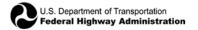

DISCLAIMER

The views and opinions expressed during this webinar are those of the presenters and do not represent the official policy or position of FHWA and do not constitute an endorsement, recommendation or specification by FHWA. The webinar is based solely on the professional opinions and experience of the presenters and is made available for information and experience sharing purposes only.

Administrative Items

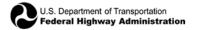
- **Use** a wired Internet Connect when possible
- Close all unnecessary programs running on their computer
- Do not use VPN or VDI. Connect directly to the room URL
- **Check** their connections status on the top right hand side of the screen


Connection Status: Excellent

Latency: <1 msec / 17 msec

Up: 0.088 kbit/s

Down: 1.16 kbit/s


• The webinar is being live close-captioned for the hearing impaired.

More Administrative Items

- The session will be recorded. The recorded webinar is available after the session via GovDelivery and http://www.fhwa.dot.gov/planning/tmip/community/webinars/summaries/index.cfm.
- All participant phone lines are muted.
- A Q&A pod window is displayed on your screen and you can enter your questions there anytime. The presenters will answer them during the Q&A session.
- Please answer the polls to help us improve future webinars.
- This webinar will last approximately two hour.

Implementation Assistance

- Jointly funded by the State DOTs
- Competitive process managed by FHWA, AASHTO, TRB
- Support evaluation and implementation of SHRP2 products
 - 1. User Incentives
 - 2. Lead Adopter
 - 3. Technology Pilot

SHRP2 TravelWorks

- Rapid Policy Assessment Tool (C16)
- Improving our Understanding of How Highway Congestion and Price Affect Travel Demand (C04)
- Partnership to Develop an Integrated, Advanced Travel Demand Model and a Fine-Grained, Time-Sensitive Network (C10)

Current Use Cases

Vision, Goals, & Scenarios

Deficiencies & Strategies

Programming

Corridor Planning

Environmental Review

Adapted from SHRP2 PlanWorks

Sharing TravelWorks Results

- TravelWorks
 - https://planningtools.transportation.org/10/travelworks.html
- Travel Forecasting Resource
 - http://tfresource.org/Travel_Forecasting_Resource
- Innovations in Travel Modeling Conferences
- Planning Applications Conferences
- TRB Annual Meeting
- TMIP Webinar Series

TMIP Webinar Series

Rapid Policy Assessment Tool

November 2, 2017

Demand Response to Congestion & Pricing

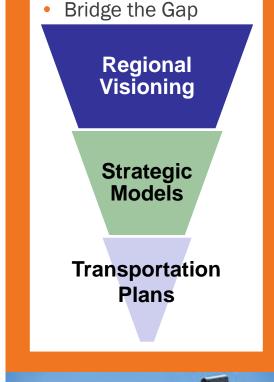
Jan/Feb 2017

ABM+DTA

Feb-Apr 2017

Introduction to the Rapid Policy Assessment Tool

Travel Model Improvement Program


November 2, 2016

Strategic Models

- Consider many possible scenarios
- Combines higher level analysis of the transportation supply with <u>individual</u> characteristics of travelers and built environment
- Easy to apply and run quickly

Effects of Smart Growth on Travel Demand: Research Findings

Торіс	Well-Established Relationships	Gaps in Research
Built environment impact on peak auto demand	Impact on daily travel	Impact by time of day
Mobility by mode and purpose	Impact on daily travel	Impact by trip purpose
Induced traffic and induced growth	Capacity expansion on an expanded facility	Route shifts, time-of-day shifts, mode shifts, induced trips, new destinations, growth shifts on the network; effects of operational improvements, land use plans
Relationship between smart growth and congestion	Localized effects	Macro-level or regional effects
Relationship between smart growth and freight	Freight is necessary for population centers	Impacts of loading docks, truck routing, full-cost pricing, freight facilities and crossings, interfirm cooperation, stakeholder communication

- Practitioners and Academics capture through interviews
- Synthesis of Performance Metrics and Analysis Tools

RPAT Model Components

RapidPolicy ASSESSMENT TOOL

- 1. Household Synthesis
- 2. Firm Synthesis
- 3. Urban Form
- 4. Accessibility
- 5. Vehicles
- 6. Auto Travel Demand
- 7. Truck and Bus Travel Demand
- 8. Congestion
- 9. Induced Demand
- 10. Policy Benefits

- Captures individual household and firm characteristics
- Captures interactions between policies
- Spatial results are by place type

Urban Form

RapidPolicy ASSESSMENT TOOL

Built Environment

Location of population and employment by place type

	Area Type						
Development Type	Urban Core	Close in Community	Suburban	Rural			
Residential	✓	✓	✓				
Employment	✓	✓	✓				
Mixed-Use	✓	✓	✓				
Transit Oriented Development	✓	✓	✓				
Rural/ Greenfield				✓			

Demand Management Policies

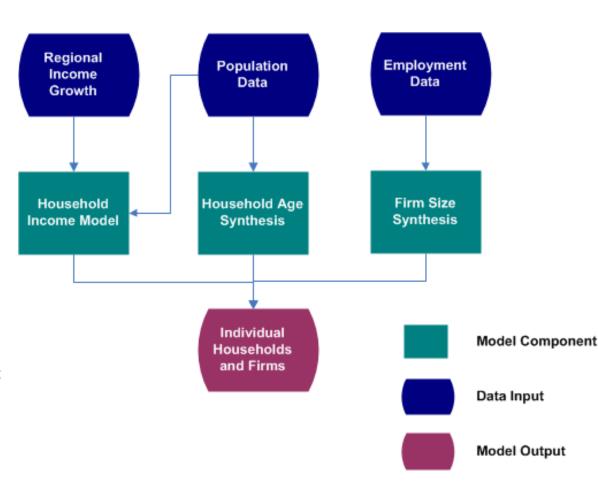
Vanpool

- Ridesharing
- Telecommuting
- Transit pass programs

Measures

- Proportion of Population and Employment by Place Type
- Population and Employment Densities by Place Type

Household and Firm Synthesis



Households

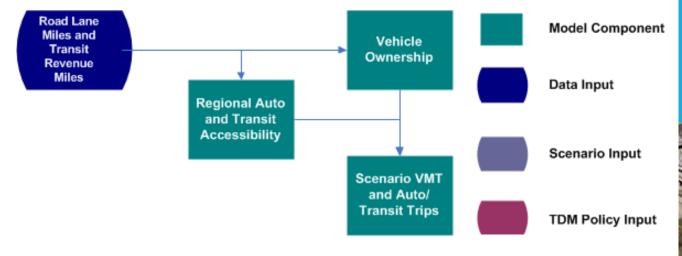
- Persons by Age from Census data
- HH Income from Bureau of Economic Analysis data

Firms

- Employees
- Industry from County Business Pattern data
- Data can be updated from local sources

Accessibility

RapidPolicy ASSESSMENT TOOL


Inputs

- Freeway Lane Miles
- Transit Revenue Miles (annual bus and rail revenue miles per capita)

Outputs

- Freeway Lane Miles per Person
- Transit RevenueMiles per Person

- Relates both transit and auto accessibility to travel behavior.
- Used in vehicle ownership models and vehicle miles traveled models.

Vehicle Models

- Predicts number of vehicle for each household
 - Autos
 - Bikes
 - Light Trucks
- Predicts vehicles by age/ fuel efficiency
- Based on
 - Number of persons of driving age
 - Elderly persons
 - Household income
 - Population density
 - Urban mixed-use area
 - Freeway and transit supply

Travel Demand Models

RapidPolicy ASSESSMENT TOOL

- Predicts Vehicle Miles Traveled for each Household
 - Autos and Light Trucks
 - Heavy Trucks
 - Buses and Passenger Rail
- Based on
 - Household income
 - Population density
 - Driving age persons in household
 - Elderly persons in household
 - Mixed use development
 - Number of household vehicles
 - Freeway and transit supply

- Truck VMT is based on changes in regional household income
- Bus VMT is calculated from bus revenue miles

Performance Metrics

Direct Travel Impacts

- Daily VMT
- Daily Vehicle Trips
- Daily Transit Trips
- Peak Travel Speeds by Facility Type
- Vehicle Hours of Travel
- Vehicle Hours of Delay

Community Impacts

- Public Health
 Impacts and Costs
- Equity Impacts

Environment and Energy Impacts

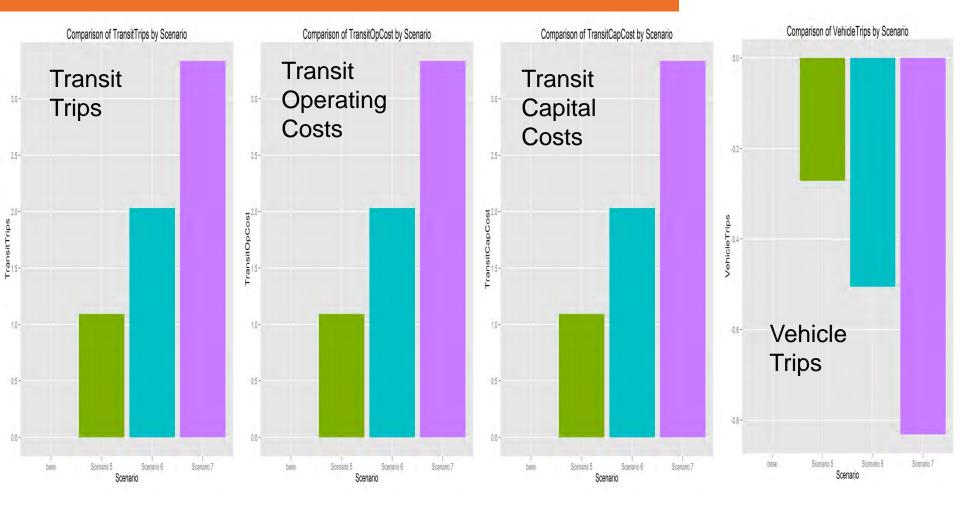
- Fuel Consumption
- Greenhouse Gas Emissions
- Criteria Emissions

Financial and Economic Impacts

- Regional Highway Infrastructure Costs
- Regional Transit
 Infrastructure and
 Operating Costs
- Annual Traveler Cost

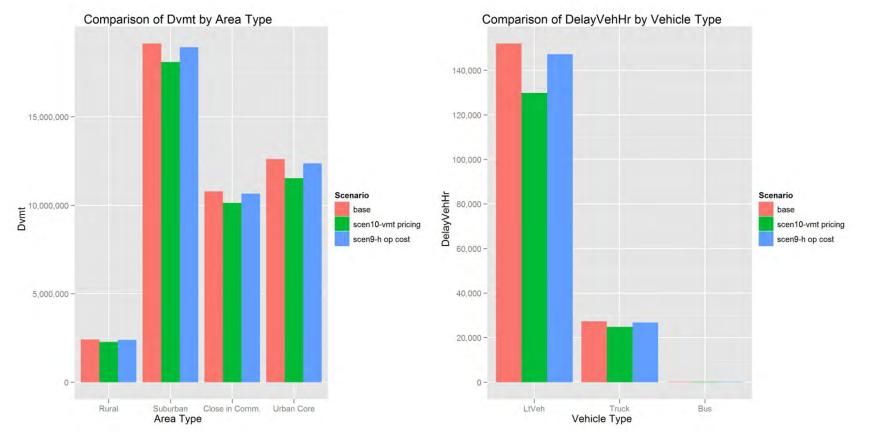
Land Market and Location Impacts

 Regional Accessibility


Developing Scenarios

Scenario	Land Use	Transportation	Policy
#1	Baseline	Baseline	Baseline
#2	Baseline	+ 20% in Transit Supply	Baseline
#3	Baseline	+ 20% in Roadway Supply	Baseline
#4	Baseline	Baseline	+20% in Lane Miles with ITS
#5	Shift 10% of Population and Employment to Close in Community and 10% to Urban Core. Proportional reduction from Suburban Area	Baseline	Baseline
#6	Shift 20% of Population and Employment to Close in Community and 20% to Urban Core. Proportional reduction from Suburban Area	Baseline	Baseline
#7	Shift 30% of Population and Employment to Close in Community and 30% to Urban Core. Proportional reduction from Suburban Area	Baseline	Baseline
#8	Shift 30% of Population and Employment to Close in Community and 30% to Urban Core. Proportional reduction from Suburban Area	+20% in Transit Supply	+20% in Lane Miles with ITS

Evaluating Impacts


Allocating growth to more transit accessible locations increases transit use.

Allocating growth to more central and mixed use areas reduces vehicle trips.

Pricing Impacts

Scenario	Land Use	Transportation	Policy
#9	Baseline	Baseline	+ 25% auto operating cost growth
#10	Baseline	Baseline	10 c/mile VMT charge

VMT pricing at this rate (10c/mile) has a stronger effect than the more modest increase in operating costs (i.e. higher fuel price).

Resources

- RPAT Software
- RPAT Source Code
- RPAT User's Guide
- RPAT Place Type: Methodologies
- Report: Effects of Smart Growth on Travel Demand
- Discussion Forum
 - https://planningtools.transportation.org

Adopting the Rapid Policy Assessment Tool (RPAT) for the Triangle Region *

Yanping Zhang & Felix Nwoko (DCHC MPO)
Colin Smith & Erich Rentz (RSG)

* SHRP2 C16 Project

1

What is the Rapid Policy Assessment Tool (RPAT)?

A free, open-sourced, and user-friendly strategic planning tool for,

- Evaluating growth effects on regional travel demand, energy-reduction, and carbon footprints
- Screening and comparing different growth scenarios
- Assessing what types of smart growth development are most suitable for given areas

RPAT Process

Policies for Roads and Parking

Travel Demand Management Policies

Population

Households

and Firms

by Place

Type

Urban Form

Models

Vehicle Models

Travel Demand

Models

Congestion

Policy Adjusted Travel Demand

Household and

Firm Models

Accessibility

Models

Heavy Truck

Demand

ITS Policies

% Growth

by Place

Type

Feedback

for Induced

Growth and Travel

Feedback

for Policy

Benefits

% Increase

in Auto

Operating

Cost

Model Component

Data Input

Scenario Input

Feedback Loop

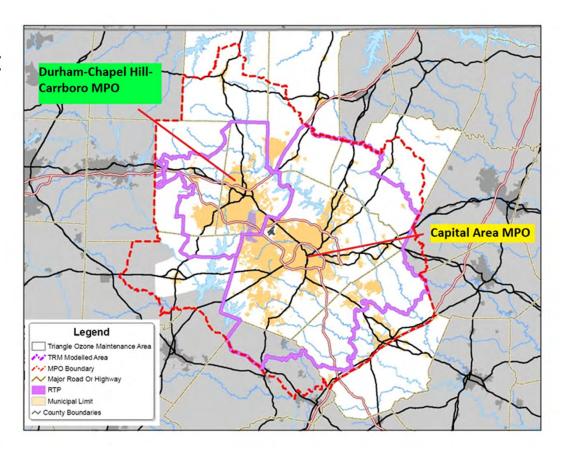
Triangle Region North Carolina

Western part:

Durham-Chapel Hill-Carrborc

MPO (DCHC MPO)

Eastern Part:


Capital Area MPO (CAMPO)

Regional Population:

2010: 1.61 Million Residents

2013: 1.72 Million Residents

2040: 2.95 Million Residents

Regional Travel Demand Model: Triangle Region Model (TRM)

RPAT Implementation (SHRP2 C16) Project for Triangle Region

DCHC MPO, CAMPO, RSG, NCDOT & ITRE/NCSU work together on,

- Preparing the RPAT input data and scenarios
- Validating the RPAT to replicate results of Triangle Region Model, for supporting the prescreening of transportation and land use scenarios in the MTP process
- Addressing policy questions, such as the impact of smart growth on land use, travel demand, and transportation supply

Transportation & Land Use Policies

Predicts the Change in VMT for each Household due to Transportation Policies

Growth/Development

- High Density Transit-Oriented Development (TOD)
- More Growth in Urban & Suburban Areas

ITS strategies

- Percentage of freeways with ITS strategies
- Percentage of arterials with ITS strategies

Pricing Policies

VMT charges (cents per mile)

				VMT	Charge (C	ents per N	⁄lile)			
	1	2	3	4	5	6	7	8	9	10
VMT Reduction	0.0%	0.2%	0.4%	0.6%	1.0%	1.3%	1.8%	2.3%	2.9%	3.6%

Tested Scenarios - Triangle Region

*Scenarios of the 2040 MTP Study

		De	mand (& La	nduse) Sce	narios
		Community Plan (CommP)	All-In-Transit (AIT)	Metro Transp Plan (MTP-D)	MTP-D w/ 20% Growth Shift to Dense Area
$\widehat{\mathbf{x}}$	Existing Plus Committed (E+C)			*E+C	
twor	Transit Intensive (TRN)		*TRN		
& Ne nario	Highway Intensive (Hwy)	*Hwy			
Supply (& Network) Scenarios	Metro Transp Plan (MTP-S)			*MTP	MTPx20DA
S	MTP-S w/ 20% ITS Treatment			MTP wITS20	MTPx20DA wITS

Scenario Input

Inputs:

- Built environment
- Travel demand
- Transportation supply
- Policies

Data sources:

- TRM & CommunityViz Model
- Geocoded Regional Employment Data
- Census Data & others

PLACE TYPES

		Area		
Development Type	Urban Core	Close in Community	Suburban	Rural
Residential	✓	✓	✓	
Employment	✓	✓	✓	
Mixed-Use	✓	✓	✓	
Transit Oriented Development	√	✓	√	
Rural/ Greenfield				✓

Scenario Assumptions

Base – 2040 MTP Scenario

				Sce	nario		
%	Difference to Base	E+C	Hwy	TRN	xITS	yG20to DA	zG20toD A&ITS
	Population	0.0%	0.2%	2.6%	0.0%	0.0%	0.0%
	Highway Lane Mile	-9.1%	9.4%	-1.6%	0.0%	0.0%	0.0%
Input	Transit Service Mile	-30.5%	6.7%	131.9%	0.0%	0.0%	0.0%
_	20% ITS				Yes		Yes
	20% Growth to Dense Area					Yes	Yes

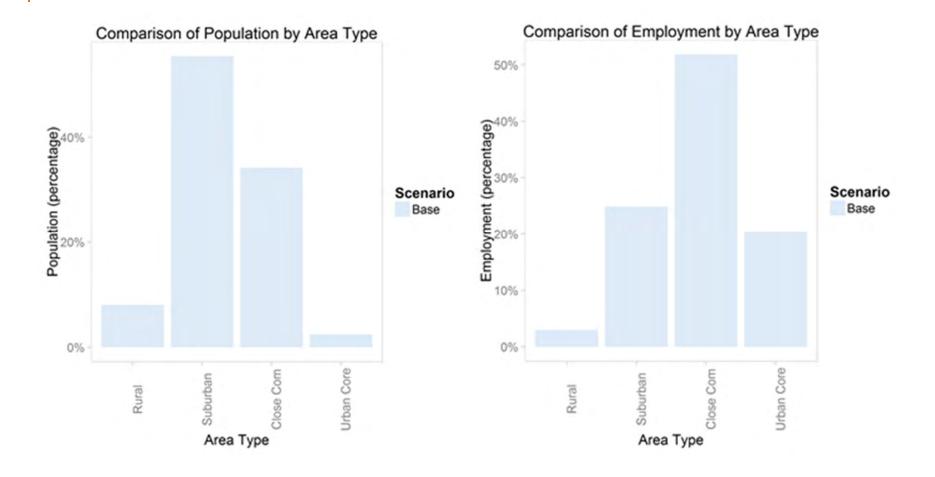
RPAT Validation

RPAT Was Validated against Results from the Triangle Region Model (TRM) for MTP, E+C, Hwy & TRN scenarios

2040 MTP (Base)	Vehicle Miles Traveled	Vehicle Hours Traveled	Total Transit Trips	Total Vehicle Trips
RPAT	66,367,265	1,623,893	223,402	8,894,594
TRM	63,920,021	1,707,586	227,878	8,919,982
Difference (%)	3.83%	-4.90%	-1.96%	-0.28%

Model Report

Home


Scenarios

Reporting

Users Guide

Please select from the report opt Note that you must select at leas				g Den	ome	ant Ty	Pe s	me Group	
Scenarios Measures	Performance Metrics	All	Pla	e Me	o Dey	Flor	ICIO ACC	delico	Me
☑ Base ☑ Number ☐ Base_CAMPO☑ Percentage ☐ Base_DCHC ☐ Index(100) ☑ E+C ☐ Index(0) ☑ Hwy ☑ TRN ☑ xITS20 ☑ yG20toDA ☑ zG20&ITS	Daily Vehicle Trips Daily Transit Trips Daily Vehicle Miles Traveled Greenhouse Gas Emissions Fuel Consumption Annual Traveler Cost (Fuel and Charges) Population Employment Income Peak Travel Speeds by Vehicle Type Vehicle Hours of Travel Vehicle Hours of Delay Accident Rates Job Accessibility by Income Group Regional Infrastructure Costs for Highway Regional Infrastructure Costs for Transit Annual Transit Operating Cost Regional Accessibility		&			%	8		
	Walking Percentage Increase	✓							

2040 MTP Pop. & Emp. By Area Type

Vehicle Trips by Scenario

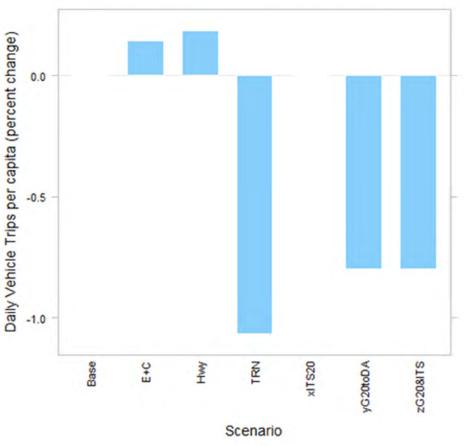
1.2040 MTP - Baseline

2.E+C: 0.14% Trip Increase

3. Hwy: 0.19% Trip Increase

4.TRN: 1.07% Trip Reduction

5.ITS20: No change


6.MTPx20DA:

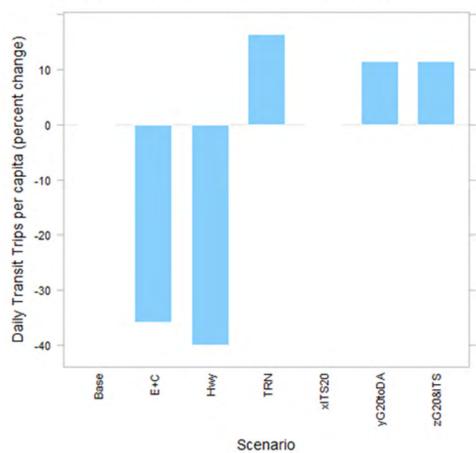
0.8% Trip Reduction

7.MTPx20DAwITS:

0.8% Trip Reduction

Comparison of Daily Vehicle Trips by Scenario

Transit Trips by Scenario


- 1.2040 MTP Baseline
- 2.E+C: 36% Trip Reduction
- 3. Hwy: 40% Trip Reduction
- 4.TRN: 16% Trip Increase
- 5.xITS20: No change
- 6.MTPx20DA:

12% Trip Increase

7.MTPx20DAwITS:

12% Trip Increase

* Under-estimation Issue and solution

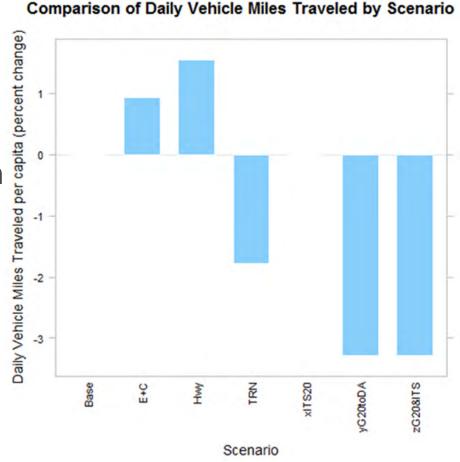
Vehicle Miles Traveled by Scenario

1.2040 MTP - Baseline

2.E+C: 0.9% VMT Increase

3. Hwy: 1.6% VMT Increase

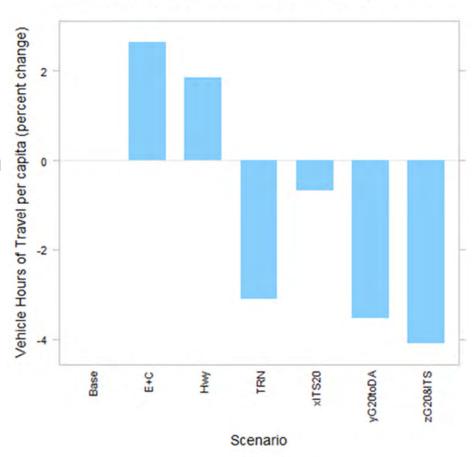
4.TRN: 1.8% VMT Reduction


5.xITS20: No change

6.MTPx20DA:

3.3% VMT Reduction

7.MTPx20DAwITS:


3.3% VMT Reduction

Vehicle Hours Traveled by Scenario

- 1.2040 MTP Baseline
- 2.E+C: 2.6% VHT Increase
- 3. Hwy: 1.8% VHT Increase
- 4.TRN: 3.1% VHT Reduction
- 5.xITS20:
 - 0.7% VHT Reduction
- 6.MTPx20DA:
 - 3.5% VHT Reduction
- 7.MTPx20DAwITS:
 - 4.1% VHT Reduction

Comparison of Vehicle Hours of Travel by Scenario

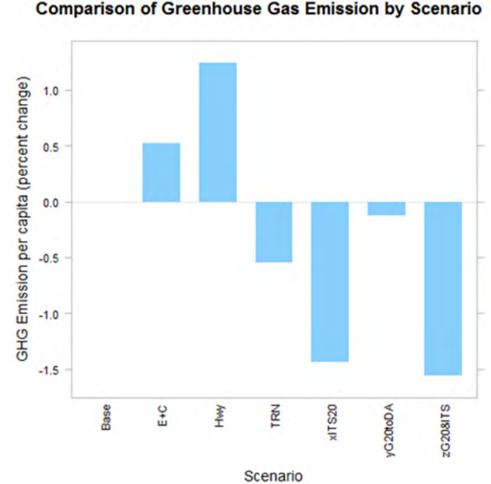
Greenhouse Gas Emission by Scenario

1.2040 MTP - Baseline

2.E+C: 0.52% Increase

3. Hwy: 1.24% Increase

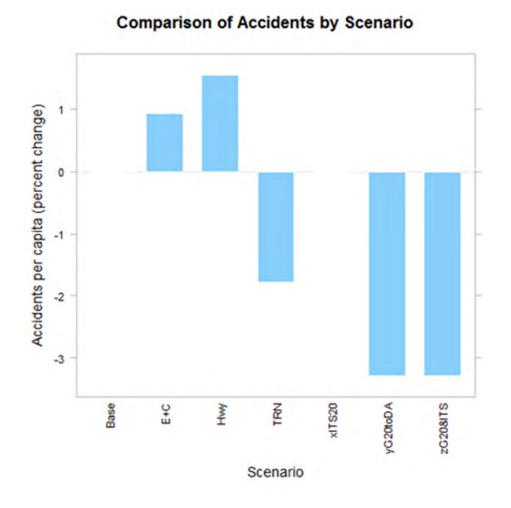
4.TRN: 0.55% Reduction


5.xITS20: 1.44% Reduction

6.MTPx20DA:

0.13% Reduction

7.MTPx20DAwITS:


1.56% Reduction

Scenarios 6+7 = 4.2% > 4.1% (of Scenario 7)

Traffic Accidents by Scenario

- 1. 2040 MTP Baseline
- 2. E+C: 0.9% Increase
- 3. Hwy: 1.6% Increase
- 4. TRN: 1.8% Reduction
- 5. xITS20: No change
- 6. MTPx20DA:
 - 3.3% Reduction
- 7. MTPx20DAwITS:
 - 3.3% Reduction

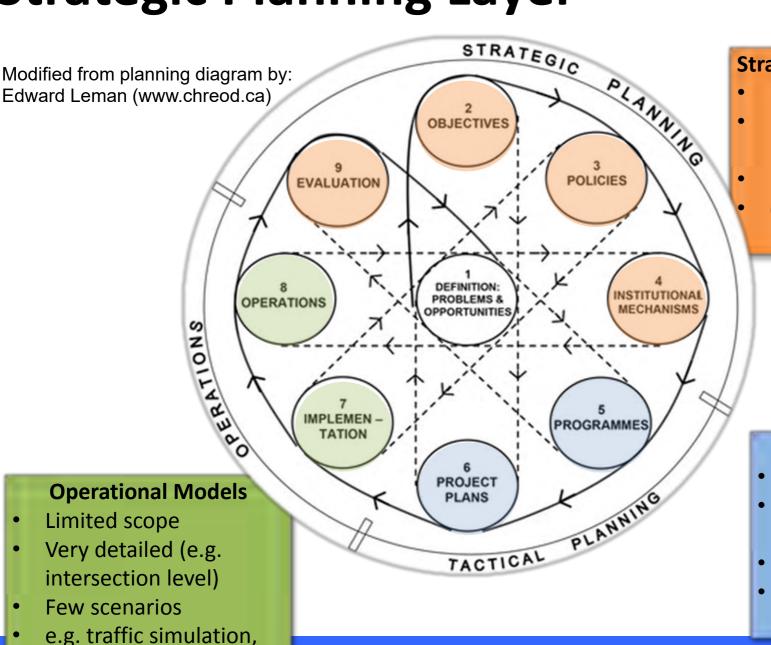
Summary

- Quick response tool 15 minutes for a scenario run
- Reasonable evaluation on multiple policy combination
- Multiple scenario comparison in one panel
- RPAT provides more performance measures than traditional TDM to address policy questions, such as land use pattern, transportation supply, and economic efficiency.
- Transit Trip Model refined by DCHC MPO

RPAT – Information & Downloading

https://planningtools.transportation.org/551/rapid-policy-analysis-tool.html

Thanks You!


Strategic Performance Based Planning:

MPO Scenario Planning using RPAT in Oregon

Strategic Planning Layer

Strategic Planning Models

- Broad scope
- Limited detail (e.g. system level)
- Many scenarios
- e.g. GreenSTEP, RSPM,
 RPAT

Tactical Models

- Moderate scope
- Moderate detail (e.g. link level)
- Few scenarios
- e.g. urban travel demand model

transit operations

Scenario Planning

Demographics

- ✓ Aging Boomers
- ✓ Millennials Travel Choices

New Modes

- ✓ Car Share
- ✓ Transportation Service Providers
- ✓ Electric Vehicles
- ✓ Automated Driverless Vehicles
- ✓ Active Transportation

New Pricing

- ✓ Road User Fee
- ✓ Carbon Tax
- ✓ Pay-as-you drive insurance
- ✓ Electric Vehicle operating costs

Uncertainty

- ✓ Decreasing Fuel Tax Revenue
- ✓ Economy
- ✓ Road Use Fees

Regional Strategic Planning Model

Inputs

- Regional Context
- Community Design
- Marketing & Incentives
- Fleet & Technology
- Pricing

1. Create MPO Households

2. Estimate Daily VMT

Re-calculate to balance VMT & travel costs

3. Add Vehicles & Estimate Greenhouse Gas Emissions

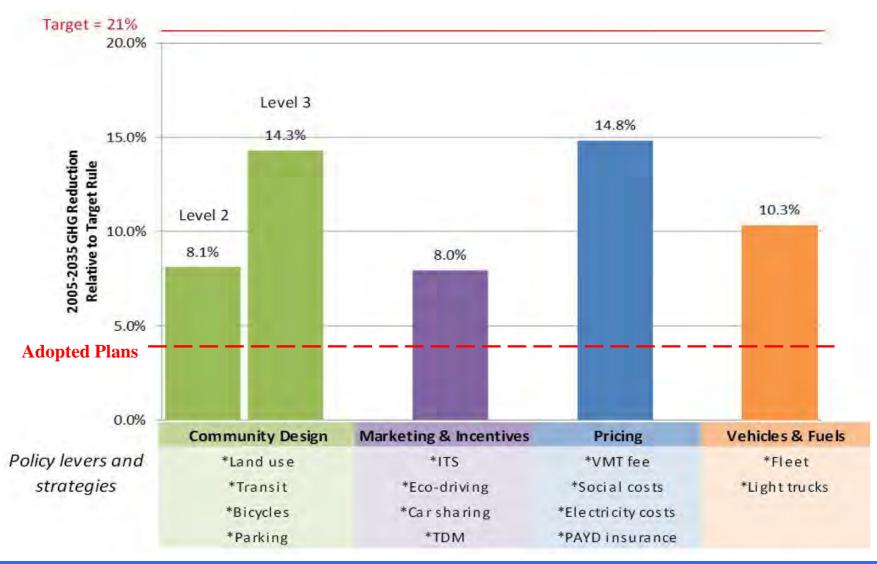
Outputs

- Mobility
 - Vehicle miles traveled
- Land Use
 - Mixed Use
 - Housing Type
- Economy
 - Travel delay
- Equity
 - Household travel costs
- Environment
 - Air Quality
 - Greenhouse gas emissions

Model Inputs

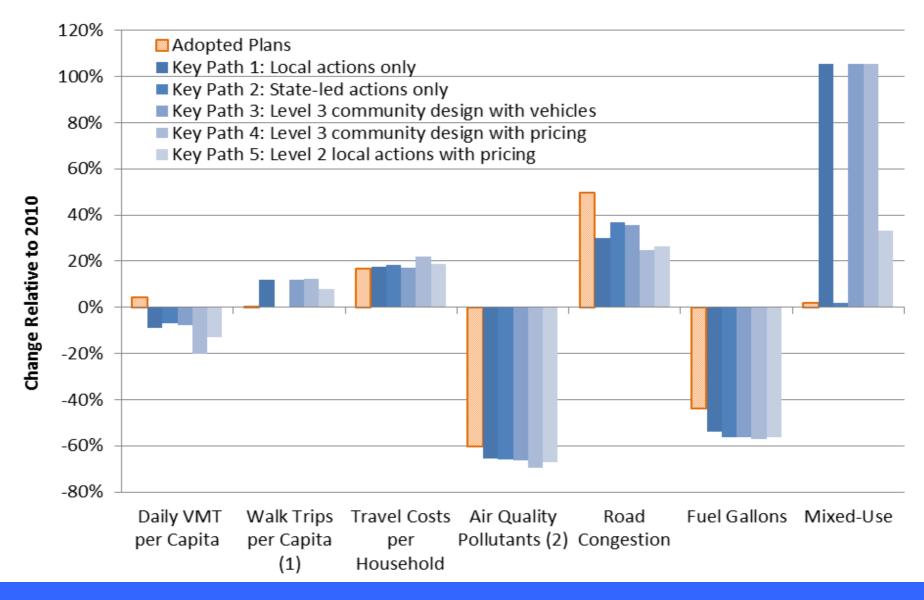
	Regional Context	Demographics Income Growth Fuel Price	11115
Local Actions	Community Design	 Future Housing (Single- & Multi-family) Parking Fees Transit service Biking Roads 	
	Marketing & Incentives	 TDM (home & work-based, ridesharing) Car Sharing Education on Driving Efficiency Intelligent Transportation Systems 	A THE
Collaborative Actions	Fleet & Technology	Vehicle Fuel Economy (mpg) Fuels Commercial Fleets	
	Pricing	 Pay as you drive insurance Gas taxes Road user fee 	300

Model Outputs


Category	Output		
Mobility	Daily vehicle miles traveled per capita		
	Annual walk trips per capita		
	Daily miles traveled by bicycle per capita		
Economy	Annual all vehicle delay per capita (hours)		
	Daily household parking costs		
	Annual household vehicle operating costs (fuel, taxes, parking)		
	Annual household vehicle ownership costs (depreciation, vehicle maintenance, tires, finance charges, insurance, registration)		
Land	Residents living in mixed-use areas		
	Housing type (Single-family: Multi-family)		
Environment	Annual greenhouse gas emissions per capita from light vehicles including reductions from vehicle changes (metric tons)		
	Reduction in greenhouse gas emissions per capita from implementation of adopted plans ¹		
	Reduction in greenhouse gas emissions per capita from implementation of adopted plans and potential state-led actions		
	Commercial Vehicle GHG/mile		
	Clean Air Act² criteria pollutants (million kilograms per day)		
Energy	Annual all vehicle fuel consumption per capita (gallons)		
	Average all vehicle fuel efficiency (miles per gallon)		
	Annual external social costs per household (unpaid)		

Corvallis Area MPO

Strategic Assessment Scenario Planning


Individual Effects of Policies on GHG Reduction

Corvallis Area MPO

Strategic Assessment Scenario Planning

Strategic Assessment II - Policy Options

Corvallis Area MPO Policy Board, Fall 2015

Land Use Changes

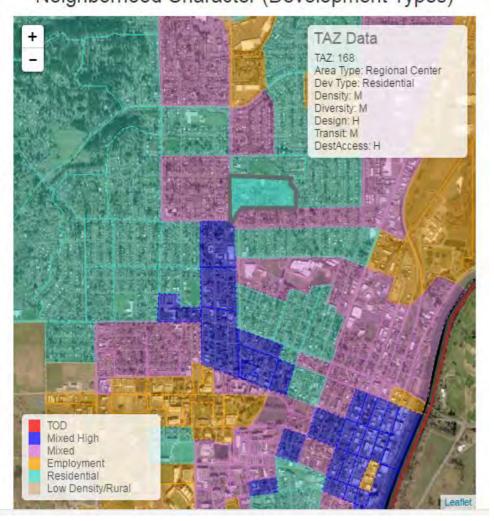
- Decrease development in central area and direct development to outer areas
- Increase development in central area
- Most new development is concentrated near alternative mode facilities
- New developments in form of mixed use

Alternative Modes

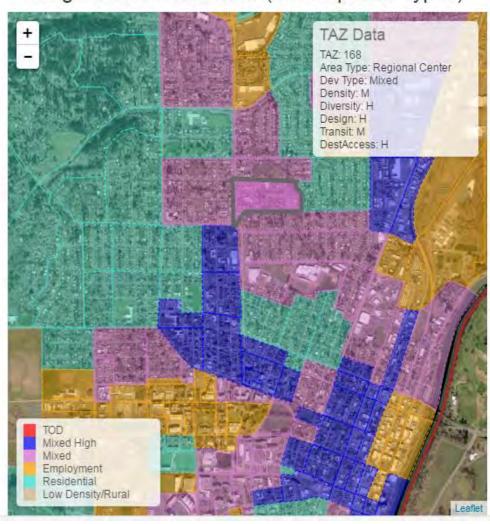
- Expand transit service
- Expand bicycle & pedestrian facilities

Parking Fee Changes

- Expand parking fee coverage areas
- Increase parking fees
- Cash-out parking programs


Transportation Options

- Work based marketing programs
- Home based marketing programs
- Expand Car-sharing
- Telecommuting
- Transit Subsidies


Place Types Land Use Visualizer

2010
Neighborhood Character (Development Types)

2040

Neighborhood Character (Development Types)

Strategic Assessment II - Evaluation Criteria

Corvallis Area MPO TAC, Fall/Spring 2015/2016

GHG Emissions Reduction

GHG emissions

Public Health

- Air quality (criteria air pollutants)
- Walk and bike trip miles
- Social costs (safety, pollution, energy security)
- Accident rates

Sustainability

- Percent of population living in mixed use areas
- Vehicle delay
- Vehicle miles traveled
- Trips diverted to bike

Equity

- Household transportation costs
- Driving costs as percentage of household income
- Transportation share of income for low income households
- Job Accessibility by income group

Strategic Assessment II - Evaluation Criteria

Corvallis Area MPO TAC, Fall/Spring 2015/2016

GHG Emissions Reduction

GHG emissions

Public Health

- Air quality (criteria air pollutants)
- Walk and bike trip miles
- Social costs (safety, pollution, energy security)
- Accident rates

Sustainability

- Percent of population living in mixed use areas
- Vehicle delay
- Vehicle miles traveled
- Trips diverted to bike

Equity

- Household transportation costs
- Driving costs as percentage of household income
- Transportation share of income for low income households
- Job Accessibility by income group

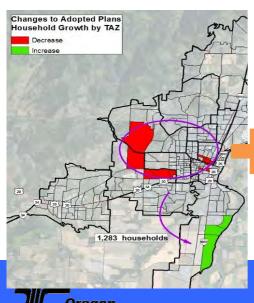
Strategic Assessment II - Assembling Scenarios

Corvallis Area MPO TAC, Fall/Spring 2015/2016

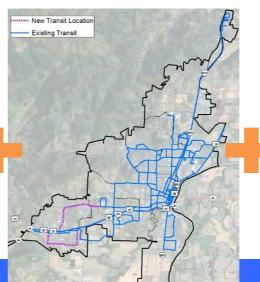
Policy Bundle E: Alternative Modes Focus

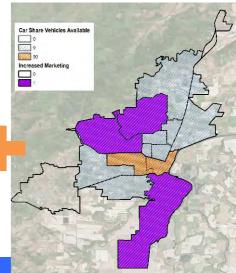
Most new development is concentrated near alternative mode facilities

Land Use

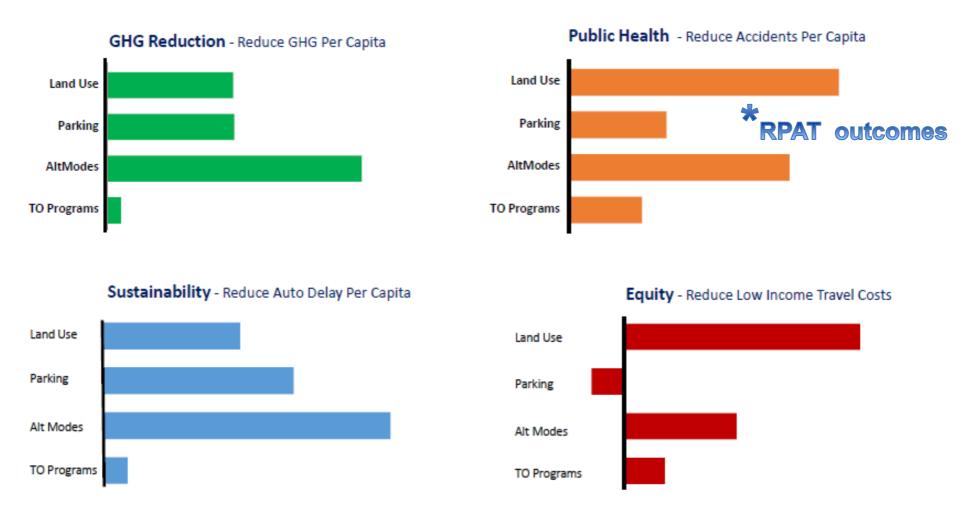

Parking

- Expanded parking districts
- Increased fees downtown
- Cashout parking


Alternative Modes


- Increased transit frequency
- Expand bicycle facilities

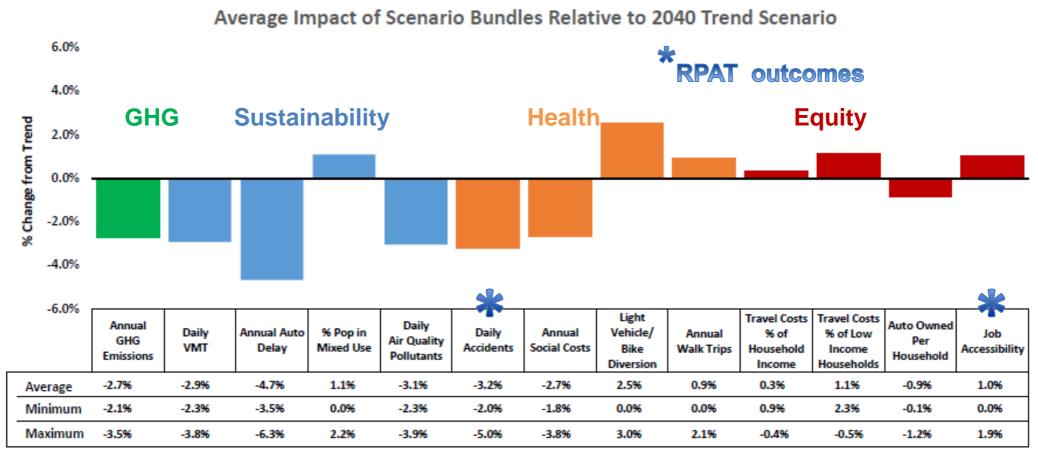
- **Transportation Options**
- Home/Work-basedMarketing
- Car Sharing



Strategic Assessment II – Policies in Isolation

CAMPO, Spring 2016

Charts identify which policies (Land use, Parking, etc.) have the most impact in reaching the desired outcome (GHG, Health, etc.)



Note: A single representative outcome measure has been chosen to best represent each evaluation category

Strategic Assessment II - Findings

CAMPO, Spring 2016

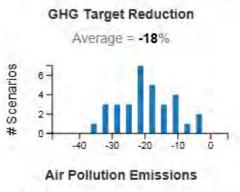
- The region is better positioned to achieve its long term planning goals under the proposed policies.
- Each scenario moved the needle in the right direction for each indicator, with the exception of equity, with results up to 5% better than adopted plans.
- Combined policy scenarios provide greater benefits -- the region cannot rely on one type of policy to achieve its planning goals.
- Performance of individual scenarios influence specific local plans/policy actions.

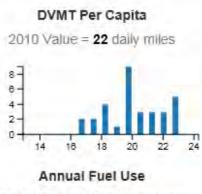
^{*} Average represents the average impact across the five scenarios, minimum is the scenario with the lowest impact, and maximum is the scenario with the greatest impact.

Web-based Viewers- Sensitivity Testing

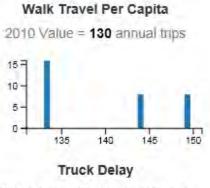
Corvallis Metropolitan Planning Area Scenario Viewer

About This Effort


Quick Start


Detailed Instructions

Scenario Input Levels | Clear All Selections

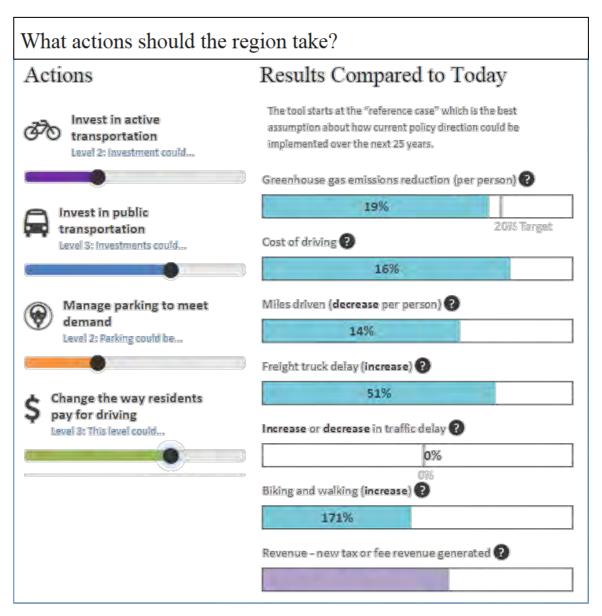


Model Outputs: 32 scenarios selected out of 288 scenarios | Clear All Selections

2010 Value = 18 daily metric tons

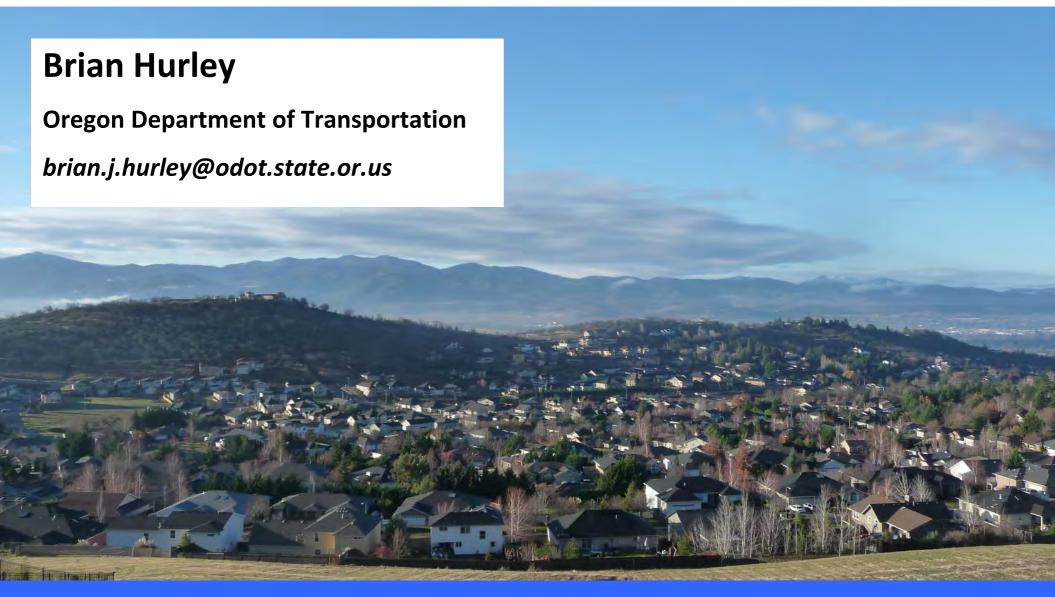
2010 Value = 24 million gallons

2010 Value = 8.4 thousand \$


2010 Value = 110 daily Vehicle hr.

Viewer - Community Involvement

- Stakeholder workshops
- Future Builder online tool
- Telephone survey
- Targeted equity outreach



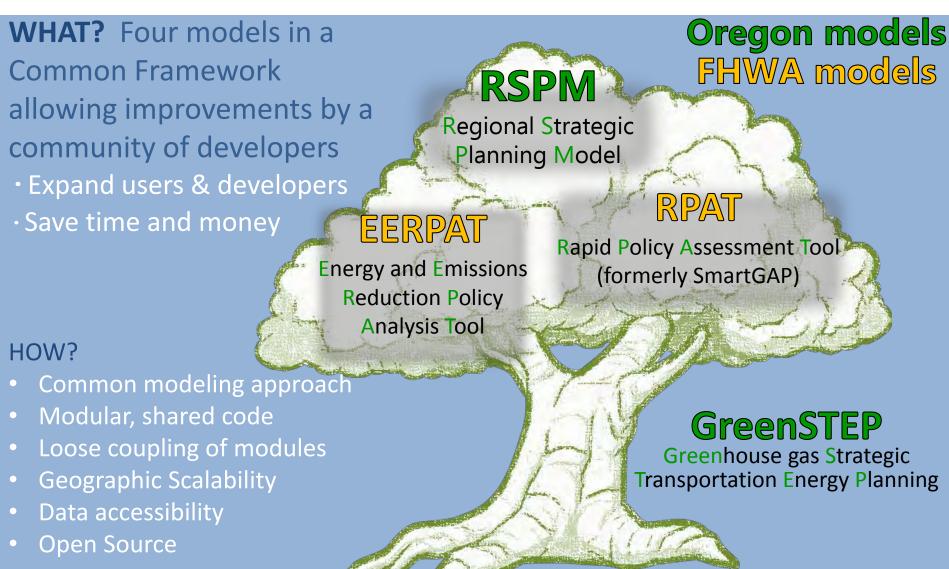
Value to Planning Process

- Supports implementation
- Informs development of plan updates
- Bolsters collaborative efforts
- Provides information to stakeholders

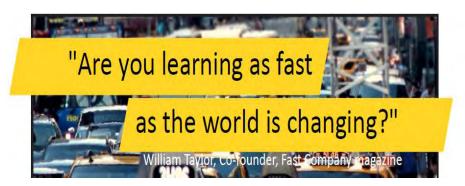
Thank You

VisionEval Open Source Project

Tara Weidner, Oregon DOT


November 2, 2016

VisionEval Open Source Project


VisionEval Family of Tools Scenario Planning Applications to date...

DOTs (EERPAT, GreenSTEP, RPAT)

- Oregon statewide GHG Plan, Impact of Mode & Topic plan investment
- Maryland statewide GHG Plan (EERPAT); policy testing (RPAT)
- Washington statewide GHG Plan
- Vermont statewide GHG reduction goals
- Colorado Smart Energy Initiative

MPOs (RPAT and RSPM)

- Atlanta-GA (ARC)
- Philadelphia-PA (DVRPC)
- Raleigh-Durham-NC (DCHC)
- Portland, Eugene-Springfield, Corvallis & Rogue Valley-OR (Metro, CLMPO, CAMPO, RVMPO)
- Olympia-WA (Thurston RPC)

VisionEval Mission

INFORM DECISIONS to reach **DESIRED COMMUNITY OUTCOMES** under uncertainty and limited resources

Strategic Planning – Research/Teaching

Performance-Based Planning Test new ideas, mentor

VisionEval Mission

INFORM DECISIONS to reach **DESIRED COMMUNITY OUTCOMES** under uncertainty and limited resources

Strategic Planning – Research/Teaching

Performance-Based Planning

Test new ideas, mentor

Tool:

Create a collaborative Open Source Tool that houses an award-winning family of strategic models, in a plug-and-play fashion

> Open Source Modular **Open Data**

Global reach Multi-disciplinary Transparent/allows Re-estimation

VisionEval Mission

INFORM DECISIONS to reach **DESIRED COMMUNITY OUTCOMES** under uncertainty and limited resources

Strategic Planning Research/Teaching

Performance-Based Planning

Test new ideas, mentor

Tool:

Create a collaborative Open Source Tool that houses an award-winning family of strategic models, in a plug-and-play fashion

> Open Source Modular **Open Data**

Global reach Multi-disciplinary Transparent/allows Re-estimation

Community:

Maintained and governed by a **COMMUNITY** to fund host & upgrades, share applications

> **Agency Sponsors Active Users Developers**

Policy Q/Funding Case Studies Upgrades/Research

VisionEval Mission

INFORM DECISIONS to reach **DESIRED COMMUNITY OUTCOMES**

under uncertainty and limited resources

Strategic Planning - Research/Teaching

Performance-Based Planning

Test new ideas, mentor

Tool:

Create a collaborative Open Source Tool that houses an award-winning family of strategic models, in a plug-and-play fashion

Open Source – Modular – Open Data

Global reach Multi-disciplinary Transparent/allows Re-estimation

Community:

Maintained and governed by a **COMMUNITY** to fund host & upgrades, share applications

Agency Sponsors – Active Users – Developers
Policy Q/Funding Case Studies Upgrades/Research

Continuity:

The value of the tool would engender long term support, upgrades and outreach.

Credibility – Emerging Policies/Outcomes – Current Data

Making VisionEval an Open Source Project

Tool

Developer

Group

Administrator/Host

Coord.

Team

Community

Continuity

Policy

Maker

Group

Services:

- Manage tool maintenance/updates
- Maintain documentation for various users
- Review module packages for inclusion in the repository
- Sponsor module/model development
- Maintain a repository of example models & case study applications /

Continuity:

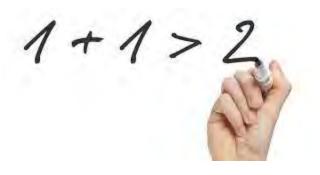
- Maintain & Update
 Framework
- Community Forum
- Continued Funding
 - Basic Services
 - Upgrades
- Communication/Outreach

Tool:

- Repository of "module packages"
- Working versions of assembled "models"

Community:

- Policy Maker (consumer/funder)
- Analysts (applier)
- Developer/Researcher
- Educators



Value of VisionEval Tool & Partnership

Value of tool:

- Improves reasoning about complex systems
- Impacts of many possible courses of action
- Tests risk/resilience
- Visualization tools
- Research sandbox

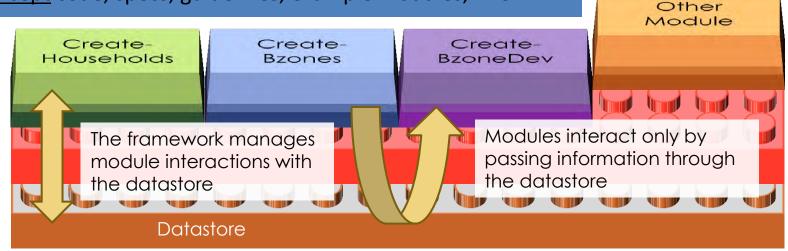
Partnership benefits:

- Credible, documented, maintained/updated tool
- Code guidelines/standards
- Cost-effective upgrades
- Community of active users; case studies
- Community of active developers; Consultant flexibility

Community:

- Policy Makers (consumer)
- Analysts (applier)
- Developers/Researchers (developer)
- Educators

VisionEval Partnership -- Phases 1-2-3


Phase 1 (complete Jan 2016) - ODOT/FHWA

<u>Proof-of-concept</u> code, specs, guidelines, example modules, TAC.

Module Layer

Software Framework Layer

Model Layer

- **Modules** perform individual tasks (e.g., create households)
- Packages are combinations of modules that do bigger tasks (e.g. HH synthesis including location, income, age, etc.)
- Models consist of a set sequence of packages (e.g. RSPM, RPAT), which can be customized for a local community
- Data store and Framework services support a running model
- Consistent geography (explicit or synthesized) in all components allows modules/packages to be shared across model.

VisionEval Partnership -- Phases 1-2-3

Phase 2 (start August 2016) - AASHTO/FHWA

Transfer 2-3 models to VisionEval common framework.

Phase 2 Support (start Nov 2016) - ODOT

Establish Contributor Review Team Process, etc.

Phase 3 (anticipated 2017/18 start) – Pooled fund project

Multi-year partnership, directs annual work plan

Host, maintain, upgrade tools, and support a collaborative forum

Anticipated Sample Products...

Host/Outreach (\$30K/year) website, training, information clearinghouse, and knowledge sharing activities.

Technical Maintenance (\$20K/year) maintain code repository, workable core-code, testing, periodic code releases/updates.

Tool Upgrades (\$100-200K/year) Implement upgrades as funding allows per Partner prioritization.

August 2016

Peer Exchange
Peer Exchange
With Key Partner
Agencies

Q&A

For More Info...

https://gregorbj.github.io/VisionEval/

Tara Weidner, Oregon DOT: tara.j.weidner@odot.state.or.us

Jeremy Raw, FHWA: jeremy.raw@dot.gov

Eric Pihl, FHWA (RPAT): <u>Eric.Pihl@dot.gov</u>

Brian Gregor, Oregon Systems Analytics: gregor@or-analytics.com

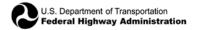
Thank you

202.366.4061

SHRP2 TravelWorks
Brian Gardner
FHWA Office of Planning
brian.gardner at dot.gov

TMIP Updates

For future webinar announcement, please sign up for GovDelivery at http://www.fhwa.dot.gov/planning/tmip/ if you have not done so.



TMIP Contacts

If you have any questions or comments about today's presentation or TMIP, or if you are interested in sharing your experience, please contact me at:

sarah.sun@dot.gov or feedback@tmip.org.

