
DISCLAIMER

The views and opinions expressed during this webinar are those of the presenters and do not represent the official policy or position of FHWA and do not constitute an endorsement, recommendation or specification by FHWA. The webinar is based solely on the professional opinions and experience of the presenters and is made available for information and experience sharing purposes only.


Administrative Items

- **Use** a wired Internet Connect when possible
- Close all unnecessary programs running on their computer
- Do not use VPN or VDI. Connect directly to the room URL
- Check their connections status on the top right hand side of the screen

Up: 0.088 kbit/s Down: 1.16 kbit/s

Connection Status: Excellent Latency: < 1 msec / 17 msec

• **Th**e webinar is being live close-captioned for the hearing impaired.

More Administrative Items

- **The** session will be recorded. The recorded webinar is available after the session via GovDelivery and http://www.fhwa.dot.gov/planning/tmip/community/webinars/summaries/index.cfm.
- All participant phone lines are muted.
- A Q&A pod window is displayed on your screen and you can enter your questions there anytime. The presenters will answer them during the Q&A session.
- **Please** answer the polls to help us improve future webinars.
- This webinar will last approximately two hour.

MSA to TAZ

Assembling a Metropolitan
Transportation Model 1993-2016

Planning and modeling the transportation future in the Little Rock region

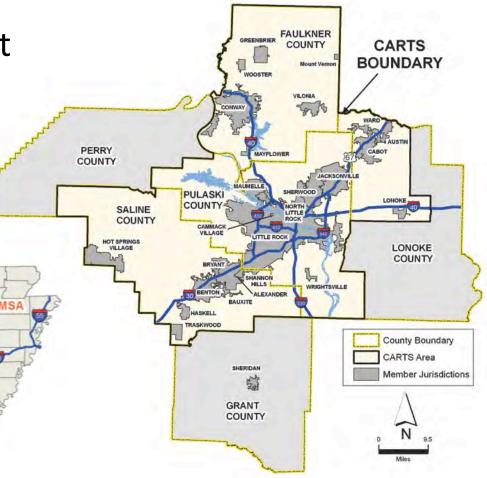
INTRODUCTION

Jonathan Lupton AICP

- BA (History) Kalamazoo
 College 1982
- MA (Geography)
 University of Chicago 1987
- MS Community and Regional Planning University of Texas-Austin 1990
- Started out at Metroplan in 1993

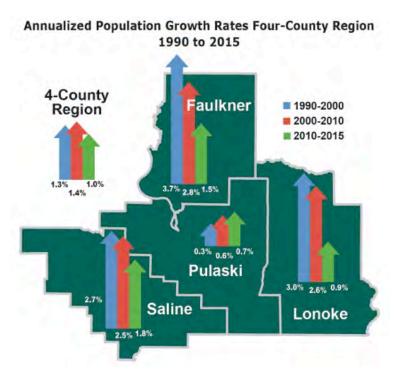
Metroplan

- Metroplan is the MPO for Central Arkansas
- A state capital region, geographically and economically central



Little Rock MSA

 Total population about 737,000 in 2016


 Largest metropolitan region in Arkansas

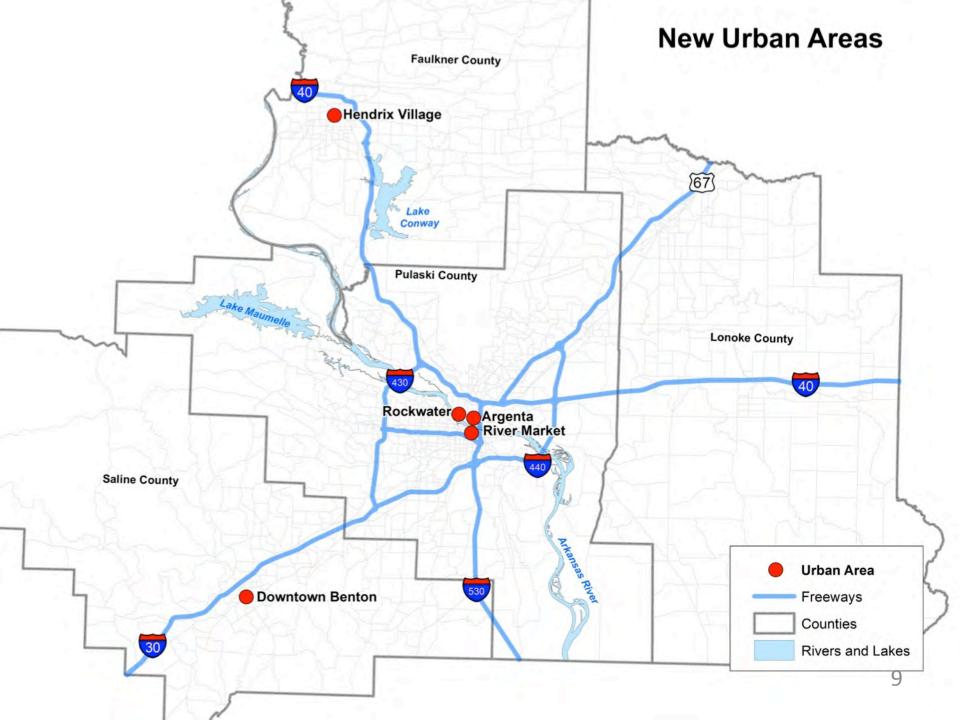
CARTS

Recent Trends

 Regional population growth slightly above U.S. average, suburban counties growing faster than central (Pulaski) county

Suburban Region With High-Density Core

• Downtown core in Little Rock...



River Market, Creative Corridor

New Urbanism Springing Up

 Pockets of urban revival in downtown North Little Rock, Hendrix Village near downtown Conway, beginning in Benton

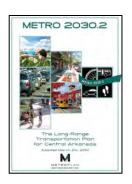
Multi-Family Rising in Importance

Region has three RCAPs (Racially concentrated areas of Poverty)

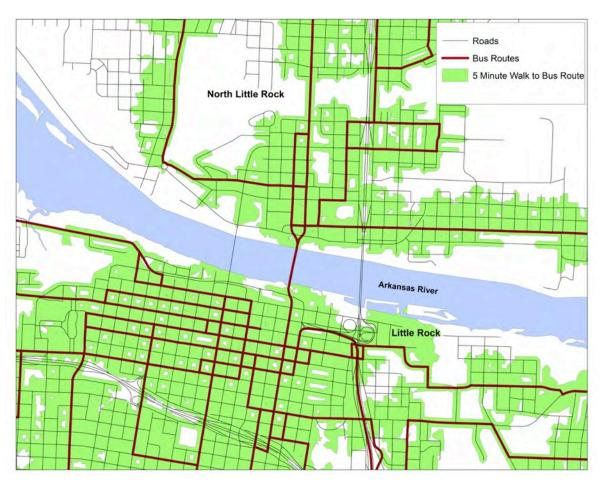
Ample Long-Term Water Supplies

Low-Density Region

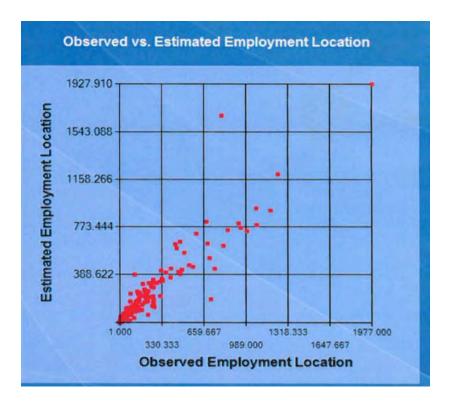
Few external growth constraints


Four Models, Five Plans

- Metro 2020, completed in 1995
- Metro 2025, completed in 2000
- Metro 2030, completed in 2005
- Metro 2030.2, completed 2010 (not a model)
- Imagine Central Arkansas Plan (for year 2040), completed in 2014



Metroplan is taking first steps into accessibility modeling



Land Use Modeling?

TELUM –tantalizing, but outputs have been

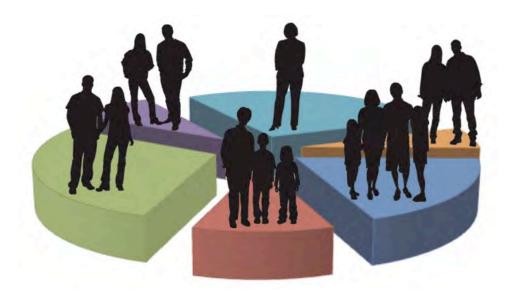
shaky

What-Where-When-Why

- This presentation is mainly about the "nuts and bolts" of designing socioeconomic projections
- Fast and good projection techniques facilitate more versions for scenario-testing

From Census data to building permits

DATA SOURCES


The Easy Part - Population Data

- Decennial Census 2010, SF-1. From overall totals to block-level, complete-count data.
- ACS. Accuracy varies
- Building permit data for updates

Demographic Analysis Data

- Department of Health MSA and county-level data on survivorship by age, sex and race
- Department of Health county-level data on births by age of mother by race

	A		В	C	D	E	F	G
9								
Λ.	ge-specific Death Rate							
^								
1	rkansas, 2003 - 2007							
-	or Selected County/Counties							
	or ICD9 Cause of Death Code(s) =							
"/	All Causes (000-799, E800-E999)"							
3								
	Rows with less than 10 Population							
h.	ave been masked.							
4	AS Version 9.1.3							
•	AS Version 9.1.5							
6	Basidana Carata		A	Formated	Manufacture of	A -* I	Double Date Day	OEW.
7	Residence County		Age Group	Expected Population	Number of Selected Deaths	Actual Population	Death Rate Per 100,000 Population	95% Confidence
9			Group	of Age Group*	Selected Deaths	of Age Group	100,000 Fopulation	Interval
	aulkner County	< 1 Yr.		77	4	160	625	15.82 - 3482.28
0	Suitate County	~ 1.11-		***		100	929	10.02 0102.20
1		1 to 4 Yrs.		308	0	532	0 (0.00 - 0.00
2		5 to 14 Yrs.		809	0	1,168		0.00 - 0.00
73 74 75		15 to 24 Yrs.		771	1	1,263	79.18	2.00 - 441.14
		25 to 34 Yrs.		754	1	1,020		2.48 - 546.24
		35 to 44 Yrs.		904	0	734		0.00 - 0.00
-		45 to 54 Yrs.		750	1	338		7.49 - 1648.42
		55 to 64 Yrs.		485	0	163		0.00 - 0.00
7								0.00 - 0.00
7		65 to 74 Yrs.		367	0	80		
7 8 9		65 to 74 Yrs. 75 to 84 Yrs.		249	0	63	0	0.00 - 0.00
7 3 9 0		65 to 74 Yrs. 75 to 84 Yrs. 85+ Yrs.		249 86	0	63 39	0 (0.00 - 0.00 0.00 - 0.00
7 3 9 0	onoke County	65 to 74 Yrs. 75 to 84 Yrs. 85+ Yrs. < 1 Yr.		249 86 44	0 0 0	63 39 88	0 (0.00 - 0.00 0.00 - 0.00 0.00 - 0.00
7 8 9 0 1 L	олоke County	65 to 74 Yrs. 75 to 84 Yrs. 85+ Yrs. < 1 Yr. 1 to 4 Yrs.		249 86 44 176	0 0 0 0	63 39 88 319	0 (0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00
7 8 9 0 1 2	олоke County	65 to 74 Yrs. 75 to 84 Yrs. 85+ Yrs. < 1 Yr. 1 to 4 Yrs. 5 to 14 Yrs.		249 86 44 176 463	0 0 0 0	63 39 88 319 820	0 (0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00
76 77 78 80 81 81 82 83 84	олоke County	65 to 74 Yrs. 75 to 84 Yrs. 85+ Yrs. < 1 Yr. 1 to 4 Yrs.		249 86 44 176	0 0 0 0	63 39 88 319	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00 - 0.00 0.00 - 0.00 0.00 - 0.00 0.00 - 0.00

429

277

210

143

49

423

1,694

225

122

51

41

22

1,260

3,903

0

0

0

0 2

45 to 54 Yrs.

55 to 64 Yrs.

65 to 74 Yrs.

75 to 84 Yrs.

85+ Yrs.

1 to 4 Yrs.

< 1 Yr.

87

88

89

90

91

93

0 0.00 - 0.00

0 0.00 - 0.00

0 0.00 - 0.00

0 0.00 - 0.00

396.83 128.85 - 926.06

25.62 0.65 - 142.75

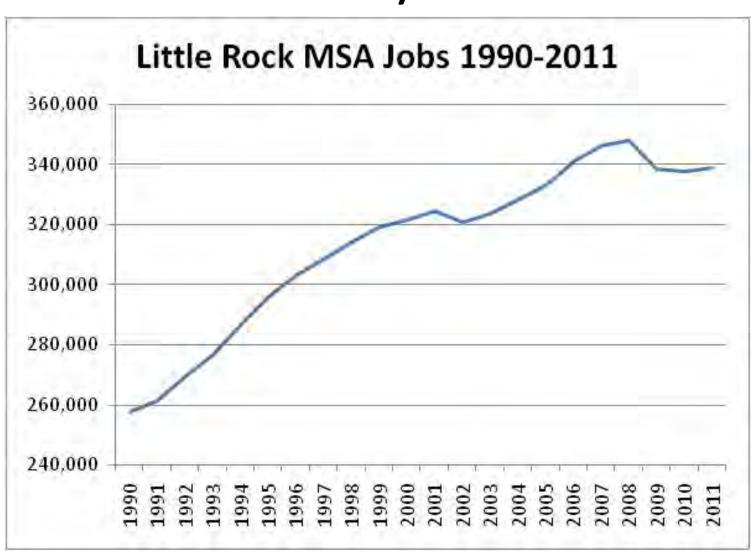
9090.91 1100.95 - 32839.5

Population in TAZs

- Pretty easy for GIS staff to convert block-level SF-1 data into TAZ geography
- Slight changes in blocklevel census geography can impact TAZs
- Group quarters
 population matters
 because it is not
 household population

Library.uncfsu.edu/archives/history-of-fsu-campus-buildinds

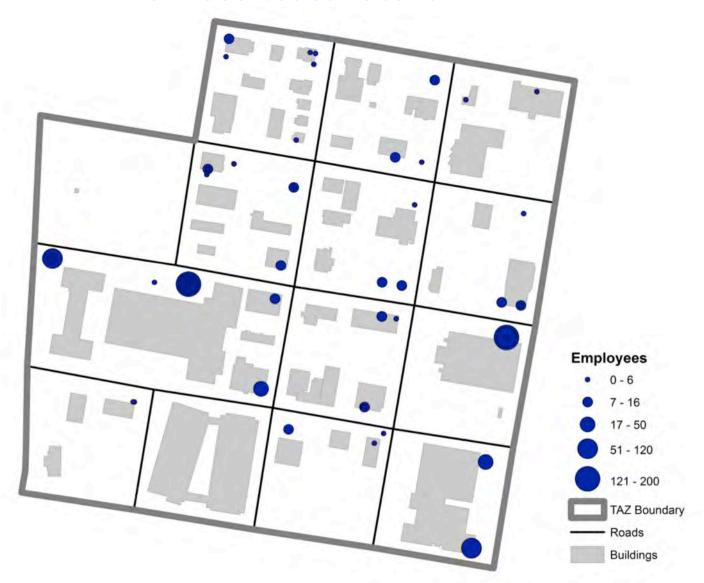
Employment Data (public sources)


- CTPP is valuable, but tends to arrive too late
- State and BLS Nonfarm payroll jobs data provides useful past trend-lines
- LEHD likely source for future plans
- Psst....Synthesize your data to resolve differences

BLS Nonfarm Payroll Job Series

Private Employment Data

- Best source for small (TAZ-level) data
- Dun and Bradstreet -v- InfoUSA
- Beware the difference, in retail especially


From Data to TAZ

- We were able to allocate about 99.5 percent of 300,000-odd jobs to TAZs
- Modest trouble with gap between addresses and actual place of work - HQs especially
- Small residuals know when to let go!

From Geo-coded Jobs to TAZ

Three Main Categories

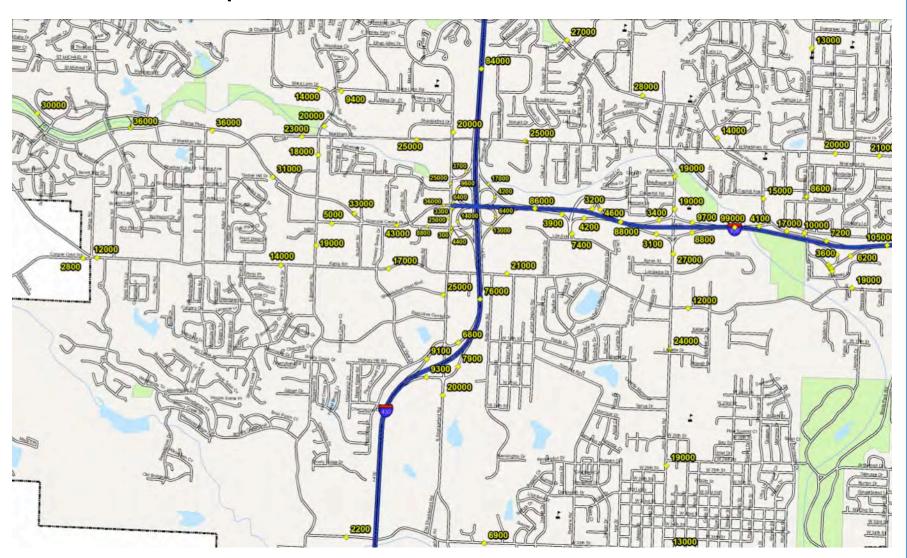
Basic

(construction, mining, manufacturing, transportation and utilities)

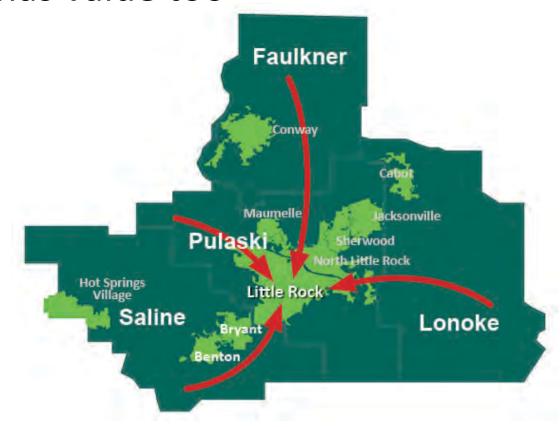
Retail

(critical for models, but not as clear-cut as NAICS codes look)

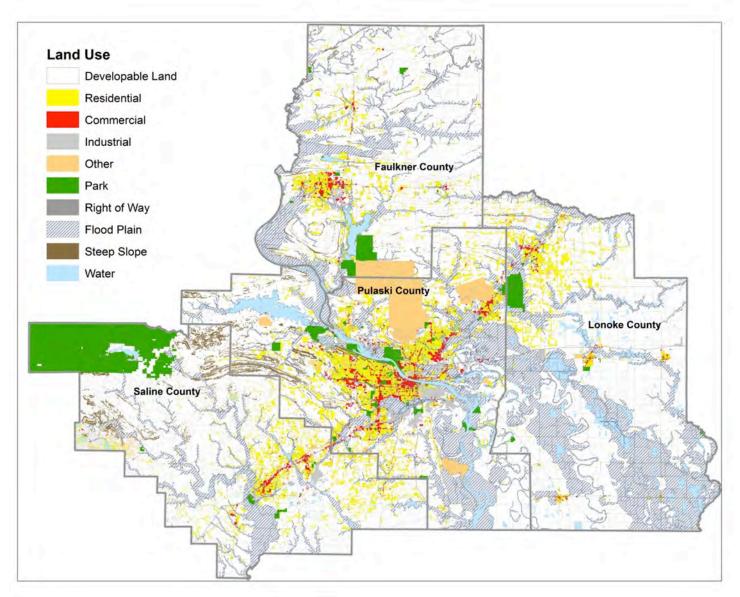
• Service (everything else)



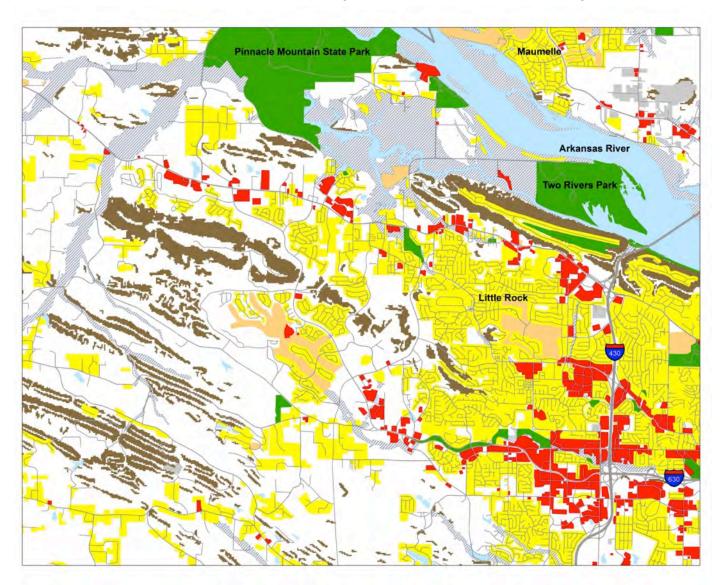
Transportation Data


- Traffic counts
- Travel survey (last done in 2004)
- CTPP commuting flow data
- AirSage and related "Big Data" sources on the horizon, but not yet used

2014 Map Detail: West Little Rock Traffic Counts



Regional Commuting Flows

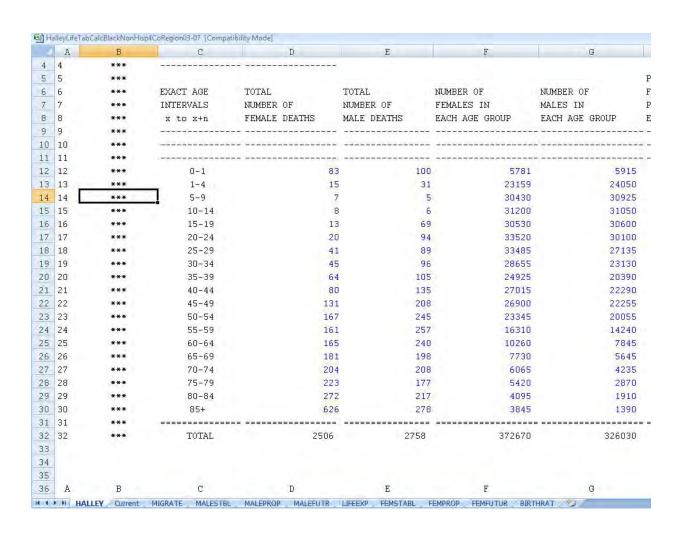

- CTPP main source for cross-check
- LEHD has value too

Land Use SatelliteData

Land Use (Closer View)

Excel and everything else...

TOOLS


Excel 1st, 2nd and 3rd

- Good for unstructured playing with data, a statistical "rough draft"
- Good basis for designing demographic and economic templates that help take the data "from MSA to TAZ," i.e. from raw figures to data matched to TransCAD classifications

Halley

- This is a demographic program from the 1980s that can create life tables from 5-year census age-sex population data and age-specific mortality data
- It was designed for Lotus, but we copied a version into Excel circa 1998 and still use it
- Many states (including Arkansas) have county life-table data, but it's rarely adequately upto-date

Halley Example 1 - Inputs

Halley Example 2 – Survivorship Rates

Н	I	J	K	
		AGE-SPECIFIC	AGE-SPECIFIC	PROBA
PROPORTION OF	PROPORTION OF	DEATH RATE	DEATH RATE	FEMAL
FEMALE	MALE	FOR FEMALES	FOR MALES	WITHI
POPULATION IN	POPULATION IN	AT AGE X	AT AGE X	INTER
EACH AGE GROUP	EACH AGE GROUP	MF(x)	MM(x)	qF
0.0155	0.0181	0.014358	0.016905	
0.0621	0.0738	0.000648	0.001289	
0.0817	0.0949	0.000230	0.000162	
0.0837	0.0952	0.000256	0.000193	
0.0819	0.0939	0.000426	0.002255	
0.0899	0.0923	0.000597	0.003123	
0.0899	0.0832	0.001224	0.003280	
0.0769	0.0709	0.001570	0.004150	
0.0669	0.0625	0.002568	0.005150	
0.0725	0.0684	0.002961	0.006057	
0.0722	0.0683	0.004870	0.009346	
0.0626	0.0615	0.007154	0.012216	
0.0438	0.0437	0.009871	0.018048	
0.0275	0.0241	0.016082	0.030593	
0.0207	0.0173	0.023415	0.035075	
0.0163	0.0130	0.033636	0.049115	
0.0145	0.0088	0.041144	0.061672	
0.0110	0.0059	0.066422	0.113613	
0.0103	0.0043	0.162809	0.200000	
1.0000	1.0000	0.006724	0.008459	
		SEX-SPECIF	IC DEATH RATES	
		OF REAL	POPULATION	

TT T T T T

Microsoft Access

Two roles with modeling

- Relational database capability that Excel lacks

 use of "key" fields allows matching of data
 sets of different sizes (where "sort" function
 won't solve it)
- 2. Storage of model results for easy small-area access (good for small-scale travel studies)

GIS

- Indispensible at all levels
- Easy to take for granted
- Good if demographer/ economist can have his/ her own GIS
- Maptitude is compatible with TransCAD and capable of importing and exporting .shp files from ESRI software

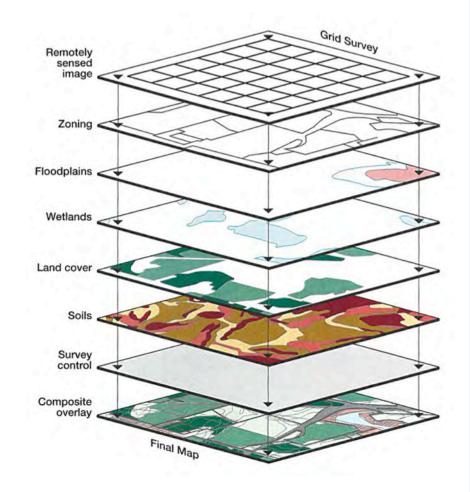


Figure 2-29. Much GIS work involves layers of spatial data superimposed upon one another.

GIS

- Visual appraisal of past trends
- Visual appraisal of projected trends
- Good for checking consistency, finding errors not obvious in a spreadsheet

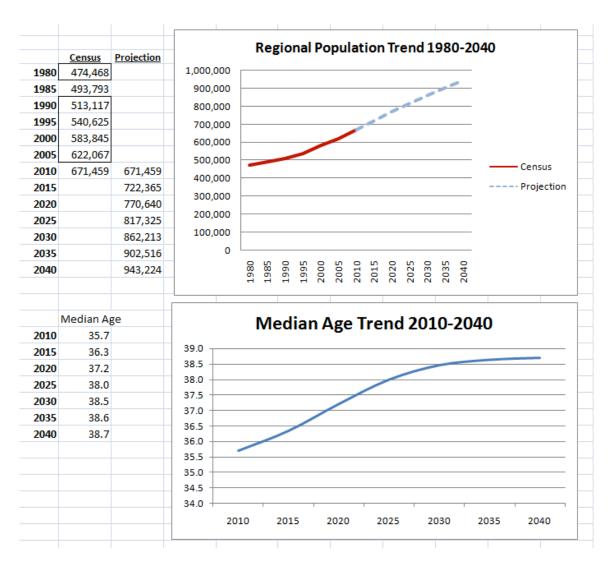
Building Demographics

- Local mortality and fertility rates differ from national average
- Local demographics are therefore more accurate
- But demographic resources in a small state are limited...

A Few Demographic Templates

- Cohort-component population projection system can take inputs and spit out detailed population projections
- Develop 5-yr migration rates from latest decennial census, intercensal estimates by age/race/sex, and next-to-latest census
- Vehicle/household projection system

Cohort-Component Template 1st View


1		Regional Series D2 Tapered Pro	ojection
2			
3		Category: Latino/Asian/Other	
4			MSA
5		Male 5-year	White
6		Survival Rate	Male IMR
7	0-4	0.99806	0.00776
8	5-9	0.99865	
9	10-14	0.99605	
10	15-19	0.9922	
11	20-24	0.99097	
12	25-29	0.99122	
13	30-34	0.98924	
14	35-39	0.98605	
15	40-44	0.97958	
16	45-49	0.96917	
17	50-54	0.95664	
18	55-59	0.9411	
19	60-64	0.91288	
20	65-69	0.86913	
21	70-74	0.80929	
22	75-79	0.68221	
23	80-84	0.60086	
24	85+		
25			MSA
26		Female 5-year	White

	Population	by Age an	d Sex 2000	0-2030
	2010	2015	2020	2025
	<u>Male</u>	<u>Male</u>	<u>Male</u>	Male
0-4	3,567	3,799	4,212	4,77
5-9	2,974	3,560	4,951	5,10
10-14	2,413	2,970	3,733	5,118
15-19	2,347	2,403	3,435	4,13
20-24	3,143	2,329	2,919	3,94
25-29	3,131	3,115	3,849	4,24
30-34	2,804	3,104	4,281	4,84
35-39	2,354	2,774	3,785	4,92
40-44	1,810	2,321	3,132	4,11
45-49	1,417	1,773	2,596	3,37
50-54	1,192	1,373	1,875	2,67
55-59	830	1,140	1,423	1,89
60-64	686	781	1,099	1,36
65-69	332	626	740	1,029
70-74	226	289	512	61
75-79	141	183	241	424
80-84	98	96	125	16
85+	63	97	112	140
	2010	2015	2020	2025
nHisp Lati	2010 ino-Asian-Other	2015 TotalPop	2020	2025

Cohort-Component Template 2nd View

rmal	Page Page Brea Layout Preview	Views Screen			Zoom 10	10% Zoom to Selection	New Arrange Window All	Split Hide Freeze Panes * Unhi	
	Workbook 1	/iews ▼ (£		iow/Hide	2	laom			
n pa	gionProj2040d(2)-	DacaDrai							
- ne	V	W	X	Υ	7	AA	AB	AC	Α
1		Population				2000	1.15		300
2	Migration		.,						
3	Adjustmen	t:	0.5	0.35	0.3	0.3	0.25	0.25	
4			- 14	0.00				0.00	
5		2010	2015	2020	2025	2030	2035	2040	
6		Male	Male	Male	Male	Male	Male	Male	
7	0-4	3,567	4,961	5,114	5,653	5,981	6,097	7,358	
8	5-9	2,974	3,738	5,125	5,258	5,811	6,119	6,237	
9	10-14	2,413	3,449	4,154	5,613	5,759	6,271	6,603	
10	15-19	2,347	2,942	3,974	4,694	6,343	6,379	6,947	
11	20-24	3,143	3,884	4,284	5,524	6,525	8,395	8,443	
12	25-29	3,131	4,318	4,891	5,230	6,743	7,715	9,927	
13	30-34	2,804	3,826	4,978	5,525	5,909	7,462	8,538	
14	35-39	2,354	3,177	4,170	5,354	5,942	6,269	7,918	
15	40-44	1,810	2,650	3,443	4,461	5,728	6,274	6,620	
16	45-49	1,417	1,935	2,762	3,558	4,610	5,868	6,427	
17	50-54	1,192	1,487	1,984	2,810	3,620	4,653	5,923	
18	55-59	830	1,168	1,447	1,925	2,727	3,504	4,505	
19	60-64	686	810	1,128	1,392	1,853	2,615	3,360	
20	65-69	332	589	709	993	1,225	1,641	2,316	
21	70-74	226	298	524	628	880	1,082	1,450	
22	75-79	141	183	241	424	509	712	876	
23	80-84	98	100	129	169	297	355	497	
24	85+	63	86	104	130	168	264	352	
25									
26	▶ № BlackNor	2010	2015	2020 TotalPop Med	2025 AgeCalc Pop	2030	2035	2040 end	

Cohort-Component Output

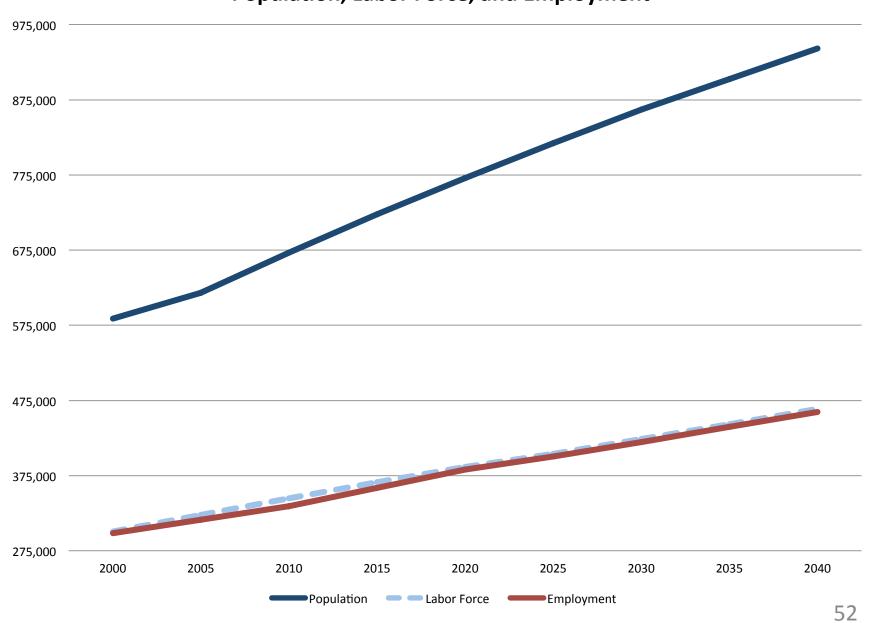
From Population to Labor Force to Jobs

 Labor force participation model can take population-by-age-and-sex outputs from population projections, and spit out projections of future workforce by age and sex

Economic Templates

- Labor force participation projection, based on cohort-component outputs and participation rate trends
- Employment-by-Industry projections, using BLS projections (to 2020) with minimal industry-based extrapolations beyond that

Labor Force Participation Trends 1990-2010 With U.S. projections to 2020

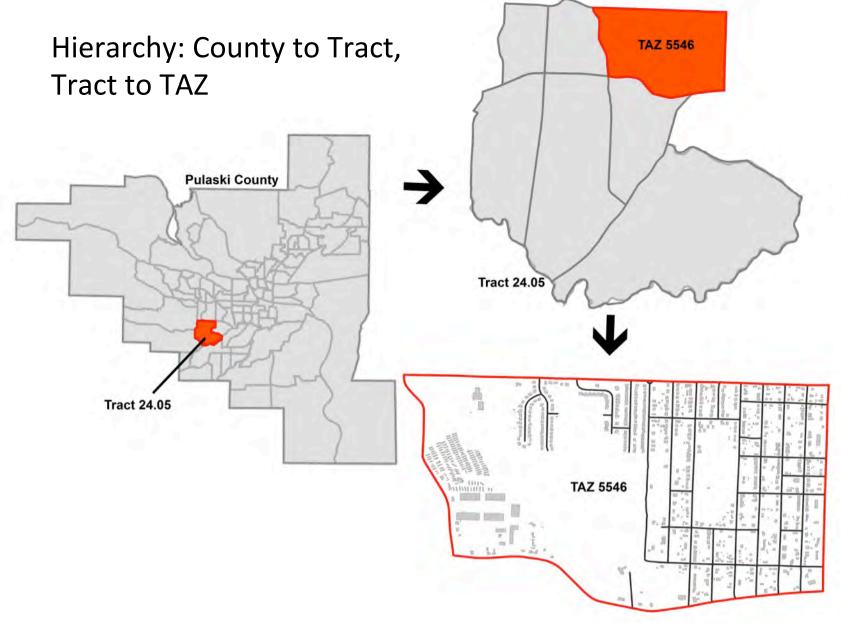

			U.S.A.		LR-	NLR MSA (4)	
	1990	2000	2010	2020	1990	2000	2010	2020
Overall	66.5	67.1	64.7	62.5	66.8	66.6	65.7	63.6
16-24	67.3	65.4	55.2	48.2	65.0	65.7	63.1	60.0
25-54	83.5	84	82.2	81.3	84.3	81.6	81.0	80.3
55-64	55.9	59.3	64.9	68.8	53.9	59.1	62.9	66.2
65-74*	16.7	19.2	25.7	31	10.0	20.8	27.6	32.2
75+	4.3	5.3	7.4	10		5.4	5.0	5.3
Male	76.4	74.8	71.2	68.2	74.7	73.0	69.9	67.3
16-24	71.8	68.6	56.8	50.6	67.8	67.3	63.5	60.0
25-54	93.4	91.6	89.3	88.1	91.2	87.1	84.5	83.8
55-64	67.8	67.3	70	71.1	63.1	65.5	66.6	67.5
65-74*	21.4	24.6	30.4	35.1	14.7	26.7	32.0	37.0
75+	7.1	8.1	10.4	12.8		8.0	6.8	7.0
Female	57.5	59.9	58.6	57.1	59.8	60.8	61.9	60.1
16-24	62.9	63	53.6	45.7	62.4	64.0	62.7	60.0
25-54	74	76.7	75.2	74.6	77.8	76.4	77.7	77.0
55-64	45.2	51.9	60.2	66.6	46.1	53.4	59.5	65.0
65-74*	13	14.9	21.6	27.5	7.0	16.2	23.7	28.0
75+	2.7	3.6	5.3	8		4.0	3.9	4.1
	6 .		۱ ۵۵۵		C 1 1	C1 1: 1:		

U.S. projections 2020 from U.S. Bureau of Labor Statistics

Local Labor Force Participation Based on Population by Age/Sex

	Wo	rking-Age	Populatio	n 2010-2040	(Four-Co	unty Regio	on)	
	2000	2010	2015	2020	2025	2030	2035	2040
Male Tot.	214,190	251,158	271,574	291,549	310,385	329,261	346,224	362,490
16-24	37,117	42,185	43,226	45,946	48,742	51,550	54,240	55,346
25-54	127,080	137,571	143,630	148,563	156,028	164,612	172,817	180,887
55-64	23,824	37,138	41,649	44,720	43,943	44,089	46,801	50,944
65-74	15,588	21,081	28,079	34,258	38,357	41,074	40,219	40,285
75+	10,581	13,183	14,990	18,061	23,316	27,937	32,147	35,027
Female Tot.	236,735	273,178	294,447	315,944	336,967	358,098	377,161	395,149
16-24	37,774	42,199	43,176	46,068	48,312	51,141	53,814	54,932
25-54	133,113	143,430	149,038	153,122	161,331	169,544	177,704	185,941
55-64	26,446	41,087	46,468	49,492	48,152	48,050	51,288	55,390
65-74	19,838	24,406	32,216	40,034	45,134	47,961	46,501	46,330
75+	19,564	22,056	23,549	27,228	34,038	41,403	47,854	52,556
		Labor F	orce 2000-	2040 (Four	-County R	egion)		
	2000	2010	<u>2015</u>	2020	2025	<u>2030</u>	2035	<u>2040</u>
Male Tot.	156,302	175,932	186,491	196,190	205,482	215,787	226,086	236,536
16-24	24,996	26,800	26,692	27,568	29,245	30,930	32,544	33,208
25-54	110,704	116,732	121,152	124,496	130,751	137,944	144,820	151,583
55-64	15,595	24,750	27,925	30,186	29,661	29,760	31,591	34,388
65-74	4,161	6,750	9,687	12,676	14,192	15,198	14,881	14,906
75+	846	900	1,034	1,264	1,632	1,956	2,250	2,452
Female Tot.	144,002	168,493	179,742	190,040	198,544	207,593	217,440	227,265
16-24	24,181	26,473	26,488	27,641	28,987	30,685	32,288	32,959
25-54	101,690	110,953	115,057	117,904	124,225	130,549	136,832	143,175
55-64	14,129	24,427	28,926	32,170	31,299	31,233	33,337	36,003
65-74	3,210	5,790	8,328	11,210	12,637	13,429	13,020	12,972
75+	792	850	942	1,116	1,396	1,698	1,962	2,155

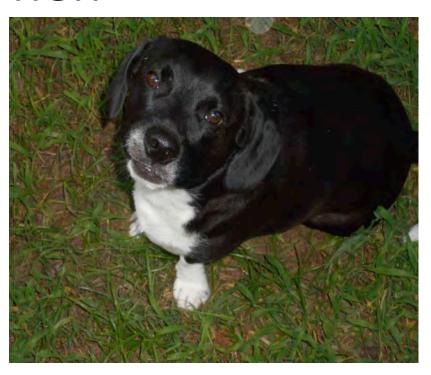
Population, Labor Force, and Employment



The nitty-gritty

CONCEPTS

Key Concepts


- Control total for population, employment and other data bits
- Geographic hierarchy

If-Then

- Simple, but vital
- Inferential reasoning

- If I walk my dog we'll both be glad
- If not...

Grade-school math +

- Multiplication and division
- Applied simple algebra

Multipliers

- You're looking for a number that allocates each characteristic in a way that's consistent with overall totals and totals by type
- That number is typically a multiplier

A little example

1	Lonoke	County Ext	rapolation	s to Find \	Norkers / F	lousehold in 2040			
2		by T	ract (using	County C	ontrol Tota	als)			
3									
4									
5									
6									
7	Tract	Pop10	<u>HH10</u>	<u>HP10</u>	HHwkr10	<u>Pop40</u>	<u>HH40</u>	<u>HP40</u>	HHwkr40
8	201.01	6,749	2,374	6,749	3,117	15,201	5,505	15,201	?
9	201.02	5,373	1,977	5,373	2,446	9,873	3,645	9,873	?
10	201.03	5,398	1,960	5,398	2,569	9,698	3,551	9,698	?
11	201.04	7,068	2,486	7,068	3,257	11,568	4,156	11,568	?
12	202.01	3,729	1,301	3,729	1,858	4,729	1,672	4,729	?
13	202.02	3,837	1,402	3,732	1,639	4,637	1,698	4,531	?
14	202.04	5,535	2,134	5,463	2,598	8,035	3,059	7,957	?
15	202.05	4,994	1,776	4,984	2,457	6,494	2,332	6,482	?
16	202.06	4,110	1,551	4,110	1,856	7,110	2,661	7,110	?
17	203.01	3,977	1,526	3,977	1,951	6,977	2,640	6,977	?
18	203.02	3,750	1,396	3,745	1,876	6,750	2,504	6,741	?
19	204	3,095	1,265	3,031	1,384	3,350	1,357	3,275	?
20	205	4,619	1,728	4,372	1,946	5,608	2,126	5,325	?
21	206	1,815	679	1,813	712	4,326	1,602	4,326	?
22	207	2,989	1,222	2,922	1,242	3,489	1,407	3,421	?
23	208	1,318	518	1,318	584	1,183	497	1,183	?
24									
25	Total	68,356	25,295	67,784	31,492	109,028	40,412	108,397	50,015
26									
27	Ratio Wkr	/ HH:			1.245	Projected	Wkr / HH:		1.238
28									
29						Apply pro	ected Wkr	/ HH ratio	to all
30						tracts, info	ormed by cu	urrent rati	os but
31						modified	to reflect fu	iture chan	ges.
22									_

1	Lonoke (County Ext	rapolation	s to Find \	Norkers / House	ehold in 2040				Apply 2010 ratio		
2	-	by T	ract (using	County C	ontrol Totals)					of workers to		
3				-						households		
4												
5												
6										1st Draft		
7	Tract	Pop10	HH10	HP10	HHwkr10	Pop40	HH40	HP40	HHwkr40	HHwkr40		
8	201.01	6,749	2,374	6,749	3,117	15,201	5,505	15,201	5	7227.921		
9	201.02	5,373	1,977	5,373	2,446	9,873	3,645	9,873	?	4509.697		
10	201.03	5,398	1,960	5,398	2,569	9,698	3,551	9,698	?	4654.346		
11	201.04	7,068	2,486	7,068	3,257	11,568	4,156	11,568	?	5444.928		
12	202.01	3,729	1,301	3,729	1,858	4,729	1,672	4,729	5	2387.837		
13	202.02	3,837	1,402	3,732	1,639	4,637	1,698	4,531	3	1985.037		
14	202.04	5,535	2,134	5,463	2,598	8,035	3,059	7,957	5	3724.125		
15	202.05	4,994	1,776	4,984	2,457	6,494	2,332	6,482	?	3226.196		
16	202.06	4,110	1,551	4,110	1,856	7,110	2,661	7,110	?	3184.279		
17	203.01	3,977	1,526	3,977	1,951	6,977	2,640	6,977	?	3375.256		
18	203.02	3,750	1,396	3,745	1,876	6,750	2,504	6,741	?	3364.974		
19	204	3,095	1,265	3,031	1,384	3,350	1,357	3,275	?	1484.655		
20	205	4,619	1,728	4,372	1,946	5,608	2,126	5,325	?	2394.211		
21	206	1,815	679	1,813	712	4,326	1,602	4,326	?	1679.859		
22	207	2,989	1,222	2,922	1,242	3,489	1,407	3,421	?	1430.028		
23	208	1,318	518	1,318	584	1,183	497	1,183	?	560.3243		
24												
25	Total	68,356	25,295	67,784	31,492	109,028	40,412	108,397	50,015	50,634		
26												
27	Ratio Wkr /	HH:			1.245	Projected \	Nkr/HH:		1.238	Formula for each	tract:	
28										HH 2040 * (HHwk	r 2010 / HH 20)10)
29						Apply proje	ected Wkr	/ HH ratio	to all			
30						tracts, info	rmed by co	urrent rati	os but			
31						modified to	reflect fu	ture chan	ges.			

1	Lonoke				Workers / Housel	nold in 2040				Apply 2010 ratio	Multiplier rate				
2		by T	ract (using	County C	ontrol Totals)					of workers to	applied to adjust				
3										households	all cells to control				
4											total.				
5															
6							0.000			1st Draft	2nd Draft				
7	Tract	Pop10	HH10	HP10	HHwkr10	Pop40	HH40	HP40	HHwkr40	HHwkr40	HHwkr40				
8	201.01	6,749	2,374	6,749	3,117	15,201	5,505	15,201	3	7227.921	7139.606		absolute v		o app
9	201.02	5,373	1,977	5,373	2,446	9,873	3,645	9,873	?	4509.697	4454.594	multiplie	r to all cells	5,	
10	201.03	5,398	1,960	5,398	2,569	9,698	3,551	9,698	3	4654.346	4597,477				
11	201.04	7,068	2,486	7,068	3,257	11,568	4,156	11,568	3	5444.928	5378.399				
12	202.01	3,729	1,301	3,729	1,858	4,729	1,672	4,729	3	2387.837	2358.661				
13	202.02	3,837	1,402	3,732	1,639	4,637	1,698	4,531	?	1985.037	1960.783				
14	202.04	5,535	2,134	5,463	2,598	8,035	3,059	7,957	?	3724.125	3678.621				
15	202.05	4,994	1,776	4,984	2,457	6,494	2,332	6,482	?	3226.196	3186,776				
16	202.06	4,110	1,551	4,110	1,856	7,110	2,661	7,110	3	3184.279	3145.371				
17	203.01	3,977	1,526	3,977	1,951	6,977	2,640	6,977	?	3375.256	3334.015				
18	203.02	3,750	1,396	3,745	1,876	6,750	2,504	6,741	3	3364.974	3323.859				
19	204	3,095	1,265	3,031	1,384	3,350	1,357	3,275	?	1484.655	1466.514				
20	205	4,619	1,728	4,372	1,946	5,608	2,126	5,325	3	2394.211	2364.957				
21	206	1,815	679	1,813	712	4,326	1,602	4,326	?	1679.859	1659.333				
22	207	2,989	1,222	2,922	1,242	3,489	1,407	3,421	3	1430.028	1412.555				
23	208	1,318	518	1,318	584	1,183	497	1,183	?	560.3243	553.478				
24															
25	Total	68,356	25,295	67,784	31,492	109,028	40,412	108,397	50,015	50,634	50,015				
26															
27	Ratio Wkr	/ HH:			1.245	Projected \	Nkr/HH:		1.238	Accumulated to	al is too high (50,634)				
28															
29						Apply proje	ected Wkr	/ HH ratio	to all	Need a correction	n factor multiplier				
30						tracts, info									
31						modified t	-			Multiplier is goa	(50,015) divided by				
32										1st draft result (
33															
34										Multiplier:					
35										0.987781					-

1	Lonoke	•	•		Vorkers / House	hold in 2040				Apply 2010 ratio	Multiplier rate		
2		by T	ract (using	County C	ontrol Totals)					of workers to	applied to adju	st	
3										households	all cells to cont	rol	
4											total.	Rounding	
5													
6										1st Draft	2nd Draft	3rd Draft	
7	Tract	Pop10	<u>HH10</u>	<u>HP10</u>	HHwkr10	Pop40	<u>HH40</u>	HP40	HHwkr40	HHwkr40	HHwkr40	HHwkr40	
8	201.01	6,749	2,374	6,749	3,117	15,201	5,505	15,201	?	7227.921	7139.606	7,140	
9	201.02	5,373	1,977	5,373	2,446	9,873	3,645	9,873	?	4509.697	4454.594	4,455	
10	201.03	5,398	1,960	5,398	2,569	9,698	3,551	9,698	?	4654.346	4597.477	4,597	
11	201.04	7,068	2,486	7,068	3,257	11,568	4,156	11,568	?	5444.928	5378.399	5,378	
12	202.01	3,729	1,301	3,729	1,858	4,729	1,672	4,729	?	2387.837	2358.661	2,359	
13	202.02	3,837	1,402	3,732	1,639	4,637	1,698	4,531	?	1985.037	1960.783	1,961	
14	202.04	5,535	2,134	5,463	2,598	8,035	3,059	7,957	?	3724.125	3678.621	3,679	
15	202.05	4,994	1,776	4,984	2,457	6,494	2,332	6,482	?	3226.196	3186.776	3,187	
16	202.06	4,110	1,551	4,110	1,856	7,110	2,661	7,110	?	3184.279	3145.371	3,145	
17	203.01	3,977	1,526	3,977	1,951	6,977	2,640	6,977	?	3375.256	3334.015	3,334	
18	203.02	3,750	1,396	3,745	1,876	6,750	2,504	6,741	?	3364.974	3323.859	3,324	
19	204	3,095	1,265	3,031	1,384	3,350	1,357	3,275	?	1484.655	1466.514	1,467	
20	205	4,619	1,728	4,372	1,946	5,608	2,126	5,325	?	2394.211	2364.957	2,365	
21	206	1,815	679	1,813	712	4,326	1,602	4,326	?	1679.859	1659.333	1,659	
22	207	2,989	1,222	2,922	1,242	3,489	1,407	3,421	?	1430.028	1412.555	1,413	
23	208	1,318	518	1,318	584	1,183	497	1,183	?	560.3243	553.478	553	
24													
25	Total	68,356	25,295	67,784	31,492	109,028	40,412	108,397	50,015	50,634	50,015	50,016	
26													
	Ratio Wkr	/ нн:			1.245	Projected \	Nkr/HH:		1.238			Slight difference	e is acceptable.
28 29						Apply proj	ected Wkr	/ HH ratio	to all			Base allocation,	more can be don
30						tracts, info	rmed by cu	urrent rati	os but				
31						modified t	o reflect fu	ture chan	ges.				

The Mother of All Data Problems

 Model demands 12 separate inputs for each TAZ, for 1,500 TAZs in ten-year increments

• That works out to 18,000 discrete data "bits" per

forecast year, and 72,000 in all.

TAZs for CTPP 2006-2010

(center portion only)

Model TAZs in CTPP TAZs

The Nub of the Data Problem

- Each of 72,000 separate data bits must meet the following qualifications:
- 1. They must be internally consistent (HH size, emp-by-industry, workers/HH)
- 2. They must match control totals (or it's an exercise in pure fiction)
- 3. They are subject to draft versions, map checks, and revisions

What do you do?

Excel VBA

- VBA = Visual Basic for Applications
- It's the internal programming language of Excel
- If you've ever generated a "macro," you've touched VBA
- Get started by designing a macro, then step into VBA and start tweaking it

VBA On the Ground

- "On the Ground" is a useful analogy because the hierarchy of spatial geography is key
- County tract TAZ

VBA best for tract – to – TAZ (the trenches)

VBA Examples

- One macro may conduct tract-to-TAZ calculations for all rows in a tract, then stop
- Once in the code you can copy it to do the same thing ten times
- With a "Do Loop" you can make it copy repeatedly until it meets a stopping criterion, possibly a simple blank space

Sample of VBA Code

```
Microsoft Visual Basic - M2040_TAZ_Worksheet.xlsm [break] - [Module1 (Code)]
 File Edit View Insert Format Debug Run Tools Add-Ins Window Help
 BlueLine
 (General)

⇔ Sub BlueLine()

    ' BlueLine Macro
    ' Copy blue line down - repeat
    ' Keyboard Shortcut: Ctrl+Shift+T
    Do
       If ActiveCell.Offset(0, 1) = "" Then
       Exit Do
       ActiveCell.Rows("1:1").EntireRow.Select
           With Selection. Interior
           .Pattern = xlSolid
           .PatternColorIndex = xlAutomatic
           .ThemeColor = xlThemeColorLight2
           .TintAndShade = 0.599993896298105
            .PatternTintAndShade = 0
       End With
       ActiveCell.Offset(32, 0).Rows("1:1").EntireRow.Select
       With Selection. Interior
           .Pattern = xlSolid
           .PatternColorIndex = xlAutomatic
           .ThemeColor = xlThemeColorLight2
           .TintAndShade = 0.599993896298105
            .PatternTintAndShade = 0
       ActiveCell.Offset(32, 0).Range("A1").Select
       End If
        Loop
    End Sub
```

Sample VBA Tract-TAZ Spreadsheet

T	RACT TA	Z	SERV300	BAS30P	RET30P	SERV30P	TOT30R	BAS30R	RET30R	SERV30R	BAS30S	RET30S	SERV30S	TOT30T	BAS30T	RET30T	SERV30T	BAS30U	RET30U	SERV30U
1	301 48		44	4	25		74		25		4	25		74			44	4		
2	301 48	02	26	31			65	31			31			65	31		26	31		
3	301 48		15	37			58				37	5		58				37		
4	301 48		30	0			42				0			42				0		
5	301 48		25	ő			35				Ű.			35				0	10	
6	301 48		4	0			4				ő			4				0	0	
7	301 48		57	7			82				7			82				7	18	
8	301 48		214	157			446				157	75		446				157		
9	301 48	109	20	144	31	20	195	144	3	20	144	31	20	195	144	31	20	144	31	20
0																				
11																				
2																				
3																				
4																				
5																				
6																				
7																				
8											-									
9																				
0																				
1																				
		-1																		
2		-1																		
3		-1																		
4		_1	100			100	77400	1200	700		Julia	VVII.	190		1000		1700	Autolo /	700	
			436	380	185	436	1,000		185	436	380	185	436	1,000		185	436	380	185	436
d.	004		***	244	-	440	8			440		-	440	. 9		-	440	page 1	-	
1	301 48		146	100			298				100			298				100		
2	301 48		16	6			24				6			24				6		
3	301 48		71	7			319				7			319				7		
4	301 48	321	8	0		8	10	0	2	8	0	2	8	10	0	2	8	0	2	8
5	301 48	22	691	12	43	691	746	12	43	691	12	43	691	746	12	43	691	12	43	691
6	301 48	24	416	52	21	416	488	52	2	416	52	21	416	488	52	21	416	52	21	416
7	301 48	27	7	6			14	6		7	6	1	7	14	6	1	7	6	1	7
8	301 48	28	27	13	3	27	43	13	3	27	13	3	27	43	13	3	27	13	3	27
9	301 48		25	16			59				16			59				16		
ō	301 48		99	12			199				12			199				12		
11	-			-				-						100	-		7.5			
2																				
3																				
4																				
5		-																		
		-																		
6		-																		
7		_																		
8																				
9																				
0																				
21																				
2																				
3																				
4																				
			1,505	224	471	1,505	2,200	224	47	1,505	224	471	1,505	2,200	224	471	1,505	224	471	1,505
	201 10	22	000	400	240	222	675	100	0.40	222	400	240	222	675	100	0.40	222	400	040	000
1	301 48		323	103			675				103			675			323	103		
2	301 48		15	58			77				58			77				58		
3	301 48		3	. 0			5 29				0 19			5 29				0		3 6
4	301 48		6	19													6	19		

Correction factors

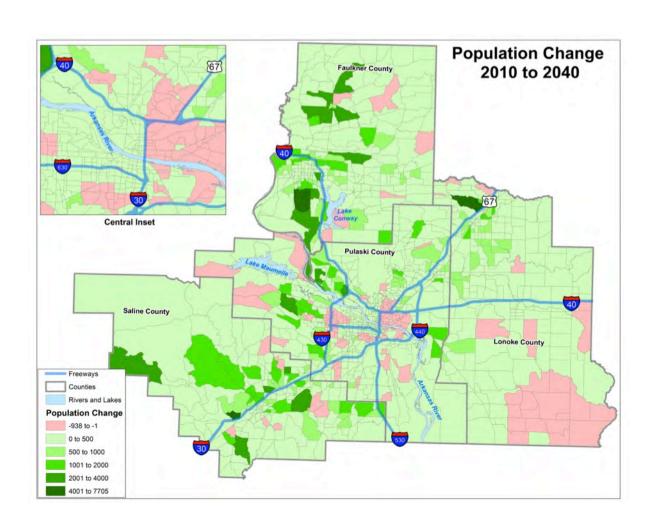
- Once you've adjusted a set of numbers (for TAZs within a tract for example), you will probably violate the control total
- A correction factor can re-impose the same control total on adjusted values
- Values must remain reasonable, like PPH is rarely lower than 1.5 and rarely higher than 3
- You can set up if-then "flags" to draw your attention to violations

VBA Tips

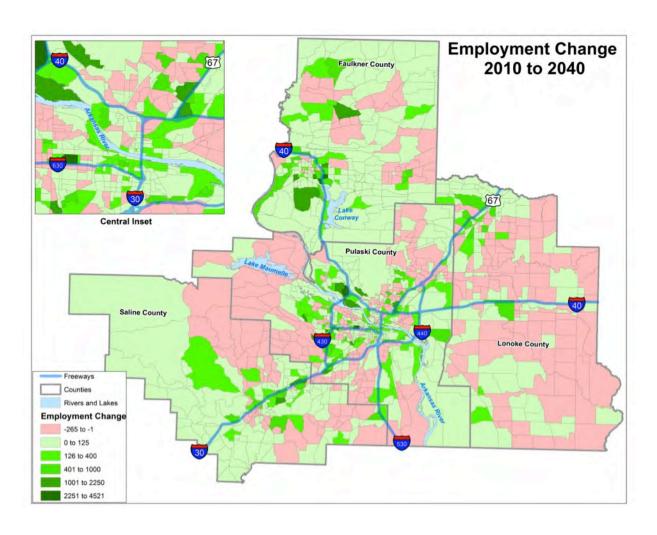
- VBA can allow you to repeat a complex function
- VBA can meet "if-then" conditions, so to some extent a VBA program can walk through your spreadsheet thinking for itself
- VBA is fragile. Minor syntax errors will throw everything off
- VBA depends on consistent spacing, so you'll do better if you're spatially wasteful (but consistent) than if you're stingy with rows and columns

A Sick Relationship

When it's bad, it's really bad



 It's mentally intensive, so it's okay – essential in fact – to take long walks, develop strange hobbies, chat with the receptionist, distract the GIS staff with your teenager troubles...



The Results – Population Change Projected (Trend Model)

The Results – Employment Change (Trend Model)

How you get from MSA to TAZ

STEP-BY STEP SUMMARY

Cohort-component **Population Projections**

- births
- deaths
- migration

Employment Projections

- employment by industry
- labor force participation

Characteristics household size trends

- group quarters trends
- workers per household
- vehicles per household
- school-age children

Geographic Breakdown

- counties
- tracts
- TAZ

Wrap Up

- check results for consistency
- develop results
- modification between calculation and model geography
- back-and-forth with engineer

Human and Humor share the same first 3 letters

THE HUMAN FACTOR

Teamwork

- An office of "turfs" won't get too far
- An office with a "sharing" culture will do well, and have fun, too

Teamwork

- Supervisors should allow people space and time to be creative. Work is complicated, coaching support is welcome
- Employees should keep the boss apprised.
 Supervisors have the big picture, and may be able to help in ways you don't recognize

Training / Aptitude

- Attitude is key
- Motivation matters more than raw ability
- Creativity can cut a lot of corners
- Mathematical genius not necessary, but...
- You'd better like numbers and statistics.

"Organization is the Enemy of Improvisation" -

Lord Beaverbrook, 1940

Working with the Public

The public is rarely interested and doesn't understand

Working with the Public

- Despite the obscurity of the work, it can make a big difference
- School-age population projections are a gold mine for school districts looking at facilities

Scenarios

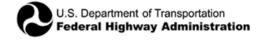
- Since 1995, Metroplan has always done a "trend" scenario and a "vision" or "preferred policy" scenario
- "Trend" is defaulted to in practice
- "Trend" is not an "ugly plan" for this reason; it allows for shifting market and demographic forces

Final Thoughts

- "Anyone that can forecast land use twenty to thirty years out is a fool, a charlatan, or both"
 - Dr. Stephen Putnam, 2003 -
- Projections try to help with anticipating trends, not exact results
- Sometimes they miss trends too
- A model is just a tool

TMIP Updates

For future webinar announcement, please sign up for GovDelivery at http://www.fhwa.dot.gov/planning/tmip/ if you have not done so.



TMIP Contacts

If you have any questions or comments about today's presentation or TMIP, or if you are interested in sharing your experience, please contact me at:

sarah.sun@dot.gov or feedback@tmip.org.

