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TMIP VISION 
 

TMIP provides technical 

support and promotes 

knowledge and 

information exchange in 

the transportation 

planning and modeling 

community. 



Today’s Goals 

To Consider: 
– Parallel Processing 

• More on Hadoop 

– Data Management 

• Distributed File Systems 

• Storage (SQL/NoSQL) 

– Algorithms 

• Processing algorithms 

• Prediction algorithms (ML) 
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Algorithm Teaser /Crowd Pleaser 
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Algorithms get you from (a) to (d) … Big Data infrastructure does it at scale 
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MODELS:  
RESOURCE PROVISIONING 

Big Data Infrastructure 
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Big Data Infrastructure: Hadoop 

Hadoop is  

– A data processing programming model 

– A resource management framework 

– A distributed file system 

 

Hadoop is  

– A popular, open source parallel processing framework 

– An implementation of  the MapReduce algorithm 

It  
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Data Processing Model  

and Resource Management 

MapReduce* is 
– A programming model for parallel data processing 

– A cluster resource management framework 
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* Hadoop 1.0 



Distributed File System 

HDFS is 
– A redundant, reliable storage framework 

– HBase is a key-value store built on HDFS 
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Resource Management Framework 

Hadoop 2.0 
– Released in October 2013 

– MapReduce was split in two 

• MapReduce – A parallel data processing model 

• YARN – A cluster resource management system 
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What is Hadoop Good For?  

Hadoop is  

– MapReduce: A data processing programming model 

– HDFS: A distributed file system 

– YARN: A resource management framework 
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Most Hadoop Sys Admins  

• Will need to be familiar with YARN and alternatives 

such as MESOS 

Most Hadoop Developers (e.g., Data Scientists) 

• Will need to be familiar with MapReduce/HDFS 



The MapReduce Programming Model 

MapReduce is… 
– A programming model for parallel data processing 

– Several Variants: Map Only, Single Reducer, … 

– MapReduce can be useful even if  data is not BIG 

• Example: Processing Prime Numbers 
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Summing Prime Numbers 

Sum the First 100 Primes Between 1-100 

– Sum: 1,060 

– Execution Time (Sequential): 0.050 seconds 

Sum the First 100 Primes Between 29,901-30,000 

– Sum: 209,643 

– Execution Time (Sequential): 0.111 seconds 

Sum the First 100 Primes Between 299,999,901-300,000,000 

– Sum: 1,199,999,796 

– Execution Time (Sequential): 406 seconds 
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MapReduce for Summing 

Prime Numbers 
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51 – 75 

Map Reduce 

Result Data 
(“53”, “yes”), … Sum 



Is MapReduce Good Enough? 

MapReduce Is A Batch Processing Model 

– Batch:  

• Get All Data  Process Data  Stop 

What If  The Data Processing Needs To Be 

– Iterative 

• Get Data  Process Data  Repeat 

– Streaming (Continual) 

• Get Data  Process Data  Get More Data  Repeat Forever 
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Iterative Model:  

Bulk Synchronous Processing (BSP) 

BSP Model -  Created by Leslie Valiant (1980s) 
– Parallel processing via synchronized “supersteps” 
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Iterative Model: When Is It Useful? 

Example: Graph Processing 
– Social networks are modeled as graphs 

– Iterative Steps 

• Process Each Node Based on Neighbor’s Info 

• Send New Calculation To Neighbors 

• Repeat 
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Iterative Model: 

Open Source Options 

Apache Hama 
– A general purpose BSP framework 

• Offers pure BSP 

– Touted for its support of  machine learning 

• ML algorithms require iterative steps 

Apache Giraph 
– A framework specifically design for graphs 

– Based on Pregel – an internal Google framework 

– Used in production by Facebook 

– Runs on the Hadoop stack 

• Uses HDFS 
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Hama vs. Mahout 



Streaming Model 

Apache Storm 
– “A system for processing streaming data in real time” 

– Example Use Cases 

• Financial Services: Fraud Detection 

• Retail: Dynamic Pricing 

• Transportation: Driver Monitoring 

– Key Features 

• Fast, Scalable, Fault-Tolerant, Reliable, Ease of  Use 

– History 

• Was previously associated with Twitter  Twitter Storm 
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Streaming Model 

Apache Storm: Programming Model 

– Tuple – An ordered list of  items 

• Example: (city, temp, time)  (DC, 42, 0830) 

– Stream – An infinite sequence of  tuples 

• Example: A stream of  tweets 

– Spout – A source that generates a stream 

– Bolt – A node that processes a stream 

– Topology – A graph of  spouts and bolts; the 

computation 
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Real World Example: Automa Systems 

Automa Systems 

• Built on top of  Apache Storm 

• Automates shipper-trucker marketplace 
• Old Model: Compute then execute  

• Automa’s New Model: Integrates real-time and 
historical traffic data, driver location, weather and 
customer delays to fully automate dispatch decisions 

• Benefits for Fleet Optimization  
• Increased vehicle utilization and minimized fuel costs 
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Streaming++ Model 

Apache Spark 
– “A fast and general engine for large-scale data processing” 

Key Features 
– Batch processing 10-100x faster than Hadoop 

• Efficient memory use reduces reads/writes to disk 
– Trade-off: Spark is faster at expense of  reduced fault tolerance 

– Stream processing that is fully integrated Hadoop 

– Iterative processing 
• Mllib – Built-in machine learning library 

History 
– Originated as a UC Berkeley research project 
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But Wait…This Is Too Much 

Hadoop, Apache, Iterative, Smiterative, … 
– Which one do I learn/use? 

Solution: Interface with a Higher Abstraction 
– Instead of  learning MapReduce, Spouts/Bolts, … 

• Interact with a higher layer 

Two Approaches 
– Easy Programming Interfaces 

– Software as a Service Interfaces 
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Easier Programming Approach 

Consideration 
– This approach requires infrastructure 

Examples 
– Apache Hive – A SQL interface to Hadoop 

• Leverages the fact that many developers know SQL 

– Apache Pig – A scripting interface for Hadoop 
• Complex programs are compiled into MapReduce jobs 

– Rhadoop – R + Hadoop 
• Interact with Hadoop, HDFS and HBase 

• Developed by Revolution Analytics 

– General purpose programming languages 
• Python, Java, Scala bindings for Spark 
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Software-as-a-Service (SaaS) Approach 

Consideration 
– This approach requires NO less infrastructure 

Examples 
– Datameer – Excel-like Interface, Run R 

– Dataminr – Twitter stream processing 

– Domino – Run R, Python and Matlab 

– IBM Watson API – Controlled invitations only 

– IFTTT – Very simple stream processing 
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MODELS: STORAGE 
Big Data Infrastructure 
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Data Management 

Relational Databases 

• Data is stored in tables (rows/columns) 

• SQL – Structured Query Language 
• A language for creating, reading, updating and deleting (CRUD) table data 

• Operating Principles: ACID 
• Atomicity – Each transaction is all or nothing 

• Consistency – Each transaction will result in achieving a valid DB state 

• Isolation – Concurrent transactions are equivalent to serial transactions 

• Durability – Committed transactions are resilient to power losses 

• Popular Relational Databases 
• Oracle 

• IBM DB2 

• MySQL (open source)  

• Postgres (open source) 
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Data Management 

Relational Databases are widely used 

• Banks and financial systems 

• HR employee data management 

• Retail inventory systems 

The Problem with Relational Databases 

• ACID makes scaling difficult 

• ACID is not necessary in many Big Data scenarios 

Big Data Solution  NoSQL 
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CAP Theorem 

2000 Eric Brewer 
– Shared data system can have at most two of  the three following 

properties: Consistency, Availability and tolerance to network 

Partitions 
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Consistency Availability Partition Tolerant 

• Total order on all operations 
• Each operation looks as if it was 

completed at a single instant 
• Updates applied to all relevant 

nodes at the same time 

• Every request results in 
a response, even when 
severe network failures 
occur 

• All messages sent from 
nodes in one partition to 
another may be lost due 
to a network failure but 
system will still respond 

Shutdown instead of inconsistent 

response 

Respond to all, maybe stale 

reads and conflicting writes 

Unavoidable? 

 

Note: Different use of 

“consistency” from ACID 



Data Management with Big Data 

Most Big Data Applications are Distributed 

• Distributed applications must be Partition Tolerant 

• We must assume the network can go down 
• It is beyond our control 

• Due to CAP theorem, distributed applications must 
choose between A (availability) or C (consistency) 

• Many Big Data applications need Availability and can 
be satisfied with Eventual Consistency 

• It is okay if  returned data is stale 
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