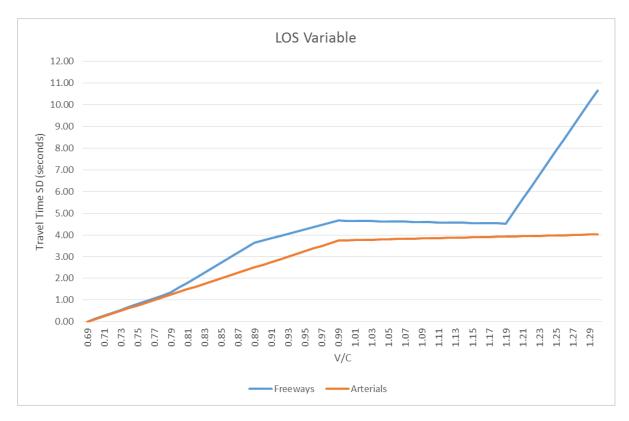
5:30 pm – 5:45 pm (PM peak period)

Speed Standard Deviation (mph) 0.000000 - 3.000000 3.000001 - 7.000000 7.000001 - 25.692287

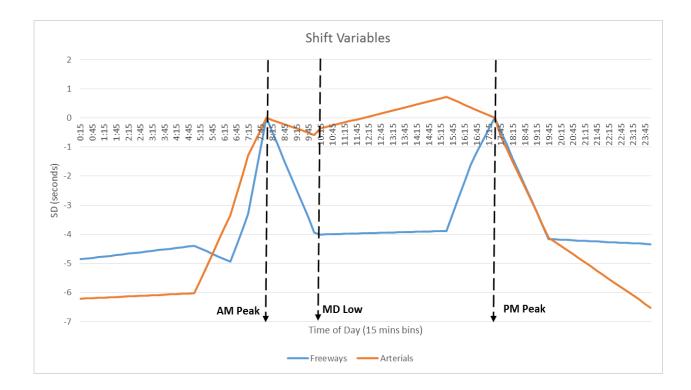

Travel Time Reliability Regression Model

 $\frac{\sigma_{\min per mile}}{\mu_{\min per mile}} = f \text{ (speed, lanes, control type, distance to freeway,} \\ time period, volume/capacity)}$

- Dependent variable formulated so that it can be implemented in volume-delay function
- Posted speed represents facility type variations for arterials
- (Inverse of) Distance to major freeway captures potential weaving conflicts: upstream (past) versus downstream (to)
- Control type signalized, stop-controlled, metered, rr-xing, none)
- Time period captures time-of-day effects within broad periods
- V/C ratio captures congestion effects


Major Interchange Distance

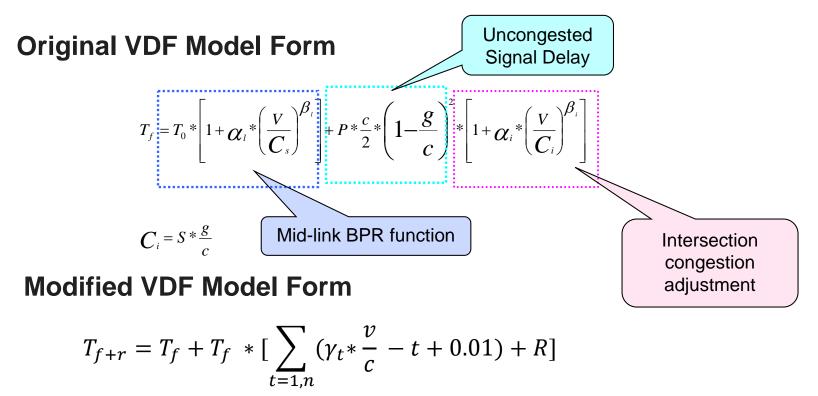
Facility	Avg. Speed (mph)	Mean TT (secs)
Freeway	65	55


Level of Service (LOS)

Facility	Avg. Speed (mph)	Mean TT (secs)
Freeway	65	55
Arterial	45	80

Shift Variables

Facility	Avg. Speed (mph)	Mean TT (secs)
Freeway	65	55
Arterial	45	80



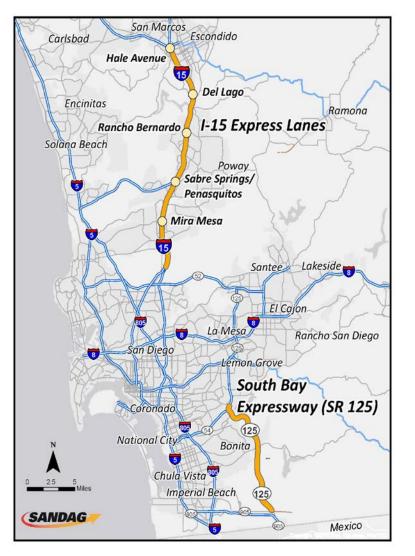
Estimation Results

- Two estimations one with time-of-day effects and one without
- Significant time-of-day effects capturing within period variability
- Distance to/from major interchanges significant for freeways
- Reasonable LOS effects
 - Flatter for arterials than freeways
- Adjusted r^2
 - 0.18 for freeways
 - 0.37 for arterials

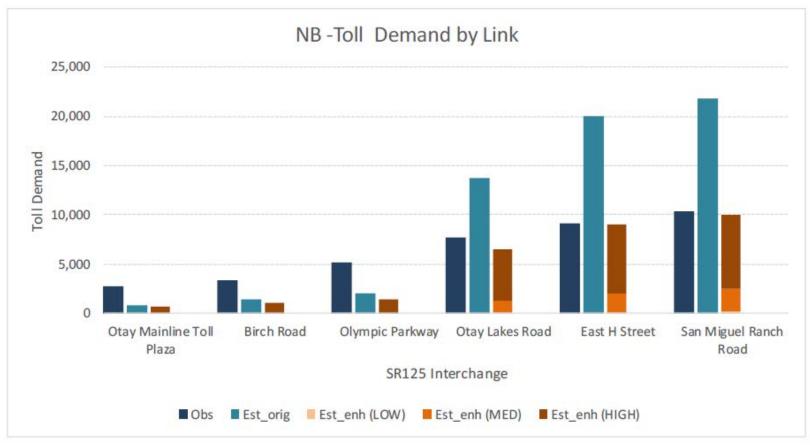
Reliability Implementation

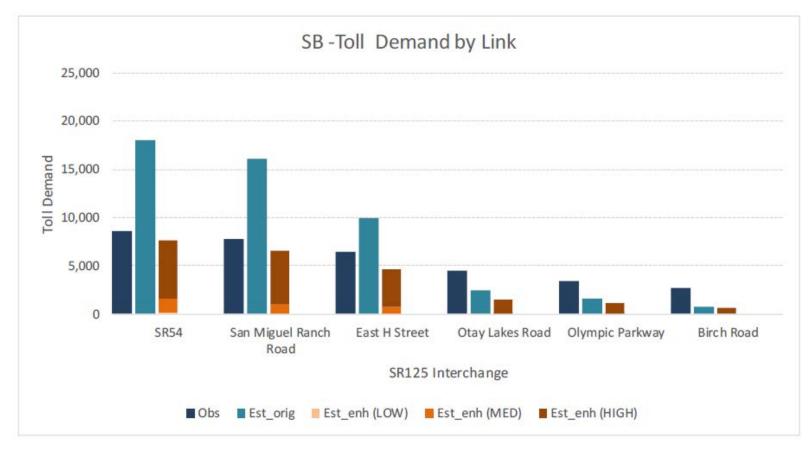
Where:

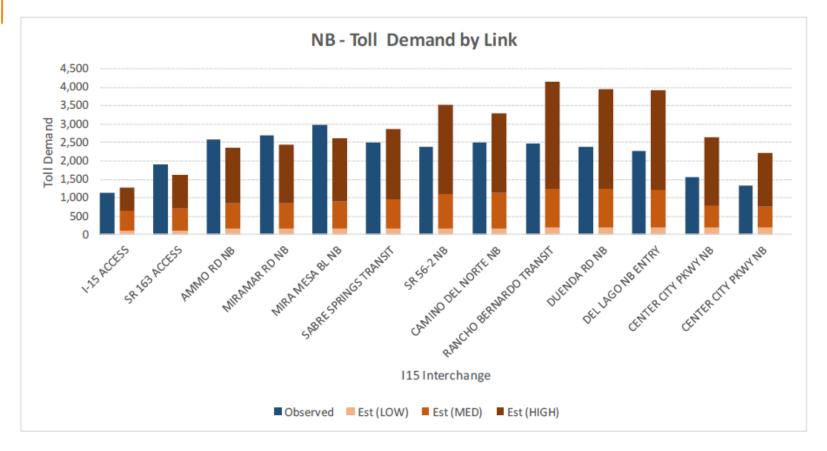
- T_{f+r} = Travel time with (un)reliability
- T_f = Travel time without (un)reliability
- t = v/c thresholds (C, D, E, F-low, F-high)
- γ_t = Coefficients for v\c thresholds
- $R = \text{non-v} \setminus c \text{ link (un) reliability}$

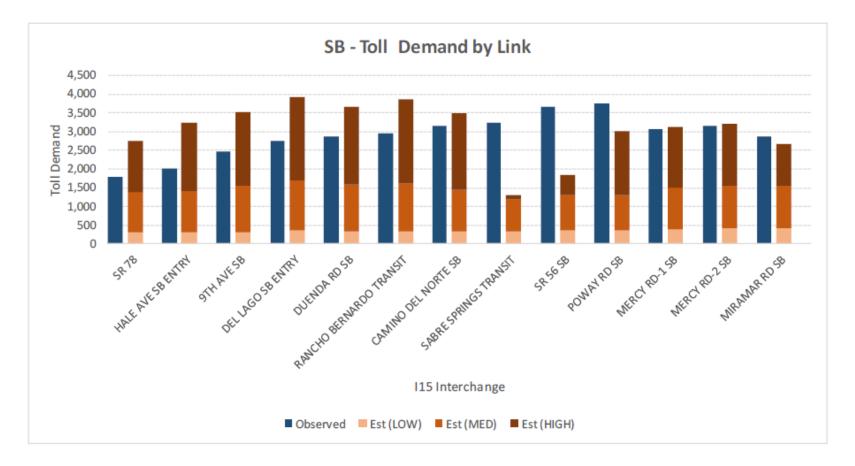


Problem: Standard deviation is not additive but variance is


- Path reliability calculation is not theoretically consistent
- To compensate, we square the unreliability portion of the cost for each link and skim
- Final skims are square root of the skimmed value


 Link level and gate-to-gate comparisons on I-15 and SR-125 toll facilities


SR-125: Northbound by Segment

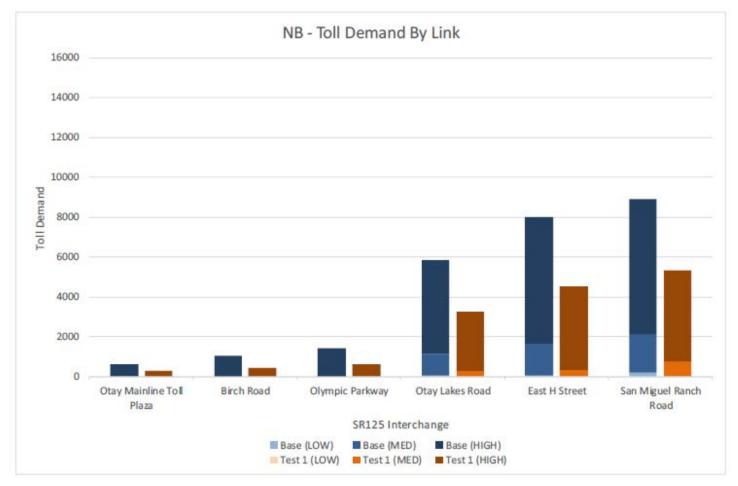

SR-125: Southbound by Segment

I-15: Northbound by Segment

I-15: Southbound by Segment

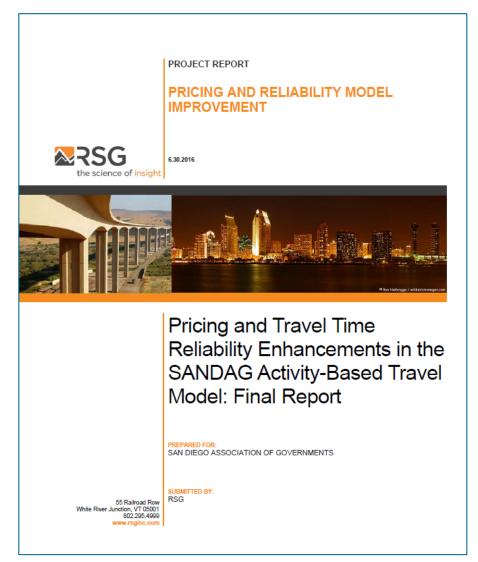
Sensitivity Tests

- Test 1: Half toll
 - All tolls reduced to 50% of reference case
- Test 2: Double toll
 - All tolls doubled
- Literature review of toll elasticity ranges
- Results
 - Reasonable demand responses
 - Higher elasticities for toll decrease than toll increase (right-skewed VOT distribution)
 - Elasticities generally in range of literature


Toll Elasticities

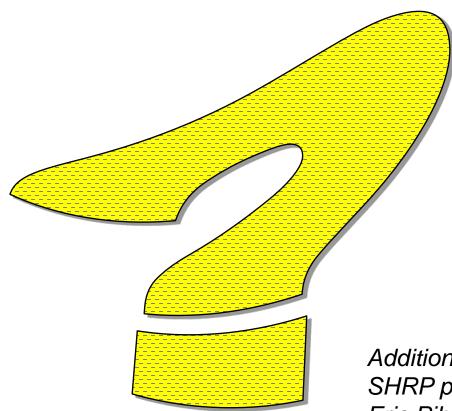
Plaza 1	Plaza 2	Base	Test 2	Diff (%)	Elasticity
Otay Mainline Toll	Birch Road	643	278	-57%	-0.57
Plaza					
Birch Road	Olympic Parkway	1038	449	-57%	-0.57
Olympic Parkway	Otay Lakes Road	1397	614	-56%	-0.56
Otay Lakes Road	East H Street	5867	3273	-44%	-0.44
East H Street	San Miguel Ranch Road	8010	4522	-44%	-0.44
San Miguel Ranch	SR54	8889	5315	-40%	-0.40
Road					

Elasticities for toll increase on SR-125 Northbound


Toll Volume by Value-of-Time

Volumes for base and toll increase on SR-125 Northbound by VOT

Final Report Completed



Conclusions and Future Directions

- Overall improvement in model validation
 - Little change on overall PRMSE, somewhat better performance on toll roads
 - Able to remove 'reliability factor' for SR-125
 - I-15 improvement largely due to transponder ownership model implementation
- Value-of-time bins provide variable and consistent toll/non-toll paths
- Final report complete, code checked into github, models installed and run on SANDAG servers
- More work is needed on reliability processing and inclusion in network models
 - Time dependent paths through observed data

Questions & Additional Information

Joel Freedman, RSG joel.freedman@rsginc.com

Nagendra Dhakar, RSG nagendra.dhakar@rsginc.com

Mark Bradley, RSG mark.bradley@rsginc.com

Wu Sun, SANDAG wsu@sandag.org

Additional thanks to: SHRP program for C04 funding Eric Pihl, Federal Highway Administration Rick Curry, SANDAG

