
Webinar Series

TMIP VISION

TMIP provides technical

support and promotes

knowledge and

information exchange in

the transportation

planning and modeling

community.

Today’s Goals

To Consider:
– Parallel Processing

• More on Hadoop

– Data Management

• Distributed File Systems

• Storage (SQL/NoSQL)

– Algorithms

• Processing algorithms

• Prediction algorithms (ML)

2

Algorithm Teaser /Crowd Pleaser

3

Algorithms get you from (a) to (d) … Big Data infrastructure does it at scale

Webinar Roadmap

Big Data definitions

Infrastructure

 Metal

 Management

 Models

 (part 1)

 (part 2)

Algorithms

 Data Processing

 Machine Learning

Implications

 Privacy

 Smart Cities

 Technology Tradeoffs

4

Session 2

MODELS:
RESOURCE PROVISIONING

Big Data Infrastructure

5

Big Data Infrastructure: Hadoop

Hadoop is

– A data processing programming model

– A resource management framework

– A distributed file system

Hadoop is

– A popular, open source parallel processing framework

– An implementation of the MapReduce algorithm

It

6

Data Processing Model

and Resource Management

MapReduce* is
– A programming model for parallel data processing

– A cluster resource management framework

7

* Hadoop 1.0

Distributed File System

HDFS is
– A redundant, reliable storage framework

– HBase is a key-value store built on HDFS

8

Resource Management Framework

Hadoop 2.0
– Released in October 2013

– MapReduce was split in two

• MapReduce – A parallel data processing model

• YARN – A cluster resource management system

9

What is Hadoop Good For?

Hadoop is

– MapReduce: A data processing programming model

– HDFS: A distributed file system

– YARN: A resource management framework

10

Most Hadoop Sys Admins

• Will need to be familiar with YARN and alternatives

such as MESOS

Most Hadoop Developers (e.g., Data Scientists)

• Will need to be familiar with MapReduce/HDFS

The MapReduce Programming Model

MapReduce is…
– A programming model for parallel data processing

– Several Variants: Map Only, Single Reducer, …

– MapReduce can be useful even if data is not BIG

• Example: Processing Prime Numbers

11

Summing Prime Numbers

Sum the First 100 Primes Between 1-100

– Sum: 1,060

– Execution Time (Sequential): 0.050 seconds

Sum the First 100 Primes Between 29,901-30,000

– Sum: 209,643

– Execution Time (Sequential): 0.111 seconds

Sum the First 100 Primes Between 299,999,901-300,000,000

– Sum: 1,199,999,796

– Execution Time (Sequential): 406 seconds

12

MapReduce for Summing

Prime Numbers

13

51 – 75

Map Reduce

Result Data
(“53”, “yes”), … Sum

Is MapReduce Good Enough?

MapReduce Is A Batch Processing Model

– Batch:

• Get All Data  Process Data  Stop

What If The Data Processing Needs To Be

– Iterative

• Get Data  Process Data  Repeat

– Streaming (Continual)

• Get Data  Process Data  Get More Data  Repeat Forever

14

Iterative Model:

Bulk Synchronous Processing (BSP)

BSP Model - Created by Leslie Valiant (1980s)
– Parallel processing via synchronized “supersteps”

15

P1

P2

P3

… … …

Computation Communication

(synchronization)

Communication

(synchronization)

Computation

Length indicates

computation duration Arrows indicate

process communication

Processes

Iterative Model: When Is It Useful?

Example: Graph Processing
– Social networks are modeled as graphs

– Iterative Steps

• Process Each Node Based on Neighbor’s Info

• Send New Calculation To Neighbors

• Repeat

16

Pete Kate

Drew

Dulani

Votes between

linked friends

taken in rounds

Iterative Model:

Open Source Options

Apache Hama
– A general purpose BSP framework

• Offers pure BSP

– Touted for its support of machine learning

• ML algorithms require iterative steps

Apache Giraph
– A framework specifically design for graphs

– Based on Pregel – an internal Google framework

– Used in production by Facebook

– Runs on the Hadoop stack

• Uses HDFS

17

Hama vs. Mahout

Streaming Model

Apache Storm
– “A system for processing streaming data in real time”

– Example Use Cases

• Financial Services: Fraud Detection

• Retail: Dynamic Pricing

• Transportation: Driver Monitoring

– Key Features

• Fast, Scalable, Fault-Tolerant, Reliable, Ease of Use

– History

• Was previously associated with Twitter  Twitter Storm

18

Streaming Model

Apache Storm: Programming Model

– Tuple – An ordered list of items

• Example: (city, temp, time)  (DC, 42, 0830)

– Stream – An infinite sequence of tuples

• Example: A stream of tweets

– Spout – A source that generates a stream

– Bolt – A node that processes a stream

– Topology – A graph of spouts and bolts; the

computation

19

Spout

Bolt Bolt

Spout

Spout

Bolt

Bolt

Real World Example: Automa Systems

Automa Systems

• Built on top of Apache Storm

• Automates shipper-trucker marketplace
• Old Model: Compute then execute

• Automa’s New Model: Integrates real-time and
historical traffic data, driver location, weather and
customer delays to fully automate dispatch decisions

• Benefits for Fleet Optimization
• Increased vehicle utilization and minimized fuel costs

20

Streaming++ Model

Apache Spark
– “A fast and general engine for large-scale data processing”

Key Features
– Batch processing 10-100x faster than Hadoop

• Efficient memory use reduces reads/writes to disk
– Trade-off: Spark is faster at expense of reduced fault tolerance

– Stream processing that is fully integrated Hadoop

– Iterative processing
• Mllib – Built-in machine learning library

History
– Originated as a UC Berkeley research project

21

But Wait…This Is Too Much

Hadoop, Apache, Iterative, Smiterative, …
– Which one do I learn/use?

Solution: Interface with a Higher Abstraction
– Instead of learning MapReduce, Spouts/Bolts, …

• Interact with a higher layer

Two Approaches
– Easy Programming Interfaces

– Software as a Service Interfaces

22

Easier Programming Approach

Consideration
– This approach requires infrastructure

Examples
– Apache Hive – A SQL interface to Hadoop

• Leverages the fact that many developers know SQL

– Apache Pig – A scripting interface for Hadoop
• Complex programs are compiled into MapReduce jobs

– Rhadoop – R + Hadoop
• Interact with Hadoop, HDFS and HBase

• Developed by Revolution Analytics

– General purpose programming languages
• Python, Java, Scala bindings for Spark

23

Software-as-a-Service (SaaS) Approach

Consideration
– This approach requires NO less infrastructure

Examples
– Datameer – Excel-like Interface, Run R

– Dataminr – Twitter stream processing

– Domino – Run R, Python and Matlab

– IBM Watson API – Controlled invitations only

– IFTTT – Very simple stream processing

24

Webinar Roadmap

Big Data definitions

Infrastructure

 Metal

 Management

 Models

 (part 1)

 (part 2)

Algorithms

 Data Processing

 Machine Learning

Implications

 Privacy

 Smart Cities

 Technology Tradeoffs

25

Session 2

MODELS: STORAGE
Big Data Infrastructure

26

Data Management

Relational Databases

• Data is stored in tables (rows/columns)

• SQL – Structured Query Language
• A language for creating, reading, updating and deleting (CRUD) table data

• Operating Principles: ACID
• Atomicity – Each transaction is all or nothing

• Consistency – Each transaction will result in achieving a valid DB state

• Isolation – Concurrent transactions are equivalent to serial transactions

• Durability – Committed transactions are resilient to power losses

• Popular Relational Databases
• Oracle

• IBM DB2

• MySQL (open source)

• Postgres (open source)

27

Data Management

Relational Databases are widely used

• Banks and financial systems

• HR employee data management

• Retail inventory systems

The Problem with Relational Databases

• ACID makes scaling difficult

• ACID is not necessary in many Big Data scenarios

Big Data Solution  NoSQL

28

CAP Theorem

2000 Eric Brewer
– Shared data system can have at most two of the three following

properties: Consistency, Availability and tolerance to network

Partitions

29

Consistency Availability Partition Tolerant

• Total order on all operations
• Each operation looks as if it was

completed at a single instant
• Updates applied to all relevant

nodes at the same time

• Every request results in
a response, even when
severe network failures
occur

• All messages sent from
nodes in one partition to
another may be lost due
to a network failure but
system will still respond

Shutdown instead of inconsistent

response

Respond to all, maybe stale

reads and conflicting writes

Unavoidable?

Note: Different use of

“consistency” from ACID

Data Management with Big Data

Most Big Data Applications are Distributed

• Distributed applications must be Partition Tolerant

• We must assume the network can go down
• It is beyond our control

• Due to CAP theorem, distributed applications must
choose between A (availability) or C (consistency)

• Many Big Data applications need Availability and can
be satisfied with Eventual Consistency

• It is okay if returned data is stale

30

